

Ekaterinburg 2009

Multicellular processors
(conception, architecture)

 2

The overall volume of information technologies market amounts to trillions of

US dollars. It expressly or by implication depends upon the processor architecture.

Since the first computer, this market has been absolutely dominated by the

Von Neumann architecture. But according to experts this architecture’s age is

coming to the end. The market is dynamically developing and we need a

qualitatively new (post-Von Neumann) architecture that will be able to determine

further development of microprocessors.

Introducing this architecture really favours leading positions.

The processor architectures research held by the “UralArchLab” Ltd shows

that this is the only post-Von Neumann direction, it produces context-sensitive

program processors. Only such processors are able to solve both existing problems

and long-term tasks of the computer industry.

With the assistance from Foundation “Innovation technologies” we have

developed the first context-sensitive program multicellular processor MCP-1.1xx and

this makes our chosen direction correct and perspective.

The proposed architecture is multi-faceted and qualitatively compiled, which

permits us to position this architecture as a principally new, high-efficiency in post-

Neumann direction to allow for further development of microprocessor standards.

 3

CONTENTS

INTRODUCTION... 4

1 CONCEPTION... 7
1.1 TRIAD ALGORITHM DESCRIPTION ... 7
1.2 PRINCIPLES OF PROCESSOR CONSTRUCTION.. 9

2 ARCHITECTURE... 11
2.1 MULTICELLULAR PROCESSOR SCHEME ... 11
2.2 PROGRAM EXECUTION.. 12
2.3 ARCHITECTURE FEATURES ... 14

CONCLUSION ... 17

APPENDIX 1 ... 18

4

INTRODUCTION

The Von Neumann era in computer industry is coming to the end. This processor

model has been dominating for more than 60 years but now as it is stated by the

International Technology Roadmap for Semiconductors (ITRS) that this pivital

development is fading away [htpp://itrs.net/Links/2005ITRS/Sys Drivers2005.pdf].

A retrospective analysis demonstrates that every new effort to improveVon

Neumann architecture had demanded more and more efforts and generated less benefit.

Taking the role of architecture in consideration, we can conclude that we are facing

another bifurcation point in the development of computer industry. The solution is

development of qualitatively new, post-Von Neumann direction for processor architecture.

At the moment leading processor manufactures offer multi nuclear systems as the

main architectural direction. But this decision can not be regarded as the beginning of a

new post-Von Neumann era. This direction is extensive and temporary solution for the

same old Von Neumann problem. Multi nuclear approach is not a fundamentally new step

in the computer industry and it no longer solves its existing problems.

From the first calculators, the main direction in the von-Neumann architecture

development was increasing the parallelism level when a command flow was executed. It

was linked with attempts to weaken and avoid the key principle of the Von Neumann

architecture, that is, the ordered and sequential command placement in the program and

their execution according to this placement. For example, the conveyor is a partial

combination of several commands in time. The superscalar processor organization and the

VLIM-processor concept is a combination of several commands not only in time but also

in space.

The demand for ordered placement and command execution is a necessary condition

of realization of meditate form of information connections between commands that is used

in the Von Neumann architecture. That is, the result of execution of any command is

alienated, i.e. recorded in the openly accessible machine memory (registers, memory

5

units) and only after this it becomes available (visible) to the programmer and may be used

as an operand for the following commands.

The most known efforts to depart from mediate form and, by doing so, provide

“natural” realization of parallelism are are data flow and reduction machines. They use not

meditate but obvious information connections between commands.

So, in the data flow machine the command address is set directly in the command

word of the command-source of this result. After the command-source is executed, the

result is directly recorded in the operand field of the command-consumer and becomes its

part.

In the reduction machine the address of the command-source is set in the command

word of the command-consumer that also ensures direct transmitting and using the result.

Informational connections determine the sequence of execution in both of these

machines. As a result, this execution falls out oforder – “when ready” or “when

demanded”. This circumstance conflicts with the computing model which is used in the

most commonly spread imperative high-level languages.

As it is known, the computing model is the execution of an ordered sequence of

operators in the imperative high-level languages. Every operator represents an indivisible

and integral language structure which describes the data translation process. Each operator

is the sequence, the operations are executed is set by ranging and parenthesis ordering, i.e.

by indicating informational connections between operations. The intermediate computing

results are not alienated inside the operator and not visible to the programmer. Only the

result of the operator execution is alienated and visible. Consequently, the language

operator serves as a command for the abstract machine directly realizing some high-level

language.

The initial operation set of any algorithmic language is primordially fixed and finite.

The set of operators that can be theoretically constructed using these operations is

potentially infinite and correspondingly the machine where the architecture directly

realizes the high-level language has no fixed command system.

6

This architecture is fundamental for a principally new direction in constructing the

processors, i.e. the multicellular processors that have qualitative and quantitative

characteristics of a new post-Von Neumann generation and that were approved by the first

multicellular processor.

7

1 CONCEPTION

1.1 Triad algorithm description

Any formula, for example, mentioned in the figure 1.1 (a), can be represented as a

multilevel parallel form, as it is shown in the figure 1.1 (b).

Figure 1.1 – Multilevel parallel representation of formula: formula (a);

multilevel parallel form (b).

Let’s sequentially, for example, from left to right and from top to bottom, number

every node of the multilevel parallel form mentioned in the figure 1.1(b). The identifiers of

variables will be regarded as the read operations of these variables, if their values are used

by other operations. If the identifier shows that the operation is executed, then it will be

regarded as the write operation of this operation. Let’s write the operations being executed

in the order of numbers. As the operands of the operation being executed we indicate the

numbers of the operations that are executed and this execution results are its arguments.

8

Figure 1.2 – Triad multilevel parallel form description

Shown in the figure 1.2, this description is analogous to the intermediate

representation of the triad program; this representation is used in the compilation of the

programs written in the high-level languages. This representation differs from its classical

form by using read and write operations as well as references to these operations instead of

direct using the identifiers (references to the identifiers’ table). Thus, it can be regarded as

a machine-adapted form of the primary program written in the high-level language.

In this form the program is recorded as a numbered sequence of triads. This

sequence is divided into sections. Every section corresponds to one program operator and

contains the subset of triads that realizes this operator. The sequence the sections are

recorded corresponds to the sequence the operators are recorded in the program. Every

triad describes how some operation is executed on the triads set by identifiers or

references. The reference is the triad’s number and its execution result is used as an

operand, i.e. the reference clearly sets informational connection between operations. At

this, the triad results being transmitted by the reference are not alienated.

9

Since information exchange is mediated between the operators and fulfilled through

alienating the results, then, the subset of triads realizing the operator is closed. It has no

references to the triads of other operators and the triads of other operators do not refer to

the triads of this subset. It should be noted that no triads make sense, when outside their

subset, and they are no longer a command system, i.e. an informational message that

determines the executive unit actions and has integrity and indivisibility. The triad has its

indivisibility but there is no integrity.

Any triad is meaningful and can be executed only in some certain context. That is,

only when the triads are executed, it uses their results and those triads use its results, i.e.

only inside its subset. So, the program generated by the triads’ sequence is context-

sensitive.

For comparison, the way this or that command is executed in the data flow

processor or the Von Neumann one does not depend upon any context. The program of

these processors is context-free. Every command of these processors has its indivisibility

and integrity. Those commands that realize the operator have their integrity but there is no

indivisibility.

In general case the operator’s triads can be placed on the section at random. Unlike

the Von Neumann architecture, their placement determines no sequence of execution. The

sequence they are executed is determined by informational connections

Thus, if in the Von Neumann processor the program unambiguously determines

“what” and “how” should be done, here the triad program unambiguously determines only

“what” should be done. “How” should be done is determined by the processor. And this

circumstance favours qualitatively new as well as improved quantitative characteristics of

the processor.

1.2 Principles of processor construction

It is evident that the architecture of the processor capable of executing a program

text in the triad language should principally differ from the known Von Neumann and non-

Von Neumann (data flow and reduction) architectures.

First of all, the method the informational connections between the operations are

described is different and consequently there will be a different method of their realization.

If we take the Von Neumann model, there informational connections between commands

(operations) are not clearly described and indirectly realized through the memory (general-

purpose registers, MU (memory unit)), then in the triad language they are clearly set by

indicating informational connections between commands. At this, unlike the non-Von

Neumann models, the representation has a selective character rather than an address one.

The result of a command is not sent to a certain consumer (data flow processors) and there

is no concrete command to have a result (reduction processors) but consumers themselves

should select necessary results out of a common flow of results that is formed imperatively

by selecting and executing every command of the linear section rather than by references.

Consequently, the processor architecture should have a mechanism to identify received

results as well as intellectual commutation environment ensuring not only result

broadcasting but also result selecting for concrete operations.

Secondly, here we have a different process in itself. If data flow and reduction

processors have unordered selection and command execution, when data are ready or

result is demanded, then the triad language presupposes ordered selection of the command

of the linear section and their execution not only when data are ready but also when

consumers of the results are ready. That is, the selected command can not be executed

until all the operands are received (data readiness) and until all the commands using its

result are selected (consumer readiness). Such approach to execute sequentially selected

commands is connected with their disorder.

There is no fixed time span from command selection to command execution, this

presupposes mechanisms of command buffering; these mechanisms ensure selected

command storage, completing it with operands selected from a result flow and its issue to

be executed after all the consumers of its result are selected.

10

2 ARCHITECTURE

2.1 Multicellular processor scheme

Let’s consider the parallel system shown in the figure 2.1. It consists of N

processor units PU_0, PU_1, …, PU_n-1 connected by unidirectional “each with each”

commutator (SB) that has N informational inputs and 2N informational outputs as well

as 2N address inputs.

Figure 2.1 — Conceptual processor scheme

Let’s suppose that the system contains four processor units (cells). Let’s place the

command sequence being considered into the РМ processor units beginning from a zero

PU as it is shown in the figure 2.2. Let’s confront an individual tag to every triad (tag

addresses and values are given for the zero PU).

11

Figure 2.2 – Program placement in the program memory of processor units

To execute this program simultaneously with the help of the processor functional

units, the processor’s structure is mentioned in the figure 2.1, we need to:

• have a coordinated (coherent) selection of commands in one line;

• organize a dynamic formation of the values of tags in order to take into

account quantity of functional units that realize command selection and their

relative numbers.

2.2 Program execution

The command word selection is initialized by transmitting all the control to the

linear section. It begins from the first command of the linear section from the program

memory (PM) and goes up to the last command. At that, the following actions are

executed.

The tag value is dynamically formed for every selected command. It is equal to

the sum of the last used tag value when selecting commands and functional units. The

tag reference value is ascertained as the sum of the initial tag value in this linear section

and the reference number. The tag value varies cyclically when selecting commands. Its

maximum value is ascertained by buffer capacity.

The command is recorded into the free line of the buffer. If the command

contains the argument value directly in the command word, for example, the address of

the variable that is in the data memory (DM), then this value is also rerecorded into

some corresponding field of this buffer line. After the “half-finished” command is

 12

recorded into the buffer line, the control unit (CU) starts to select the following

command.

The process stops after the selection (specially marked) of the last command of

the linear section; this last command is selected and executed according to standard

procedure. It is necessary to note that any command can be the last one but not only the

command that forms the initial address of a new linear section. The command forming

the initial address of the following section can take any place in the section being

executed. The formed address is sent to every functional unit which determines its

address of control transmitting to the following section and realizes this transmission

(selection is renewed) after we have the signal of the last command selection of the

current linear section. The selection also finishes, when the buffer is filled and it is

renewed, when the buffer is free.

In the buffer lines the argument fields are organized as two arrays with

associative addressing. The associative address is a tag of a result being demanded. By

this address we realize the value record of input result when it is equal to the tag result.

The command is in the buffer until all the necessary results come into the buffer

and until all the commands using its result are recorded into the buffers. If these

conditions are met at least for one command, the command execution is initialized. At

this, if there are few of ready commands to be executed, then the command selected first

of all is transmitted to be executed.

The executive unit (EU) executes a command and brings its result into the buffer

with the tag equal to the tag of the executed command. This process finishes or stops,

when the buffer has no commands ready to be executed.

It should be noted that while executing commands the cells act with no

coordination and work independently. The cell executes commands but it is unknown

who this result consumes. There is no determined sequence of executing commands. It

is determined by data and command flows.

 13

2.3 Architecture features

1. The multicellular architecture differs from the von-Neumann model by direct

indication of informational connections between operations and consequently any

requirement for ordered arrangement of operation description in the program is

annulled.

This disorder makes all the methods (superscalararity, broad command word,

super-pipeline, forecasting of transitions, etc.) unnecessary; these methods ensure

operation speed but at the same time dramatically complicate the processor as well as

development software (compilers, debuggers) design and increase their cost.

2. It is different from the well known non-von Neumann architectures by means

of the sequential fetching which realizes imperative programming languages as well as

by dynamically generated tags but not command addresses of indicating informational

connections. Any command is executed at the “data readiness” and “its output users’

readiness”.

3. The cell instruction set is based upon some intermediate presentation of a

compiled program after the syntax analysis (triads) and actually it is a sort of hardware

realization of input programming language. It minimizes the labour costs to create

compilers due to the fact that blocks of machine-oriented optimization and paralleling

disappear as well as command generating block dramatically decreases. The notion

"assembler programming" disappears as the processor language is not visible and thus it

is “not programmable”. The software becomes really hardware-independent.

4. If necessary, the disordered triads ensure an individual object code for every

processor after every compilation. This fact as well as the closure of the triad subsets

make it dramatically impossible to unauthorizedly, secretly and from without interfere

into the system software.

5. The system code is individual and unprivileged users use only the high-level

language for programming which permits to create a new and effective toolkit against

viruses.

 14

6. The triads make it possible to read and execute several commands

simultaneously and without analysis of their execution consequences or informational

connecting, i.e. they ensure “natural” realization of parallelism. It is initially

conditioned by mechanisms of command execution and execution type. In the

multicellular processor there is no hardware identifying informational connections

between chosen operations (commands) and distributing them by functional devices, i.e.

there is no dynamic paralleling. There is also no static paralleling because the triad-type

program describes informational connections, includes its linear structure but includes

no indications of what and how it is possible to do in parallel.

7. The fully connected intellectual commutation environment functioning in

“broadcasting” mode ensures effective realization of any type of tasks since it makes no

topological restrictions as to intercellular data exchange.

All these architectural features ensure both universal character and effective

scaling of the processor; the process of scaling practically increases performance

directly proportionally to the number of cells.

8. The compiled program can be executed at any number of cells. At that it is

possible to see dynamic change of their number that ensures the gradual degradation

methodology of the processor to be realized at the failure of its cells. The processor can

re-arrange itself and be functional when we have the commutation environment and at

least one cell is operable.

This code independence upon used resources ensures the permanent self-adapting

of the processor to a task flow and, when including new resources, ensures its self-

repairing after failures.

9. The asynchronous and decentralized organization of the multicellular processor

both at the system level – between the cells (when paralleling is realized) and at the

intracellular level – between the cell’s blocks (when commands are realized)

additionally guarantees:

• minimum number of design objects and decrease of their complexity;

 15

• decrease of crystal area because the device volume is less at the

decentralized control than that at the centralized one;

• increase of performance and decrease of power consumption several times

(see features MCP-1.1xx) because it realizes effective computing process.

• use of the individual synchronization system for every cell, when, in

perspective, realizing on the one chip of tens and hundreds of cells.

As a result, we have a well-structured modular system that permits us to

considerably simplify the processor as well as consequently decrease labor costs and

improve project quality.

 16

CONCLUSION

The proposed architecture is multi-faceted and qualitatively compiled which

permits to position it as a principally new and high-efficient post-Neumann

direction in development of the microprocessor hardware.

 17

Appendix 1

PROGRAMMABLE SYSTEMS TAXONOMY

1. Introduction

The computer evolutionary theory is based upon a formal resemblance of the computing
and biological systems’ development [1]. But if such different systems evolve in a similar way,
some can ask – how natural is this resemblance? Is it accidental or a consequence of some
general laws determining the way these systems are constructed and developed? If there are
such laws and taking into account that the computing and biological systems are qualitatively
different and of different nature, then their existence may be conditioned only by the general
factors connected with these systems’ organization and functioning but not with their physical
realization.

Traditionally the computing system is regarded as an instrument increasing any
computing process. Its history reaches more than 3 000 years. They emphasize the system’s
operations rather than the way this system performs these operations. With regard to this
traditional view it is impossible to find something common between the modern abacus,
computer and living organism.

But we may also look at the computing system in a different way. That is in the context
of its organization. That is, it may be regarded as some first man-made simple world consisting
of the environment (memory, input-output channels) and the subjects (processors) that appear
to be activity sources with respect to their environment. In its turn, every processor may be
regarded as a primitive unicellular or multicellular organism that is also the same as the
processor a programmable structure. At this point of view the computing systems’ history will
be a little more than 60 years. But this point makes it possible to draw direct analogies between
our world and the computing systems’ world created by us.

It is known that the cell is the base of any biological systems. The evolution process
created only two known cellular types (prokaryotes and eukaryotes) and three forms of their
organization. These are unicellular and multicellular living beings (individuals) as well as
colonies. The colonies may be organized either like unicellular or multicellular creatures
(community). Every individual is an indivisible and integral living unit having its own
systemic organization. The colony also has its own systemic organization and integrity but no
indivisibility.

Most living beings consist of the eukaryotic cells including all the multicellular highly
organized creatures. What is more, only this multicellularity of eukaryotes (a so-called “true
multicellularity”) gives a new quality and promotes evolutionary development and intellect.

Unlike this true multicellularity the individuals’ colonization gives no new quality. If
we take the integrity, the colony’s life may be very similar to the individual’s [2].Although the
colonization decides only the tasks that the colony members face using their combined
potential and resources as well as their specialization.

The existing biological systems and hypothetical general laws determining the principle
of construction naturally cause many questions concerning the computing systems. That is,
what is analogous to the colony, unicellular or multicellular creatures in the computer world?
What do the parallel computing systems correspond to? What is analogous to the cell and how

 18

may these prokaryotes and eukaryotes be regarded with respect to the computing systems and
what is their difference? There is one more obvious question: do these three existing forms of
the cellular organization exhaust any other possible forms?

We can answer these questions and it is connected with that possible multitude of
models that reflects the principles of the organization of the existing programmable systems. In
this case the models should be completely abstracted from the concrete systems’ physical
realization.

If this model multitude may be constructed, completed and systematized and every
system is adjusted to its abstract model, then these models’ analysis and taxonomy will permit
us not only to answer the raised questions. They will also permit to purposefully choose a new
direction to develop processor architectures and become much more effective when exploring
the animate nature.

In this article we present our own construction and taxonomy of this model multitude on
the basis of the computing systems’ organization.

The received results are projected on the biological systems’ organization and on the
basis of their evolution we conclude how the processor architectures may be further developed.
It is connected with the creation of such a processor that has a stored algorithm (context-
sensitive program).

2. Processor architectures construction and taxonomy

2.1. Task formulation

It is known that the base of absolutely any taxonomy system is abstraction. It permits to
create a model for the system being taxonomized and take only the most necessary, i.e.
taxonomy parameters, without any secondary details. We choose these parameters relying on
our taxonomy purposes and requirements. So, in our case it is obligatory to abstract from any
realization features. Among the known computing systems’ taxonomies [3] there is Flynn’s
taxonomy [4] that partially satisfies our obligation. It regards the computing system at the most
possible, contensive and conceptual level of abstraction. At this level the system consists of
command units (control units), executive units and memory units connected by command and
data flows. The taxonomy parameters are the command and data flows’ quantitative
assessments.

There are such flows that connect the systemic units as a whole, take place in absolutely
all the known systems and reflect the computing systems’ internal nature. The others are
created by realization, i.e. by those technical decisions made to achieve certain goals when
creating the concrete systems.

The first certainly include the command flows that are formed by the control units and
enter into the executive units. If we take some data flows circulating in the differently
organized systems, the result flows being formed by the executive units are common for all the
systems. The data flows being used in Flynn’s taxonomy and “called” when executing
commands, i.e. the flows outgoing from the memory to be processed, take place only in some
of the systems.

 19

For example, the data flow machine has no data flows coming from the memory and
being used to execute some other command. All the data necessary to execute command go
together with the command as a component of the command word.

It is evident that at the heart of the system’s models abstracted from the realization
features as well as at the heart of their taxonomy using the command and data flows’
assessment as the taxonomy parameters should be only those flows that are present in
absolutely all the computing systems.

This above-mentioned conceptual difference between the data flow machine
architecture and Von Neumann’s traditional architecture is connected with the fact that no
called data flows are present. The executed commands’ results are immediately recorded into
the argument fields of those commands which use them. The commands are executed when all
the necessary arguments are received. Thus, the data flow formed by the executive unit directly
determines what consequence these commands are executed in.

The mentioned determination plays a key role to separately single out the kind of the
data flow machines. If we only use the command and data flows’ quantitative assessments
without regard to the existing dependencies between the flows, it may scarcely decide the task
of systematizing these (non-traditional) architectures.

What is more, the approach that forms this assessment and is used in Flynn’s taxonomy
does not permit to clearly taxonomize even the systems constructed on the basis of Von
Neumann’s traditional decisions (for example, vector pipeline machines).

So, any quantitative assessment may be correct when using a measuring instrument
independent of this or that measuring object and when measurement conditions are equal. We
can formulate these two requirements in the following way:

• at the accepted abstraction level it is necessary to unambiguously define the
terms “single” and “multiple” actual with respect to any flows (both command and
data) and any architectures;
• all the computing systems being taxonomized should be regarded at the same
abstraction level.

Neither the first nor the second requirement is fulfilled in Flynn’s taxonomy. No
quantitative indexes are determined. Their values are ascertained post factum when comparing
the systems being taxonomized and reference patterns for every class.

As a result, to describe these two radically different phenomena, they use the same
characteristic “multiple data flow” both in the MIMD (multiprocessor system) reference
patterns and the SIMD (matrix processor) ones. There are independent data flow multitudes in
the multiprocessor system and vector (multicomponent) data flows in the matrix processor.

It is also necessary to note that the SIMD reference pattern does not correspond to the
conceptual level. The matrix processor functioning model providing for a simultaneous
command execution with respect to the vector data flow reflects one of the possible ways to
realize these vector commands. This model is not applicable for any other commands, for
example, the scalar ones. It is consequently inapplicable at the conceptual level where the
command is generally considered.

Thus, if we want to construct this multitude of the computing systems’ models
abstracted from the realization features and taxonomize this multitude, we need to:

1.regard the result flows (command execution results) that are formed by the executive
units as the data flows;
2.introduce some functional dependence between the flows as the taxonomy parameter;

 20

3.unambiguously define the terms “single” and “multiple” actual with respect to any
flows (both command and data) and any architectures.
When the mentioned requirements are fulfilled, it leads to a new taxonomy system

where these processor architectures are considered at the conceptual level.

2.2. Basic notions and definitions

At the accepted level of abstraction any processor will consist of the control units and
executive units integrally connected by the command and data flows.

The control unit (CU) means a command flow source. Every command is an indivisible
and integral informational message that unambiguously determines some indivisible and
integral action sequence of the receiver (receivers). No command may be given and fulfilled
partially.

The executive unit (EU) means an intermediate (unfixed) data and final (fixed) result
source. The EU completely or partially accepts this or that command flow and executes that.
When executing the EU changes the processor’s state and/or generates the data flow
(informational messages). When the command is executed, we can see the changed processor
(fixed change) state and/or the changed environment.

The command execution sequence is the processor state’s sequential change; it is
usually accompanied with some sequential environmental change. In which case, the command
execution process is analogous to the transient. The parameter is truly ascertained (processor
state) only when the transient is finished.

All the sources are independent, i.e. their simultaneous processes are connected in no
way. But this independence excludes no coordinated actions. The processes themselves are
independent but their actions (for example, their beginning and ending) may be coordinated.

Any source forms only one (single) flow that can enter into several receivers.
Two and more sources of the same type (CU or EU) form a multitude of sources. These

sources may form a multitude of flows that may be used as a group of single flows or as some
integral multiple flow. Like the single one, it can also enter into several receivers.

The “flow” is a key notion. The flow means a direct informational connection between
the flow source and its receiver; this connection unites them into one whole. The flow elements
exist only when transmitting. When in the receiver, they are either used by that or disappear. If
we need to retain and further use the flow element, then it should be alienated, i.e. taken from
the flow and put outside the source and receiver into the environment (in this case, into the
memory). It is obvious that this alienation breaks the immediate connection (flow) between the
source and the receiver. This connection becomes indirect.

It is also to note that the connection is informational. This connection exists only when
the content of the ingoing flow’s elements is considerably important for the receiver.

With regard to these notions we can give the following definitions concerning the
processor architecture and the computing system.

The processor architecture is an abstract structure that reflects processor organization
and it is presented as an oriented graph consisting of many tops and including at least one CU
and at least one EU as well as many arcs created by the command flows coming from the CU
and by the data flows coming from the EU, and in this case:

• an appropriate non-oriented graph is connected;

 21

• every outgoing (coming from) command flow is an ingoing (entering) one for at
least one EU;
• every EU has at least one ingoing command flow.

The computing system architecture is an abstract structure that reflects systemic
organization and it is created by a multitude of unconnected oriented graphs; each of the
graphs represents the processor architecture.

Any data exchange between the processors in the computing system may be
consequently made only by the data flow elements’ alienation.

Let’s take Von Neumann’s traditional processor. Its architecture is graphically
presented in the figure 1. The architecture consists of the two tops (CU and EU) united by the
command flow.

Fig. 1 Von Neumann’s traditional processor (graphically):
a) graphic presentation; b) conventional signs

It is necessary to note that any other indirect informational connection except the

connection concerning the command flow is radically impossible in Von Neumann’s processor
model where the description and execution are made only as some ordered sequential
operations changing the environment state (memory). This method initially implies the
alienation of every received result and correspondingly the data flows are absent in this
architecture.

Having increased the notation suggested by M. Flynn and using capital letters to
describe the sources and small ones to indicate the flows, this architecture may be described as
SISD(si). After the sources described, in brackets they indicate the ingoing flows, i.e. the flows
that determine the source functioning. Thus, Von Neumann’s traditional processor has the
architecture with one command source (SI) and one data source (SD); its functioning is
determined by the single command flow SD(si).

2.3. Processor architectures taxonomy

Using the “single” and “multiple” sources and flows to make the quantitative
assessment limits any other possible variants of dependencies. The two-component description
of the architecture implies its homogeneity and symmetry. That is, when some sources are
multiple, the existing dependence covers the whole multitude (homogeneity), and when the
command and data flows are multiple, their dimensions are regarded as equal.

Considering Von Neumann’s architecture as a starting point we can, relying on the
developmental principle, successively complicating the dependencies between the flows and
excluding any unconnected structures, construct the whole set of possible processor
architectures. This set is divided into two major classes:

 22

• the architectures having a stored program (context-free program) presented in the
table 1;
• the architectures having a stored algorithm (context-sensitive program) presented
in the table 2.

Table 1. Basic (homogeneous) models of the processor architectures with stored program

These two classes radically differ from each other because the command flows are

dependent. In the architectures having a stored program the command flow may only depend
upon the data flow. In the architectures having a stored algorithm it always depends upon itself
or upon itself and the data flow.

 23

Table 2. Basic (homogeneous) models of the processor architectures with stored algorithm

The two tables have some empty fields. They reflect the systems’ existence, i.e.
unconnected structures; the systems were excluded when constructing the set.

Let’s take the most known processors in this taxonomy.

 24

When the data flow is considered as derived from the command flow, this unites the
processors’ architecture of such machines as, for example, vector pipeline and matrix, into one
type with Von Neumann’s traditional machine. Their further taxonomy should be made inside
the type and relied on the realization features. That is, according to the operations (scalar,
vector). Among the vector machines it is according to the vector operations’ realization (vector
pipeline, matrix).

One of the first steps in Von Neumann model’s development included coprocessors.
Actually they used an additional executive unit to, for example, execute the floating point
operations in parallel. The processor’s architecture is described in the following way –
SIMD(si).

The multicore processor having several command sources and, for example, one
executive unit has the MISD(mi) architecture. If there are several executive units and each of
them can execute the commands coming from any source, then it will be the MIMD(mi)
architecture.

The other models, for example, the data flow processor has the SISD(si, sd)
architecture. i.e. one command flow source and one data flow source; the latter’s flow depends
upon the single ingoing command flow and upon its formed data flow. When the data flow
depends upon itself, this is characteristic to execute commands “when ready”. For example, the
synputer [5-7] has the MIMD(si,md) formula.

It is to note that regardless this great variety of the existing processors, they for the most
part do not conceptually differ from each other. And if the first table includes the realized
types, for example, the four Von Neumann architectures, the data flow architectures, the
second does not.

2.4. Stored algorithm conception
(context-sensitive program)

The computing model in the high-level imperative languages is the execution of the

operators’ ordered sequence. Every operator is an indivisible and integral language structure
describing the way the data are changed. Inside the operator the operations are executed in
order by their ranging and bracketing, i.e. by indicating informational connections between
these operations. No intermediate results inside the operator are alienated. They alienate only
the result of the operator’s execution. The language operator is consequently considered to be a
command for the abstract machine that directly realizes some high-level language.

Let’s regard the triad program in the intermediate representation achieved after the first
compiling phase (syntax analysis). This representation is a machine-adapted form of the
primary code written with the high-level language.

In this form the program is recorded as a numbered sequence of triads. This sequence is
divided into sections. Every section corresponds to one program operator and contains the
subset of triads that realizes this operator. The sequence the sections are recorded corresponds
to the sequence the operators are recorded in the program. Every triad describes some
operation with respect to the operands multitude by identifiers or references. The reference is a
triad number; when the triad is executed, its result is used as an operand, i.e. the reference

 25

clearly specifies the informational connections between the operations. In this case, no triad
results given by the reference are alienated.

The subset of the triads that realize the operator is closed as the informational exchange
is indirect between the operators and is made through alienating any results. The subset has no
reference to the other operators’ triads and the other operators’ triads do not refer to the triads
of this subset. It should be noted that no triads make sense, when outside their subset, and they
are no longer a command system. They certainly have their indivisibility, but there is no
integrity and consequently no commands.

Any triad is meaningful and may be executed only in some certain context. That is, only
when the triads are executed, it uses their results and those triads use its results, i.e. only inside
its subset. Thus, the whole subset of triads has its integrity and indivisibility in whole, but not
separately.

For comparison, the way this or that command is executed in the data flow processor or
the Von Neumann one does not depend upon any context. All the commands of these
processors have their indivisibility and integrity. Those commands that realize the operator
have their integrity but there is no indivisibility.

It is well-known that the operations’ initial set of any algorithmic language is originally
fixed and finite. The set of the operators that may be theoretically constructed using these
operations is potentially endless. Since any program has its multitude of operators and
correspondingly its command system, then it is possible to say that the machine directly
realizing the high-level language has no fixed command system, but has its operation set.

In general case the operator’s triads may be placed on the section at random. The
sequence they are executed is determined by informational connection, i.e. by preceding
(forming operands) and following (using results) triads. Since this or that command is
unambiguously determined by its operations’ sequence, then it is possible to say that the
command being executed is directly formed in the processor’s working and its direct image
depends upon itself, that is, upon its internal organization. The same as the command flow
correspondingly depends upon itself.

The fact that the command flow depends upon itself is not the only difference of the
stored algorithm architectures (context-sensitive program) from the stored program ones
(context-free program). There are two more fundamental differences between these
architectures.

The first includes the fact that any context-free program architecture’s programs are
countable. The program multitude of any context-sensitive program architecture has power of
continuum.

The second is the context-sensitive program architectures may not be generally
presented by the Turing machine.

3. Biological and computing systems’ commonality in organization

The suggested interpretation of the term “processor” permits us to draw direct analogies

between the computing and biological systems’ organization.
Every cell represents a programmable structure that provides the protein synthesis. The

RNA (ribonucleic acid) molecules control this process; they are formed on the basis of the

 26

information kept in the DNA (deoxyribonucleic acid) molecules. The nucleus is a RNA source
inside the cell. The ribosomes are a protein source; they synthesize protein on the basis of the
information that is contained in the ribosomal, transfer and informational RNA.

In the world any living organisms are an active component or in other words they are
subjects with respect to their environment. They not only use the environment’s resources to
maintain their vital activity, but also purposefully and involuntarily change its state. These
changes make the individuals informationally interactive and correspondingly the animate
exists as a whole.

It is evident that this informational interaction is necessary for coordinated cellular work
in this or that multicellular organism. Its details are not all through clear, even at the protein
metabolism level. What is more, it is impossible to explain the ontogenesis processes only by
protein interaction; these processes happen in good time and in good place. They commonly
admit that there should be some other mechanisms of cellular interaction. So, in these latter
days they consider the cellular cytoskeleton as one of the main candidates to “control” the cell.

Nevertheless, if we compare the known informational interaction mechanisms both at
the cellular level and at the individual one, it is possible to note the following.

At the individual level the informational interaction, including the colonial organization,
is indirect. Here the information is alienated and the environment is its holder. In this form it is
available to the other individuals.

The informational interaction between the individual’s cells is based upon direct
connection between them. Here no information is alienated and available to the others. No
environment is involved into the informational exchange. Protein (holder of information) does
not durably keep and should not durably keep the information. Protein is either used or broken
up. As protein is permanently generated, this informational connection type may be regarded
as a flow connection.

Returning to the materials of the previous chapter, it is necessary to note the following.
First of all, the pair CU+EU may be regarded as the simplest cell. The processor may be

regarded as a primitive unicellular or multicellular individual correspondingly consisting of
one or more cells directly connected by the command and data flows. The same as the
individual the processor is an indivisible and integral organized unit. It is impossible to divide
into parts without breaking its functioning and losing its “individuality”. For comparison, if the
processor fails to function in the multiprocessor or multimachine system, this does not
influence on the other processors of this system, but this altogether influences on the system’s
functioning. That is, this influences on the object of another organizational level and the
processor is a part of it.

Secondly, the processor units have their direct connection and this limits the computing
systems’ organization by only three (!) forms – monoprocessor (unicellular individual),
processor system (colony), multicellular processor (multicellular individual).

Thirdly, the command and data flows’ possible functional dependencies permit to
construct only two (!) principally different processor architectures. The first may be regarded
as “prokaryotes” and the second as “eukaryotes”.

If the last supposition is right, then our qualitatively new architecture may be possibly
found in the second table that corresponds to eukaryotes. And vice versa, if the realization of
the architecture included into the second table provides for qualitatively new opportunities,
then it is possible to argue that this conception is correct and on the basis of this conception we
have our taxonomy system and draw analogies with respect to the living world.

 27

4. Multicellular processor

At the present time they’re creating the MI(mi)MD(si,md) multicellular processor and it
is the first parallel processor of the stored algorithm architectures. It is created by the multitude
of the independently but interactively functioning cells connected by the commutation
environment.

The processor machine language represents the developed triad language.
No text of the triad language program is connected with the cells’ number. By this

“resource” independence, command disorder inside their context sequence (line section) and
broadcast distribution of the results to all the cells “naturally” realize the parallelism (without
parallelization) as well as effectively scale up the processor [8].

The mentioned particularities also make any methods (superscalarity, VLIW,
superpipeline, speculative and predicate execution etc.) useless. In spite of the fact that these
methods made the Von Neumann model more rapid in action, they dramatically complicated
its organization. Having refused the methods and decentralized organization, we can
substantially simplify the multicellular processor and correspondingly reduce our labor costs
and improve project quality.

At the same time, in comparison with the Von Neumann traditional decisions, we
improve the processor characteristics. The first assessments show increase in performance 2 –
4 times and decline in power consumption 10 – 15 times.

The multicellular processor is hardware realization of the high-level language. This
realization is based upon the essence of language expressions rather than some exterior form
and therefore:

• they maintain the whole software created in the traditional imperative high-level
languages and increase its effectiveness;
• the compilation process from the high-level language is actually limited by the
initial machine-free (“front-end”) phase which permits to dramatically reduce costs
when developing the compilers;
• there is no such term as “assembler programming” because the processor
language is not visual and that is why practically “non-programmable”;
• as form of existence the initial text becomes more effective for the programs and
correspondingly the programs become open.

It is necessary to note that neither of the formerly made processor architectures
integrally decides those problems that are decided by the multicellular processor. This permits
to speak about a qualitatively new direction in the microprocessors’ construction.

 28

5. Conclusion

The suggested programmable systems taxonomy permits not only to systematize the
known processor architectures, but also to purposefully choose their development on the basis
of the biological systems’ evolution.

This new development represents the creation of the stored algorithm architectures
(context-sensitive program). These architectures decide many tasks of the computer industry
that may not be principally decided in the Von Neumann traditional model or other known
models. In this case the processor is simplified and its project price is brought down as well as
its technical characteristics are improved. Also the decisions include the increased processor
language level, decreased compiler as wells software costs, “naturally” realized parallelism
using traditional imperative languages, effectively and dynamically reconfigurated processor.

Literature

1. Tsilker B.Y., Orlov S.A. Organization of the Computers and the Systems. Spb.: Piter,
2004. 668p.

2. Wiener N. Cybernetics or Control and Communication in the Animal and the
Human Being – Moscow: Sovetskoe radio, 1968. 326p.

3. Taxonomy of the computing system architectures. http://www.parallel.ru.
4. Flynn M. Very high-speed computing systems // Proc. IEEE. 1966. N 54. P.1901-

1909.
5. Patent № 2179333 RU “Synergistic computing systems”.
6. Patent № 2198422 RU “Asynchronous synergistic computing systems”.
7. Streltsov N., Sparso J., Bokov S.,Kleberg S. The Synputer – A Novel MIMD

Processor Targeting High Performance Low Power DSP Applications //
International Signal Processing Conference, Dallas, 1-3 April, 2003. P. CD-ROM.

8. Streltsov N.V. Parallelism realization in the multicellular processor // Transactions
of the 3rd International scientific conference “Parallel Computations and Control
Problems”. Moscow: The Institute of Control Sciences, 2-4 October, 2006. P.337-347.

 29

	INTRODUCTION
	1 CONCEPTION
	1.1 Triad algorithm description
	1.2 Principles of processor construction

	2 ARCHITECTURE
	2.1 Multicellular processor scheme
	2.2 Program execution
	2.3 Architecture features

	CONCLUSION
	Appendix 1

