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1 Introduction

1.1 Scope

This document describes specific IP cores provided with the GRLIB IP library. When applicable, the
cores use the GRLIP plug&play configuration method as described in the ‘GRLIB User’s Manual’.

1.2 IP core overview

The tables below lists the provided IP cores and their AMBA plug&play device ID. The columns on
the right indicate in which GRLIB distributions a core is available. GPL is the GRLIB GNU GPL
(free) distribution, COM is the commercial distribution, FT the full fault-tolerant distribution and FT-
FPGA is the GRLIB release targeted for raditation-tolerant programmable devices. Some cores can
only be licensed separately or as additions to existing releases, this is marked in theNotescolumn.
Contact Aeroflex Gaisler for licensing details.

Note: The open-source version of GRLIB includes only cores marked with “Yes” in the GPL column.

Note: IP core FT features are only supported in FT or FT-FPGA distributions.

Note: For encrypted RTL, contact Aeroflex Gaisler to ensure that your EDA tool is supported by
GRLIB for encrypted RTL. Supported tools are listed in the GRLIB IP Library user’s manual.

Table 1. Processors and support functions

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

es

LEON3 SPARC V8 32-bit processor 0x01 : 0x003 Yes Yes Yes Yes

LEON3FT Fault-tolerant SPARC V8 32-bit Processor 0x01 : 0x053 No No Yes Yes 2)

DSU3 Multi-processor Debug support unit (LEON3) 0x01 : 0x004 Yes Yes Yes Yes

LEON4 SPARC V8 32-bit processor 0x01 : 0x048 No No No No 1)

L4STAT LEON4 statistics unit 0x01 : 0x047 No No No No 1),
3)

DSU4 Multi-processor Debug support unit (LEON4) 0x01 : 0x049 No No No No 1)

LEON3/4
CLK2x

LEON processor double clocking (includes special
LEON entity, interrupt controller and qualifier unit)

- No Yes Yes Yes

CLKGEN Clock generation - Yes Yes Yes Yes

DIV32 Divider module - Yes Yes Yes Yes

GPTIMER General purpose timer unit 0x01 : 0x011 Yes Yes Yes Yes

GRCLKGATE Clock gate unit 0x01 : 0x02C No Yes Yes Yes

GRTIMER General purpose timer unit 0x01 : 0x038 No Yes Yes Yes

GRFPU /
GRFPC

High-performance IEEE-754 Floating-point unit
with floating-point controller to interface LEON

- No No No No 1),
2)

GRFPU-Lite /
GRFPC-lite

Low-area IEEE-754 Floating-point unit with floating
point controller to interface LEON

- No No No No 1),
2)

IRQMP Multi-processor Interrupt controller 0x01 : 0x00D Yes Yes Yes Yes

IRQ(A)MP Multi-processor Interrupt controller 0x01 : 0x00D No Yes Yes Yes

MUL32 32x32 multiplier module - Yes Yes Yes Yes

MULTLIB High-performance multipliers - Yes Yes Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
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Table 2. Memory controllers and supporting cores

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

DDRSPA Single-port 16/32/64 bit DDR controller 0x01 : 0x025 Yes Yes Yes Yes 4)

DDR2SPA Single-port 16/32/64-bit DDR2 controller 0x01 : 0x02E Yes Yes Yes Yes 4)

MCTRL 8/16/32-bit PROM/SRAM/SDRAM controller 0x04 : 0x00F Yes Yes Yes Yes

SDCTRL 32-bit PC133 SDRAM controller 0x01 : 0x009 Yes Yes Yes Yes

SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 Yes Yes Yes Yes

SSRCTRL 32-bit Synchronous SRAM (SSRAM) controller 0x01 : 0x00A No Yes Yes Yes

FTMCTRL 8//32-bit PROM/SRAM/SDRAM controller w. RS/
BCH EDAC

0x01 : 0x054 No No Yes Yes

FTSDCTRL 32/64-bit PC133 SDRAM Controller with EDAC 0x01 : 0x055 No No Yes Yes

FTSDCTRL64 64-bit PC133 SDRAM controller with EDAC 0x01 : 0x058 No No Yes Yes

FTSRCTRL 8/32-bit PROM/SRAM/IO Controller w. BCH
EDAC

0x01 : 0x051 No No Yes Yes

FTSRCTRL8 8-bit SRAM / 16-bit IO Memory Controller with
EDAC

0x01 : 0x056 No No Yes Yes

NANDFCTRL NAND Flash memory controller 0x01 : 0x059 No Yes Yes Yes

SPIMCTRL SPI Memory controller 0x01 : 0x045 Yes Yes Yes Yes

AHBSTAT AHB status register 0x01 : 0x052 Yes Yes Yes Yes

MEMSCRUB Memory scrubber 0x01 : 0x057 No No Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

Table 3. AMBA Bus control

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e
AHB2AHB Uni-directional AHB/AHB Bridge 0x01 : 0x020 No Yes Yes Yes

AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01 : 0x020 No Yes Yes Yes

AHBCTRL AMBA AHB bus controller with plug&play - Yes Yes Yes Yes

APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 Yes Yes Yes Yes

AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 Yes Yes Yes Yes

GRIOMMU I/O Memory management unit 0x01 : 0x04F No Yes Yes Yes 1)

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.



AEROFLEX GAISLER 7 GRIP

Table 4. PCI interface

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GRPCI2 Advanced 32-bit PCI bridge 0x01 : 0x07C No Yes Yes Yes

PCITARGET 32-bit target-only PCI interface 0x01 : 0x012 Yes Yes Yes Yes

PCIMTF/GRPCI 32-bit PCI master/target interface with FIFO 0x01 : 0x014 Yes Yes Yes Yes

PCITRACE 32-bit PCI trace buffer 0x01 : 0x015 Yes Yes Yes Yes

PCIDMA DMA controller for PCIMTF 0x01 : 0x016 Yes Yes Yes Yes

PCIARB PCI Bus arbiter 0x04 : 0x010 Yes Yes Yes Yes

Table 5. On-chip memory functions

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

AHBRAM Single-port RAM with AHB interface 0x01 : 0x00E Yes Yes Yes Yes

AHBDPRAM Dual-port RAM with AHB and user back-end inter-
face

0x01 : 0x00F Yes Yes Yes Yes

AHBROM ROM generator with AHB interface 0x01 : 0x01B Yes Yes Yes Yes

FTAHBRAM RAM with AHB interface and EDAC protection 0x01 : 0x050 No No Yes Yes

L2CACHE Level-2 cache controller 0x01 : 0x04B No No No No 1),
3)

REGFILE_3P Parametrizable 3-port register file - Yes Yes Yes Yes

SYNCRAM Parametrizable 1-port RAM - Yes Yes Yes Yes

SYNCRAM_2P Parametrizable 2-port RAM - Yes Yes Yes Yes

SYNCRAM_DP Parametrizable dual-port RAM - Yes Yes Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
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Table 6. Serial communication

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

AHBUART Serial/AHB debug interface 0x01 : 0x007 Yes Yes Yes Yes

AHBJTAG JTAG/AHB debug interface 0x01 : 0x01C Yes Yes Yes Yes

APBPS2 PS/2 host controller with APB interface 0x01 : 0x060 Yes Yes Yes Yes

APBUART Programmable UART with APB interface 0x01 : 0x00C Yes Yes Yes Yes

CAN_OC Opencores CAN 2.0 MAC with AHB interface 0x01 : 0x019 Yes Yes Yes Yes

GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D No Yes Yes Yes

GRSPW SpaceWire link with RMAP and AHB interface 0x01 : 0x01F No No Yes Yes 1),
2)

GRSPW2 SpaceWire link with RMAP and AHB interface 0x01 : 0x029 No No Yes Yes 1),
2)

I2C2AHB I2C (slave) to AHB bridge 0x01 : 0x00B Yes Yes Yes Yes

I2CMST I2C Master with APB interface 0x01 : 0x028 Yes Yes Yes Yes

I2CSLV I2C Slave with APB interface 0x01 : 0x03E Yes Yes Yes Yes

SPI2AHB SPI (slave) to AHB bridge 0x01 : 0x05C Yes Yes Yes Yes

SPICTRL SPI Controller with APB interface 0x01 : 0x02D Yes Yes Yes Yes

TAP JTAG TAP controller - No Yes Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies

Table 7. Ethernet interface

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GRETH Aeroflex Gaisler 10/100 Mbit Ethernet MAC with
AHB I/F

0x01 : 0x01D Yes Yes Yes Yes

GRETH_GBIT Aeroflex Gaisler 10/100/1000 Mbit Ethernet MAC
with AHB

0x01 : 0x01D No Yes Yes Yes

Table 8. USB interface

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GRUSBHC USB-2.0 Host controller (UHCI/EHCI) with AHB I/F 0x01 : 0x027 No No No No 1)

GRUSBDC /
GRUSB_DCL

USB-2.0 device controller / AHB debug communica-
tion link

0x01 : 0x022 No No No No 1)

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.



AEROFLEX GAISLER 9 GRIP

Table 9. MIL-STD-1553 Bus interface

Name Function Device ID G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GR1553B Advanced MIL-ST-1553B / AS15551 Interface 0x01 : 0x04D No No No No 1)

B1553BC AHB interface for Actel B1553BC 0x01 : 0x070 No No Yes Yes

B1553RT AHB interface for Actel B1553RT 0x01 : 0x071 No No Yes Yes

B1553BRM AHB interface for Actel B1553BRM 0x01 : 0x072 No No Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

Table 10.Encryption

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GRAES 128-bit AES Encryption/Decryption Core 0x01 : 0x073 No No No No 1)

GRAES_DMA Advanced Encryption Standard with DMA 0x01 : 0x07B No No No No 1)

GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 No No No No 1)

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

Table 11.Simulation and debugging

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e
SRAM SRAM simulation model with srecord pre-load - Yes Yes Yes Yes

MT48LC16M16 Micron SDRAM model with srecord pre-load - Yes Yes Yes Yes

MT46V16M16 Micron DDR model - Yes Yes Yes Yes

CY7C1354B Cypress ZBT SSRAM model with srecord pre-load - Yes Yes Yes Yes

AHBMSTEM AHB master simulation model with scripting (depre-
cated)

0x01 : 0x040 Yes Yes Yes Yes

AHBSLVEM AHB slave simulation model with scripting (depre-
cated)

0x01 : 0x041 Yes Yes Yes Yes

AMBAMON AHB and APB protocol monitor - No Yes Yes Yes

ATF AMBA test framework consisting of master, slave
and arbiter.

0x01 :
0x068 - 0x06A

No Yes Yes Yes

LOGAN On-chip Logic Analyzer 0x01 : 0x062 No Yes Yes Yes
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Table 12.Graphics functions

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

APBVGA VGA controller with APB interface 0x01 : 0x061 Yes Yes Yes Yes

SVGACTRL VGA controller core with DMA 0x01 : 0x063 Yes Yes Yes Yes

Table 13.Auxiliary functions

Name Function Vendor:Device G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e

GRACECTRL AMBA SystemACE interface controller 0x01 : 0x067 Yes Yes Yes Yes

GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 No Yes Yes Yes

GRFIFO External FIFO Interface with DMA 0x01 : 0x035 No Yes Yes Yes

GRGPIO General purpose I/O port 0x01 : 0x01A Yes Yes Yes Yes

GRGPREG General purpose Register 0x01 : 0x087 Yes Yes Yes Yes

GRPULSE General purpose I/O with pulses 0x01 : 0x037 No Yes Yes Yes

GRPWM PWM generator 0x01 : 0x04A No Yes Yes Yes

GRSYSMON AMBA Wrapper for Xilinx System Monitor 0x01 : 0x066 Yes Yes Yes Yes

GRVERSION Version and revision register 0x01 : 0x03A No Yes Yes Yes

Table 14.Error detection and correction functions

Name Function G
P

L

C
O

M

F
T

F
T-

F
P

G
A

N
ot

e
RS(24, 16, 8, E=1) 16 bit data, 8 check bits, corrects 4-bit error in 1 nibble No No Yes Yes

RS(40, 32, 8, E=1) 32 bit data, 8 check bits, corrects 4-bit error in 1 nibble No No Yes Yes

RS(48, 32, 16, E=1+1) 32 bit data, 16 check bits, corrects 4-bit error in 2 nibbles No No Yes Yes

RS(48, 32, 16, E=2) 32 bit data, 16 check bits, corrects 4-bit error in 2 nibbles No No Yes Yes

GR(2^4)(68, 60, 8, T=1) QEC/QED error correction code encoder/decoder No No Yes Yes
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1.3 Supported technologies

Technology support and instructions for extending GRLIB with support for additional technologies is
documented in the ‘GRLIB User’s Manual’. The table below shows the technology maps available
from Aeroflex Gaisler for GRLIB and in which GRLIB distributions these techology maps are
included.

Vendor Technology G
P

L

C
O

M

F
T

F
T-

F
P

G
A

C
om

m
en

t

Actel ProASIC3, ProASIC3e, ProASIC3l,
Axcelerator, Axcelerator DSP, Fusion

No Yes Yes Yes

Altera Cyclone2 - 4, Statix - Stratix3 Yes Yes No No

Lattice - Yes Yes No No

Xilinx Unisim (Virtex2 - Virtex7) Yes Yes Yes Yes

Other ASIC - No - - No Contact Aeroflex Gaisler for details.
See alsoGRLIB IP Library User’s
Manual.
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1.4 Implementation characteristics

The table below shows the approximate area for some of the GRLIP IP blocks mapped on Virtex2,
Actel-AX and typical ASIC technologies. The area depends strongly on configuration options (gener-
ics), optimization constraints and used synthesis tools. The data in the table should therefore be seen
as an indication only. The tools used to obtain the area was Synplify-8.1 for FPGA and Synopsys DC
for ASIC. The LUT area for Altera Stratix devices is roughly the same as for Virtex2. Using XST
instead of Synplify for Xilinx FPGAs gives typically 15% larger area.

Table 15.Approximate area consumption for some standard GRLIB IP cores

Block

Virtex2 AX/RTAX ASIC

LUT RAM16 Cells RAM64 Gates

AHBCTRL 200 500 1,000

AHBJTAG 120 350 1,000

AHBUART (DSU UART) 450 800 2,000

APBCTRL 150 200 800

APBPS2 450 800 2,000

APBUART 200 300 1,000

APBVGA 250 4 - 1,400

CAN_OC (CAN-2.0 core with AHB I/F) 1,600 2 2,800 2 8,000

GRCAN (CAN 2.0 Controller with DMA) 2,300 4,800 20,000

DDRCTRL 1,600 2 - 10,000

DDRSPA (32-bit) 900 2 - -

DIV32 (64/32-bit iterative divider) 400 500 2,000
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GPTIMER (16-bit scaler + 2x32-bit timers) 250 400 1,300

GRETH 10/100 Mbit Ethernet MAC 1,500 2,500 2 8,000

GRETH 10/100 Mbit Ethernet MAC with EDCL 2,600 1 4,000 4 15,000

GRFPU-Lite including LEON3 controller 4,000 6 7,000 4 35,000

GRFPU IEEE-754 floating-point unit 8,500 2 - 100,000

GRFPC for LEON3 5,000 4 - 25,000

GRGPIO, 16-bit configuration 100 150 800

GRSPW Spacewire link 1,900 3 2,800 3 15,000

GRSPW Spacewire link with RMAP 3,000 4 4,500 4 25,000

GRTC CCSDS telecommad decoder front-end 2,000 3,000 15,000

GRTM CCSDS telemetry Generator 4,500 2 6,000 4 30,000

I2CMST I2C Master 200 300 1,500

I2CSLV I2C Slave 150 250 1,000

IRQMP (1 processor) 300 350 1,500

LEON3, 8 + 8 Kbyte cache 4,300 12 6,500 40 20,000

LEON3, 8 + 8 Kbyte cache + DSU3 5,000 12 7,500 40 25,000

LOGAN, 32 channels, 1024 traces, 1 trigger 300 2 - -

MCTRL 350 1,000 1,500

MCTRL including SDRAM support 600 1,400 2,000

MUL32 (32x32 multiplier, 4-cycle iterative) 200 1,400 5,500

PCI_TARGET, simple PCI target 150 500 800

PCI_MTF, master/target PCI with FIFO 1,100 4 2,000 4 6,000

PCIDMA, master/target PCI with FIFO/DMA 1,800 4 3,000 4 9,000

PCITRACE 300 2 600 4 1,400

SRCTRL 100 200 500

SDCTRL 300 600 1,200

SPICTRL 450 900 2,500

SPIMCTRL 300 600 1,200

SVGACTRL 1,200 2 1,600 2 8,000

USBDCL 2,000 - 12,000

Table 16.Approximate area consumption for some FT GRLIB IP cores

Block RTAX2000 (Cells) ASIC (gates)

GRFPU-Lite-FT including LEON3 controller 7,100 + 4 RAM64K36 36,000

GRFPCFT for LEON3 - 30,000 + RAM

LEON3FT, 8 + 4 Kbyte cache 7,500 + 40 RAM64K36 22,000 + RAM

LEON3FT, 8 + 4 Kbyte cache + DSU3 8,500 + 44 RAM64K36 27,000 + RAM

LEON3FT, 8 + 4 Kbyte cache with FPU + DSU3 16,000 + 48 RAM64K36 60,000 + RAM

FTSRCTRL 700 2,500

FTSRCTRL8 750 -

FTSDCTRL 1,000 3,500

FTAHBRAM (2 Kbyte with EDAC) 300 + 5 RAM64K36 2,000 + RAM

Table 15.Approximate area consumption for some standard GRLIB IP cores

Block

Virtex2 AX/RTAX ASIC

LUT RAM16 Cells RAM64 Gates
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The table below show the area resources for some common FPGA devices. It can be used to quickly
estimate if a certain GRLIB design will fit the target device.

Table 17.Area resources for some common FPGA devices

FPGA Logic Memory

Actel AX1000 18,144 Cells 32 RAM64K36

Actel AX2000 32,248 Cells 64 RAM64K36

Xilinx Spartan3-1500 33,248 LUT 64 RAMB16

Xilinx Virtex2-3000 28,672 LUT 96 RAMB16

Xilinx Virtex2-6000 67,584 LUT 144 RAMB16
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2 AHB2AHB - Uni-directional AHB/AHB bridge

2.1 Overview

The uni-directional AHB/AHB bridge is used to connect two AMBA AHB buses clocked by synchro-
nous clocks with any frequency ratio. The bridge is connected through a pair consisting of an AHB
slave and an AHB master interface. AHB transfer forwarding is performed in one direction, where
AHB transfers to the slave interface are forwarded to the master interface. Applications of the uni-
directional bridge include system partitioning, clock domain partitioning and system expansion.

Features offered by the uni-directional AHB to AHB bridge are:

• Single and burst AHB transfers

• Data buffering in internal FIFOs

• Efficient bus utilization through (optional) use of SPLIT response and data prefetching

• Posted writes

• Read and write combining, improves bus utilization and allows connecting cores with differing
AMBA access size restrictions.

• Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional
bridge (one example is the bi-directional AHB/AHB bridge core (AHBBRIDGE))

2.2 Operation

2.2.1 General

The address space occupied by the AHB/AHB bridge on the slave bus is configurable and determined
by Bank Address Registers in the slave interface’s AHB Plug&Play configuration record.

The bridge is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.

For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the bridge uses GRLIB’s AMBA Plug&Play information to determine

BUS
CONTROL

 SLAVE 1

AHB Bus 0

Figure 1. Two AHB buses connected with (uni-directional) AHB/AHB bridge
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whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.

The bridge can be implemented to use SPLIT responses or to insert wait states when handling an
access. With SPLIT responses enabled, an AHB master initiating a read transfer to the bridge is
always splitted on the first transfer attempt to allow other masters to use the slave bus while the bridge
performs read transfer on the master bus.The descriptions of operation in the sections below assume
that the bridge has been implemented with support for AMBA SPLIT responses. The effects of dis-
abling support for AMBA SPLIT responses are described in section 2.2.11.

If interrupt forwarding is enabled the interrupts on the slave bus interrupt lines will be forwarded to
the master bus and vice versa.

2.2.2 AHB read transfers

When a read transfer is registered on the slave interface the bridge gives a SPLIT response. The mas-
ter that initiated the transfer will be de-granted allowing other bus masters to use the slave bus while
the bridge performs a read transfer on the master side. The master interface then requests the bus and
starts the read transfer on the master side. Single transfers on the slave side are normally translated to
single transfers with the same AHB address and control signals on the master side, however read com-
bining can translate one access into several smaller accesses. Translation of burst transfers from the
slave to the master side depends on the burst type, burst length, access size and the AHB/AHB bridge
configuration.

If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL generic rburst). The bridge can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL genericiburst).
When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the bridge will return data with zero
wait states.

If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the master bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.

In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

2.2.3 AHB write transfers

The AHB/AHB bridge implements posted writes. During the AHB write transfer on the slave side the
data is buffered in the internal write FIFO and the transfer is completed on the slave side by always
giving an OKAY response. The master interface requests the bus and performs the write transfer
when the master bus is granted. If the burst transfer crosses the write burst boundary (defined by
VHDL genericwburst), a SPLIT response is given. When the bridge has written the contents of the
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FIFO out on the master side, the bridge will allow the master on the slave side to perform the remain-
ing accesses of the write burst transfer.

Writes are accepted with zero wait states if the bridge is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the bridge will not flush the write FIFO during the BUSY cycle.

2.2.4 Deadlock conditions

When two bridges are used to form a bi-drectional bridge, a deadlock situation can occur if the
bridges are simultaneously accessed from both buses. The bridge that has been configured as a slave
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response, or by issuing SPLIT complete followed by a new SPLIT response. When the core resolves a
deadlock while prefetching data, any data in the prefetch buffer will be dropped when the core’s slave
interface issues the AMBA RETRY response. When the access is retried it may lead to the same
memory locations being read twice.

Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wating
for its release. In this scenario, the accesses from the processor on bus B could, depending on system
configuration, continuously trigger a deadlock condition where the core will drop data in, or be pre-
vented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this kind
the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.

Other deadlock conditions exist with locked transfers, see section 2.2.5.

2.2.5 Locked transfers

The AHB/AHB bridge supports locked transfers. The master bus will be locked when the bus is
granted and remain locked until the transfer completes on the slave side. Locked transfers can lead to
deadlock conditions, the core’s VHDL genericlckdacdetermines if and how the deadlock conditions
are resolved.

With the VHDL genericlckdacset to 0, locked transfers maynot be made after another read access
which received SPLIT until the first read access has received split complete. This is because the
bridge will return split complete for the first access first and wait for the first master to return. This
will cause deadlock since the arbiter is not allowed to change master until a locked transfer has been
completed. The AMBA specification requires that the locked transfer is handled before the previous
transfer, which received a SPLIT response, is completed.

With lckdacset to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT response. Withlckdacset to 2 the bridge
will save state for the read access that received a SPLIT response, allow the locked access to com-
plete, and then complete the first access. All non-locked accesses from other masters will receive
SPLIT responses until the saved data has been read out.

If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL genericlckdacis set
to 0 the core will deadlock. Iflckdacis set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.

2.2.6 Read and write combining

Read and write combining allows the bridge to assemble or split AMBA accesses on the bridge’s
slave interface into one or several accesses on the master interface. This functionality can improve bus
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utilization and also allows cores that have differing AMBA access size restrictions to communicate
with each other. The functionality attained by read and write combining depends on the VHDL gener-
ics rdcomb(defines type of read combining),wrcomb(defines type of write combining),slvmstaccsz
(defines maximum AHB access size supported by the bridge’s slave interface) andmstmaccsz
(defines maximum AHB access size that can be used by bridge’s master interface). These VHDL
generics are described in section 2.6. The table below shows the effect of different settings. BYTE and
HALF-WORD accesses are special cases. The table does not list illegal combinations, for instance
mstmaccsz /= slvmaccsz requires thatwrcomb /= 0 andrdcomb /= 0.

Table 18.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface

BYTE or HALF-WORD sin-
gle read access to any area

- - - Single access of same size

BYTE or HALF-WORD
read burst to prefetchable
area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
number of 32-bit words in the read buffer, but
will not cross the read burst boundary.

BYTE or HALF-WORD
read burst to non-prefetch-
able area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

BYTE or HALF-WORD sin-
gle write

- - - Single access of same size

BYTE or HALF-WORD
write burst

- - - Incremental write burst of same size and length,
the maximum length is the number of 32-bit
words in the write FIFO.

Single read access to any
area

Access size <=
mstmaccsz

- - Single access of same size

Single read access to any
area

Access size >
mstmaccsz

- 1 Sequence of single accesses of mstmaccsz.
Number of accesses: (access size)/mstmaccsz

Single read access to any
area

Access size >
mstmaccsz

- 2 Burst of accesses of size mstmaccsz. Length of
burst: (access size)/mstmaccsz

Read burst to prefetchable
area

- - 0 Burst of accesses of incoming access size up to
address boundary defined by rburst.

Read burst to prefetchable
area

- - 1 or 2 Burst of accesses of size mstmaccsz up to
address boundary defined by rburst.

Read burst to non-prefetch-
able area

Access size <=
mstmaccsz

- - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

Read burst to non-prefetch-
able area

Access size >
mstmaccsz

- 1 or 2 Burst of accesses of size mstmaccsz. Length of
burst:
(incoming burst length)*(access size)/mstmaccsz

Single write Access size <=
mstmaccsz

- - Single write access of same size

Single write Access size >
mstmaccsz

1 - Sequence of single access of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz.

Single write Access size >
mstmaccsz

2 - Burst of accesses of mstmaccsz. Length of burst:
(access size)/mstmaccsz.

Write burst - 0 - Burst of same size as incoming burst, up to
address boundary defined by VHDL generic
wburst.
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Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 2.2.7 for a discussion on burst operation.

Read and write combining with VHDL genericswrcomb/rdcombset to 1 cause the bridge to use sin-
gle accesses when divding an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the bridge before the
bridge has read or written all the data. In bi-directional configurations, an incoming access on the
master bridge may cause a collision that aborts the operation on the slave bridge. This may cause the
bridge to read the same memory locations twice. This is normally not a problem when accessing
memory areas. The same issues apply when using an AHB arbiter that performs early burst termina-
tion. The standard GRLIB AHBCTRL core does not perform early burst termination.

To ensure that the bridge does not re-read an address, and that all data in an access from the bridge’s
slave interface is propagated out on the master interface without interruption the VHDL generics
rdcombandwrcombshould both be set to 0 or 2. In addition to this, the AHB arbiter may not perform
early burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).

Read and write combining can be limited to specified address ranges. See description of thecomb-
maskVHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

2.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.

If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then set theallbrst generic to 0 and skip the remainder of this section.

The VHDL genericallbrst controls if the core will support fixed length and wrapping burst accesses.
If allbrst is set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for
fixed length and wrapping bursts is enabled by settingallbrst to 1 or 2. Table 19 describes how the
core will handle different burst types depending on the setting ofallbrst.

Write burst - 1 or 2 - Burst write of maximum possible size. The
bridge will use the maximum size (up to mst-
maccsz) that it can use to empty the writebuffer.

Table 18.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface



AEROFLEX GAISLER 20 GRIP

Table 19.Burst handling

Value of
allbrst
generic

Access type* Undefined length
incrementing burst
INCR

Fixed length incrementing
burst
INCR{4,8,16}

Wrapping burst
WRAP{4,8,16}

0 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Fixed length burst with
BUSY cycles inserted. If the
burst is short then the burst
may end with a BUSY cycle.
If access combining is used
the HBURST signal will get
incorrect values.

Malfunction. Not supported

Reads to
prefetchable
area

Incrementing burst of maximum allowed size, filling
prefetch buffer, starting at address boundary defined by
prefetch buffer.

Malfunction. Not supported

Write burst Incrementing burst Incrementing burst, if write
combining is enabled, and
triggered, the burst will be
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcomb should not be set to
1 (but to 0 or 2) in this case

Write combining is not sup-
ported. Same access size will be
used on both sides of the bridge.

1 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Same burst type with BUSY
cycles inserted. If read com-
bining is enabled, and trig-
gered by the incoming access
size, an incremental burst of
unspecified length will be
used. If the burst is short then
the burst may end with a
BUSY cycle.

Same burst type with BUSY
cycles inserted. If read combin-
ing is enabled, and triggered by
the incoming access size, an
incremental burst of unspecified
length will be used. This will
cause AMBA violations if the
wrapping burst does not start
from offset 0.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer.

For reads, the core will perform full (or part that fits in prefetch
buffer) fixed/wrapping burst on master interface and then
respond with data. No BUSY cycles are inserted.

If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

2 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Reads are treated as a prefetchable burst. See below.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer,
starting at address
boundary defined by
prefetch buffer.

Core will perform full (or part that fits in prefetch buffer) fixed/
wrapping burst on master interface and then respond with data.
No BUSY cycles are inserted.

If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).
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2.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The bridge is configured at implementation to use one of two available schemes to handle incoming
accesses. The bridge will issue SPLIT responses when it is busy and on incoming read accesses. If the
bridge has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the bridge will give some advantage to the master it has a response for and then allow all mas-
ters in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the bridge to the bus arbitration.

When designing a system containing a bridge the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the bridge will affect the system. The two different schemes are further described in sec-
tions 2.2.9 and 2.2.10.

2.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL genericfcfs is non-zero.

With first-come, first-served ordering the bridge will keep track of the order of incoming accesses.
The accesses will then be served in the same order. For instance, if master 0 initiates an access to the
bridge, followed by master 3 and then master 5, the bridge will propagate the access from master 0
(and respond with SPLIT on a read access) and then respond with SPLIT to the other masters. When
the bridge has a response for master 0, this master will be allowed in arbitration again by the bridge
asserting HSPLIT. When the bridge has finished serving master 0 it will allow the next queued master
in arbitration, in this case master 3. Other incoming masters will receive SPLIT responses and will not
be allowed in arbitration until all previous masters have been served.

An incoming locked access will always be given precedence over any other masters in the queue.

A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the bridge has been configured for.

It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The bridge will not prioritize any
master, except for masters performing locked accesses.

2.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL genericfcfs is set to zero.

When several masters have received SPLIT and the bridge has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the bridge asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the bridge asserts their HSPLIT signals simulta-
neously. By doing this the bridge defers the decision on the master to be granted next to the AHB arbi-
ter. The bridge does not show any preference based on the order in which it issued SPLIT responses to
masters, except to the master that initially started a read or write operation. Care has been taken so
that the bridge shows a consistent behavior when issuing SPLIT responses. For instance, the bridge
could be simplified if it could issue a SPLIT response just to be able to change state, and not initiate a
new operation, to an access coming after an access that read out prefetched data. When the bridge
entered its idle state it could then allow all masters in bus arbitration and resume normal operation.
That solution could lead to starvation issues such as:

T0: Master 1 and Master 2 have received SPLIT responses, the bridge is prefetching data for Master 1

T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT

T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration
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T3: Master 2 performs an access, receives SPLIT, however the bridge does not initiate an access, it
just stalls in order to enter its idle state.

T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response

T5: Master 2 performs an access, receives SPLIT since the bridge is prefetching data for master 1

T6: Go back to T0

This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the bridge. In most systems it is unlikely that this behavior would intro-
duce a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to
complete its access. Please note that the example above is illustrative and the problem does not exist
in the core as the core does not issue SPLIT responses to (non-locked) accesses in order to just change
state but a similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is
given higher priority than Master 2.

In the case of write operations the scenario is slightly different. The bridge will accept a write imme-
diately and will not issue a SPLIT response. While the bridge is busy performing the write on the mas-
ter side it will issue SPLIT responses to all incoming accesses. When the bridge has completed the
write operation on the master side it will continue to issue SPLIT responses to any incoming access
until there is a cycle where the bridge does not receive an access. In this cycle the bridge will assert
HSPLIT for all masters that have received a SPLIT response and return to its idle state. The first mas-
ter to access the bridge in the idle state will be able to start a new operation. This can lead to the fol-
lowing behavior:

T0: Master 1 performs a write operation, does NOT receive a SPLIT response

T1: Master 2 accesses the bridge and receives a SPLIT response

T2: The bridge now switches state to idle since the write completed and asserts HSPLIT for Master 2.

T3: Master 1 is before Master 2 in the arbitration order and we are back at T0.

In order to avoid this last pattern the bridge would have to keep track of the order in which it has
issued SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-
served ordering described in section 2.2.9.

2.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL genericsplit. SPLIT sup-
port should be enabled in most systems. The benefits of using SPLIT responses is that the bus on the
bridge’s slave interface side can be free while the bridge is performing an operation on the master
side. This will allow other masters to access the bus and generally improve system performance. The
use of SPLIT responses also allows First-come, first-served transaction ordering.

For configurations where the bridge is the only slave interface on a bus, it can be beneficial to imple-
ment the bridge without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the bridge and may also reduce the time required to perform accesses that
traverse the bridge. It should be noted that building a bi-directional bridge without support for SPLIT
responses will increase the risk of access collisions.

If SPLIT support is disabled the bridge will insert wait states where it would otherwise issue a SPLIT
response to a master initiating an access. This means that the arbitration ordering will be left to the bus
arbiter and the bridge cannot be implemented with the First-come, first-served transaction ordering
scheme. The bridge will still issue RETRY responses to resolve dead lock conditions, to split up long
burst and also when the bridge is busy emptying it’s write buffer on the master side.
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2.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. Table 20 below shows core behavior in a system where both AMBA buses are running
at the same frequency and the core has been configured to use AMBA SPLIT responses. Table 21 fur-
ther down shows core behavior in the same system without support for SPLIT responses.

While the transitions shown in tables 20 and 21 are simplified they give an accurate view of the core
delay. If the master interface needs to wait for a bus grant or if the read operation receives wait states,
these cycles must be added to to the cycle count in the tables. The behavior of the core with a fre-

Table 20.Example of single read with FFACT = 1, and SPLIT support

Clock cycle Core slave side activity Core master side activity

0 Discovers access and transitions from idle state Idle

1 Slave side waits for master side, SPLIT response
is given to incoming access, any new incoming
accesses also receive SPLIT responses.

Discovers slave side transition. Master interface output
signals are assigned.

2 If bus access is granted, perform address phase. Other-
wise wait for bus grant.

3 Register read data and transition to data ready state.

4 Discovers that read data is ready, assign read
data output and assign SPLIT complete

Idle

5 SPLIT complete output is HIGH

6 Typically a wait cycle for the SPLIT:ed master
to be allowed into arbitration. Core waits for
master to return. Other masters receive SPLIT
responses.

7 Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high

8 Access data phase. Core has returned to idle
state.

Table 21.Example of single read with FFACT = 1, without SPLIT support

Clock cycle Core slave side activity Core master side activity

0 Discovers access and transitions from idle state Idle

1 Slave side waits for master side, wait states are
inserted on the AMBA bus.

Discovers slave side transition. Master interface output
signals are assigned.

2 Bus access is granted, perform address phase.

3 Register read data and transition to data ready state.

4 Discovers that read data is ready, assign
HREADY output register and data output regis-
ter.

Idle

5 HREADY is driven on AMBA bus. Core has
returned to idle state
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quency factor of two between the buses is shown in tables 22 and 23 (best case, delay may be larger
depending on on which slave clock cycle an access is made to the core).

Table 24 below lists the delays incurred for single operations that traverse the bridge while the bridge
is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present
if the master accessed any other slave.

Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

Table 22.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Discovers slave side transition. Master inter-
face output signals are assigned.

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.2 1 Bus access is granted, perform address

phase.3

4 2 Register read data and transition to data
ready state.5

6 Discovers that read data is ready, assign
HREADY output register and data output
register.

3 Idle

7 HREADY is driven on AMBA bus. Core
has returned to idle state

Table 23.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Idle

1

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.

2 Discovers slave side transition. Master inter-
face output signals are assigned.

3 Bus access is granted, perform address
phase.

2 Discovers that read data is ready, assign
HREADY output register and data output
register.

4 Register read data and transition to data
ready state.

5 Idle

3 HREADY is driven on AMBA bus. Core
has returned to idle state

6

7
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If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.

Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

2.3 Registers

The core does not implement any registers.

2.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

2.5 Implementation

2.5.1 Technology mapping

The uni-directional AHB to AHB bridge has two technology mapping genericsmemtechand fcf-
smtech.memtechselects which memory technology that will be used to implement the FIFO memo-
ries. fcfsmtechselects the memory technology to be used to implement the First-come, first-served
buffer, if FCFS is enaled.

2.5.2 RAM usage

The uni-directional AHB to AHB bridge instantiates one or severalsyncram_2pblocks from the tech-
nology mapping library (TECHMAP). If prefetching is enabled max(mstmaccsz, slvaccsz)/32
syncram_2pblock(s) with organization (max(rburst,iburst)-max(mstmaccsz, slvaccsz)/32) x 32 is
used to implement read FIFO (max(rburst,iburst) is the size of the read FIFO in 32-bit words).
max(mstmaccsz, slvaccsz)/32 syncram_2pblock(s) with organization(wburst - max(mstmaccsz,
slvaccsz)/32) x 32, is always used to implement the write FIFO (wherewburstis the size of the write
FIFO in 32-bit words).

If the core has support for first-come, first-served ordering then onefcfsx 4 syncram_2pblock will be
instantiated, using the technology specified by the VHDL genericfcfsmtech.

Table 24.Access latencies

Access Master acc. cycles Slave cycles Delay incurred by performing access over core

Single read 3 1 1 * clkslv + 3 * clkmst

Burst read with prefetch 2 + (burst length)x 2 2 * clkslv + (2 + burst length)* clkmst

Single writexx (2) 0 0

Burst writexx (2 + (burst length)) 0 0

x A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
xx The core implements posted writes, the number of cycles taken by the master side can only affect the next access.
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2.6 Configuration options

Table 25 shows the configuration options of the core (VHDL generics).

Table 25.Configuration options (VHDL generics)

Generic Function Allowed range Default

memtech Memory technology

hsindex Slave I/F AHB index 0 to NAHBMAX-1 0

hmindex Master I/F AHB index 0 to NAHBMAX-1 0

dir 0 - clock frequency on the master bus is lower than or
equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than or
equal to the frequency on the slave bus

(for VHDL genericffact = 1 the value of dir does not
matter)

0 - 1 0

ffact Frequency scaling factor between AHB clocks on master
and slave buses.

1 - 15 2

slv Slave bridge. Used in bi-directional bridge configuration
whereslv is set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge (slv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.

This generic must only be set to 1 for a bridge where the
frequency of the bus connecting the master interface is
higher or equal to the frequency of the AHB bus con-
necting to the bridge’s slave interface. Otherwise a race
condition during access collisions may cause the bridge
to deadlock.

0 - 1 0

pfen Prefetch enable. Enables read FIFO. 0 - 1 0

irqsync Interrupt forwarding. Forward interrupts from slave
interface to master interface and vice versa.
0 - no interrupt forwarding, 1 - forward interrupts 1 - 15,
2 - forward interrupts 0 - 31.
Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in
a bi-directional AHB/AHB bridge.

0 - 2 0

wburst Length of write bursts in 32-bit words. Determines write
FIFO size and write burst address boundary. If the
wburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generic
must be set so that the buffer can contain two of the max-
imum sized accesses that the bridge can handle.

2 - 32 8

iburst Instruction fetch burst length. This value is only used if
the genericibrsten is set to 1. Determines the length of
prefetching instruction read bursts on the master side.
The maximum of (iburst,rburst) determines the size of
the core’s read buffer FIFO.

4 - 8 8
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rburst Incremental read burst length. Determines the maximum
length of incremental read burst of unspecified length
(INCR) on the master interface. The maximum ofrburst
andiburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8 the
bridge will not perform read bursts over a 8x4=32 byte
boundary.

This generic must be set so that the buffer can contain
two of the maximum sized accesses that the bridge can
handle.

For systems where AHB masters perform fixed length
burst (INCRx , WRAPx)rburst should not be less than
the length of the longest fixed length burst.

4 - 32 8

bar0 Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BAR0) on the slave
interface. The generic has the same bit layout as bank
address registers with bits [19:18] suppressed (use func-
tions ahb2ahb_membar and ahb2ahb_iobar in
gaisler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0

bar2 Address area 2 (BAR2) 0 - 1073741823 0

bar3 Address area 3 (BAR2) 0 - 1073741823 0

sbus The number of the AHB bus to which the slave interface
is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 0

ioarea Address of the I/O area containing the configuration area
for AHB bus connected to the bridge’s master interface.
This address appears in the bridge’s slave interface user-
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the bus
connected to the bridge’s master interface, the I/O area
must be mapped on one of the bridge’s BARs.

If this generic is set to 0, some tools, such as Aeroflex
Gaisler’s GRMON debug monitor, will not perform
Plug’n’Play scanning over the bridge.

0 - 16#FFF# 0

ibrsten Instruction fetch burst enable. If set, the bridge will per-
form bursts ofiburst length for opcode access
(HPROT[0] = ‘0’), otherwise bursts ofrburst length will
be used for both data and opcode accesses.

0 - 1 0

Table 25.Configuration options (VHDL generics)

Generic Function Allowed range Default
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lckdac Locked access error detection and correction. Locked
accesses may lead to deadlock if a locked access is made
while an ongoing read access has received a SPLIT
response. The value of lckdac determines how the core
handles this scenario:

0: Core will deadlock
1: Core will issue an AMBA ERROR response to the
locked access
2: Core will allow both accesses to complete.

If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made
simultaneously in both directions. Withlckdac set to 0
the core will deadlock. Withlckdac set to a non-zero
value the slave bridge will issue an ERROR response to
the incoming locked access.

0 - 2 0

slvmaccsz The maximum size of accesses that will be made to the
bridge’s slave interface. This value must equalmst-
maccsz unlessrdcomb /= 0 andwrcomb /= 0.

32 - 256 32

mstmaccsz The maximum size of accesses that will be performed by
the bridge’s master interface. This value must equalmst-
maccsz unlessrdcomb /= 0 andwrcomb /= 0.

32 - 256 32

rdcomb Read combining. If this generic is set to a non-zero value
the core will use the master interface’s maximum AHB
access size when prefetching data and allow data to be
read out using any other access size supported by the
slave interface.

If slvmaccsz > 32 and mstmaccsz > 32 and an incoming
single access, or access to a non-prefetchable area, is
larger than the size supported by the master interface the
bridge will perform a series of small accesses in order to
fetch all the data. If this generic is set to 2 the core will
use a burst of small fetches. If this generic is set to 1 the
bridge will not use a burst unless the incoming access
was a burst.

Read combining is only supported for single accesses
and incremental bursts of unspecified length.

0 - 2 0

wrcomb Write combining. If this generic is set to a non-zero
value the core may assemble several small write accesses
(that are part of a burst) into one or more larger accesses
or assemble one or more accesses into several smaller
accesses. The settings are as follows:

0: No write combining

1: Combine if burst can be preserved

2: Combine if burst can be preserved and allow single
accesses to be converted to bursts (only applicable if slv-
maccsz > 32)

Only supported for single accesses and incremental
bursts of unspecified length

0 - 2 0

Table 25.Configuration options (VHDL generics)

Generic Function Allowed range Default
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combmask Read/write combining mask. This generic determines
which ranges that the core can perform read/write com-
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmask is
treated as a 16-bit vector with LSB bit (right-most) indi-
cating address 0x0 - 0x10000000. Making an access to
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb = 0 and wrcomb = 0. However, combmask is not
taken into account when the core performs a prefetch
operation (see pfen generic). When a prefetch operation
is initiated, the core will always use the maximum sup-
ported access size (when rdcomb /= 0).

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types

2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.
1: Support all types of bursts
0: Only support incremental bursts of unspecified length

See section 2.2.7 for more information.

When allbrst is enabled, the core’s read buffer (size set
via rburst/iburst generics) must have at least 16 slots.

0 - 2 0

ifctrlen Interface control enable. When this generic is set to 1 the
input signalsifctrl.mstifen andifctrl.slvifen can be used
to force the AMBA slave respectively master interface
into an idle state. This functionality is intended to be
used when the clock of one interface has been gated-off
and any stimuli on one side of the bridge should not be
propagated to the interface on the other side of the
bridge.

When this generic is set to 0, the ifctrl.* input signals are
unused.

0 - 1 0

fcfs First-come, first-served operation. When this generic is
set to a non-zero value, the core will keep track of the
order of incoming accesses and handle the requests in the
same order. If this generic is set to zero the bridge will
not preserve the order and leave this up to bus arbitra-
tion. If FCFS is enabled the value of this generic must be
higher or equal to the number of masters that may per-
form accesses over the bridge.

0 - NAHBMST 0

fcfsmtech Memory technology to use for FCFS buffer. When
VHDL genericfcfs is set to a non-zero value, the core
will instantiate a 4 bit xfcfs buffer to keep track of the
incoming master indexes. This generic decides the mem-
ory technology to use for the buffer.

0 - NTECH 0 (inferred)

scantest Enable scan support 0 - 1 0

split Use AMBA SPLIT responses. When this generic is set to
1 the core will issue AMBA SPLIT responses. When this
generic is set to 0 the core will insert waitstates instead
and may also issue AMBA RETRY responses. If this
generic is set to 0, thefcfs generic must also be set to 0,
otherwise a simulation failure will be asserted.

0 - 1 1

Table 25.Configuration options (VHDL generics)

Generic Function Allowed range Default



AEROFLEX GAISLER 30 GRIP

2.7 Signal descriptions

Table 26 shows the interface signals of the core (VHDL ports).

Table 26.Signal descriptions (VHDL ports)

Signal name Field Type Function Active

RST Input Reset Low

HCLKM Input AHB master bus clock -

HCLKS Input AHB slave bus clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSO2 * Input AHB slave input vector signals (on master i/f
side). Used to decode cachability and prefetch-
ability Plug&Play information on bus connected
to the bridge’s master interface.

-

LCKI slck
blck
mlck

Input Used in systems with multiple AHB/AHB
bridges (e.g. bi-directional AHB/AHB bridge) to
detect deadlock conditions. Tie to “000” in sys-
tems with only uni-directional AHB/AHB bus.

High

LCKO slck
blck
mlck

Output Indicates possible deadlock condition High

IFCTRL mstifen Input Enable master interface. This input signal is
unused if the VHDL genericifctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface. This sig-
nal is intended to be used to keep the core’s
master interface in a good state when the core’s
slave interface clock has been gated off. Care
should be taken to ensure that the bridge is idle
when the master interface is disabled.

High

slvifen Input Enable slave interface. This input signal is
unused if the VHDL genericifctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
slave interface, otherwise the interface will
always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interface
to the core’s AMBA master interface. This signal
is intended to be used to keep the slave interface
in a good state when the core’s master interface
clock has been gated off. Care should be taken to
ensure that the bridge is idle when the slave
interface is disabled.

High

* see GRLIB IP Library User’s Manual
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2.8 Library dependencies

Table 27 shows the libraries used when instantiating the core (VHDL libraries).

2.9 Instantiation

GRLIB contains two example designs with AHB2AHB and LEON processors:designs/leon3-
ahb2ahb(only available in commercial distributions) anddesigns/leon4-ahb2ahb(only in distribu-
tions that include LEON4 processor). The LEON/GRLIB Configuration and Development Guide con-
tains more information on how to use the bridge to create multi-bus systems.

Table 27.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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3 AHBBRIDGE - Bi-directional AHB/AHB bridge

3.1 Overview

A pair of uni-directional bridges (AHB2AHB) can be instantiated to form a bi-directional bridge. The
bi-directional AHB/AHB bridge (AHBBRIDGE) instantiates two uni-directional bridges that are con-
figured to suit the bus architecture shown in figure 2. The bus architecture consists of two AHB buses:
a high-speed AHB bus hosting LEON3 CPU(s) and an external memory controller and a low-speed
AHB bus hosting communication IP-cores.

Note: For other architectures, a more general bi-directional bridge that is more suitable can be created
by instantiating two uni-directional AHB to AHB bridges (see AHB2AHB core). AHBBRIDGE is
not suitable for LEON4 systems and for other systems with wide AHB buses.

3.2 Operation

3.2.1 General

The AHB/AHB bridge is connected to each AHB bus through a pair consisting of an AHB master and
an AHB slave interface. The address space occupied by the AHB/AHB bridge on each bus is deter-
mined by Bank Address Registers which are configured through VHDL generics. The bridge is capa-
ble of handling single and burst transfers in both directions. Internal FIFOs are used for data
buffering. The bridge implements the AMBA SPLIT response to improve AHB bus utilization. For
more information on AHB transfers please refer to the documentation for the uni-directional AHB/
AHB bridge (AHB2AHB).

The requirements on the two bus clocks are that they are synchronous. The two uni-directional
bridges forming the bi-directional AHB/AHB bridge are configured asymmetrically. Configuration of
the bridge connecting high-speed bus with the low-speed bus (down bus) is optimized for the bus traf-
fic generated by the LEON3 CPU since the CPU is the only master on the high-speed bus (except for
the bridge itself). Read transfers generated by the CPU are single read transfers generated by single
load instructions (LD), read bursts of length two generated by double load instructions (LDD) or
incremental read bursts of maximal length equal to cache line size (4 or 8 words) generated during
instruction cache line fill. The size of the read FIFO for the down bridge is therefore configurable to 4
or 8 entries which is the maximal read burst length. If a read burst is an instruction fetch (indicated on
AHB HPROT signal) to a prefetchable area the bridge will prefetch data to the end of a instruction

Figure 2. LEON3 system with a bi-directional AHB/AHB bridge
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cache line. If a read burst to a prefetchable area is a data access, two words will be prefetched (this
transfer is generated by the LDD instruction). The write FIFO has two entries capable of buffering the
longest write burst (generated by the STD instruction). The down bridge also performs interrupt for-
warding, interrupt lines 1-15 on both buses are monitored and an interrupt on one bus is forwarded to
the other one.

Since the low-speed bus does not host a LEON3 CPU, all AHB transfers forwarded by the uni-direc-
tional bridge connecting the low-speed bus and the high-speed bus (up bridge) are data transfers.
Therefore the bridge does not make a distinction between instruction and data transfers. The size of
the read and write FIFOs for this bridge is configurable and should be set by the user to suite burst
transfers generated by the cores on the low-speed bus.

Note that the bridge has been optimized for a LEON3 system with a specific set of masters and a spe-
cific bus topology. Therefore the core may not be suitable for a design containing later versions of the
LEON processor or other masters. In general it is not recommended instantiate the AHBBRIDGE
core and instead instantiate two uni-directional AHB to AHB bridges (AHB2AHB cores) with config-
urations tailored for a specific design.

3.2.2 Deadlock conditions

A deadlock situation can occur if the bridge is simultaneously accessed from both buses. The bridge
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response on the low-speed bus.

There are several deadlock conditions that can occur with locked accesses. If the VHDL genericlck-
dac is 0, the bridge will deadlock if two simultaneous accesses from both buses are locked, or if a
locked access is made while the bridge has issued a SPLIT response to a read access and the splitted
access has not completed. Iflckdac is greater than 0, the bridge will resolve the deadlock condition
from two simultaneous locked accesses by giving an ERROR response on the low-speed bus. Iflckdac
is 1 and a locked access is made while the bridge has issued a SPLIT response to a read access, the
bridge will respond with ERROR to the incoming locked access. Iflckdac is 2 the bridge will allow
both the locked access and the splitted read access to complete. Note that withlckdacset to 2 and two
incoming locked accesses, the access on the low-speed bus will still receive an ERROR response.

3.2.3 Read and write combining

The bridge can be configured to support read and write combining so that prefetch operations and
write bursts are always performed with the maximum access size possible on the master interface.
Please see the documentation for the uni-directional AHB/AHB bridge (AHB2AHB) for a description
of read and write combining and note that the same VHDL generics are used to specify both the max-
imum master and maximum slave access size on the bi-directional AHB/AHB bridge.

3.3 Registers

The core does not implement any registers.

3.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
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3.5 Configuration options

Table 28 shows the configuration options of the core (VHDL generics).

Table 28.Configuration options

Generic Function Allowed range Default

memtech Memory technology - 0

ffact Frequency ratio 1 - 2

hsb_hsindex AHB slave index on the high-speed bus 0 to NAHBMAX-1 0

hsb_hmindex AHB master index on the high-speed bus 0 to NAHBMAX-1 0

hsb_iclsize Cache line size (in number of 32-bit words) for CPUs on
the high-speed bus. Determines the number of the words
that are prefetched by the bridge when CPU performs
instruction bursts.

4, 8 8

hsb_bank0 Address area 0 mapped on the high-speed bus and
decoded by the bridge’s slave interface on the low-speed
bus. Appears as memory address register (BAR0) on the
bridge’s low-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0 - 1073741823 0

hsb_bank1 Address area 1 mapped on the high-speed bus 0 - 1073741823 0

hsb_bank2 Address area 2 mapped on the high-speed bus 0 - 1073741823 0

hsb_bank3 Address area 3 mapped on the high-speed bus 0 - 1073741823 0

hsb_ioarea Address of high-speed bus I/O area that contains the
high-speed bus configuration area. Will appear in the
bridge’s user-defined register 1 on the low-speed bus.
Note that to allow low-speed bus masters to read the
high-speed bus configuration area, the area must be
mapped on one of thehsb_bank generics.

0 - 16#FFF# 0

lsb_hsindex AHB slave index on the low-speed bus 0 to NAHBMAX-1 0

lsb_hmindex AHB master index on the low-speed bus 0 to NAHBMAX-1 0

lsb_rburst Size of the prefetch buffer for read transfers initiated on
the low-speed-bus and crossing the bridge.

16, 32 16

lsb_wburst Size of the write buffer for write transfers initiated on the
low-speed bus and crossing the bridge.

16, 32 16

lsb_bank0 Address area 0 mapped on the low-speed bus and
decoded by the bridge’s slave interface on the high-speed
bus. Appears as memory address register (BAR0) on the
bridge’s high-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0 - 1073741823 0

lsb_bank1 Address area 1 mapped on the low-speed bus 0 - 1073741823 0

lsb_bank2 Address area 2 mapped on the low-speed bus 0 - 1073741823 0

lsb_bank3 Address area 3 mapped on the low-speed bus 0 - 1073741823 0

lsb_ioarea Address of low-speed bus I/O area that contains the low-
speed bus configuration area. Will appear in the bridge’s
user-defined register 1 on the high-speed bus. Note that
to allow high-speed bus masters to read the low-speed
bus configuration area, the area must be mapped on one
of thelsb_bank generics.

0 - 16#FFF# 0
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lckdac Locked access error detection and correction. This
generic is mapped to the generic with the same name on
the two AHB2AHB cores instantiated by AHBBRIDGE.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

0 - 2 0

maccsz This generic is propagated to the slvmaccsz and mst-
maccsz VHDL generics on the two AHB2AHB cores
instantiated by AHBBRIDGE. The generic determines
the maximum AHB access size supported by the bridge.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

32 - 256 32

rdcomb Read combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

0 - 2 0

wrcomb Write combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

0 - 2 0

combmask Read/Write combining mask, this generic is mapped to
the generic with the same name on the two AHB2AHB
cores instantiated by AHBBRIDGE. Please see the docu-
mentation for the AHB2AHB core’s VHDL generics for
more information.

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types, this generic is mapped to the
generic with the same name on the two AHB2AHB cores
instantiated by AHBBRIDGE. Please see the documen-
tation for the AHB2AHB core’s VHDL generics for
more information.

0 - 2 0

fcfs First-come, first-served operation, this generic is mapped
to the generic with the same name on the two
AHB2AHB cores instantiated by AHBBRIDGE. Please
see the documentation for the AHB2AHB core’s VHDL
generics for more information.

0 - NAHBMST 0

scantest Enable scan support 0 - 1 0

Table 28.Configuration options

Generic Function Allowed range Default
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3.6 Signal descriptions

Table 29 shows the interface signals of the core (VHDL ports).

3.7 Library dependencies

Table 30 shows the libraries used when instantiating the core (VHDL libraries).

Table 29.Signal descriptions

Signal name Type Function Active

RST Input Reset Low

HSB_HCLK Input High-speed AHB clock -

LSB_HCLK Input Low-speed AHB clock -

HSB_AHBSI Input High-speed bus AHB slave input signals -

HSB_AHBSO Output High-speed bus AHB slave output signals -

HSB_AHBSOV Input High-speed bus AHB slave input signals -

HSB_AHBMI Input High-speed bus AHB master input signals -

HSB_AHBMO Output High-speed bus AHB master output signals -

LSB_AHBSI Input Low-speed bus AHB slave input signals -

LSB_AHBSO Output Low-speed bus AHB slave output signals -

LSB_AHBSOV Input Low-speed bus AHB slave input signals -

LSB_AHBMI Input Low-speed bus AHB master input signals -

LSB_AHBMO Output Low-speed bus AHB master output signals -

Table 30.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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4 AHBCTRL - AMBA AHB controller with plug&play support

4.1 Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.

The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and NAH-
BMST. It can also be set with thenahbm andnahbs VHDL generics.

Figure 3. AHB controller block diagram

4.2 Operation

4.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL genericrrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL genericdefmast) will be granted.

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL genericmpriocan be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.

Note that there are AHB slaves that implement split-like functionality by giving AHB retry responses
until the access has finished and the original master tries again. All masters on the bus accessing such
slaves must be round-robin arbitrated without prioritization to avoid deadlock situations. For GRLIB
this applies to the GRPCI and GRPCI2 cores.

During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL genericfixbrst
should be set to 1.

4.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with theioaddrandiomaskVHDL gener-
ics. Access to unused addresses will cause an AHB error response.

MASTER MASTER

SLAVESLAVE

ARBITER/
DECODER

AHBCTRL
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The I/O area can be placed within a memory area occupied by a slave. The slave will not be selected
when the I/O area is accessed.

4.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit.

The plug&play information is mapped on a read-only address area, defined by thecfgaddrandcfg-
maskVHDL generics, in combination with theioaddr and iomaskVHDL generics. By default, the
area is mapped on address 0xFFFFF000 - 0xFFFFFFFF. The master information is placed on the first
2 kbyte of the block (0xFFFFF000 - 0xFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 + n*32 for slaves.

Figure 4. AHB plug&play information record

4.3 AHB split support

AHB SPLIT functionality is supported if thesplit VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.

It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

4.4 Locked accesses

The GRLIB AHB controller treats HLOCK as coupled to a specific access. If a previous access by a
master received a SPLIT/RETRY response then the arbiter will disregard the current value of
HLOCK. This is done as opposed to always treating HLOCK as being valid for the next access which
can result in a previously non-locked access being treated as locked when it is retried. Consider the
following sequence:

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space
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T0: MSTx write 0
T1: MSTx write 1, HLOCK asserted as next access performed by master will be locked
T2: MSTx locked read

If (the non-locked) write 0 access at T0 receives a RETRY or SPLIT response (given at time T1), then
the next access to be performed may be a retry of write 0. In this case the arbiter will disregard the
HLOCK setting and the retried access will not have HMASTLOCK set.

4.5 AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled with theenbusmongeneric. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation.

4.6 Registers

The core does not implement any registers.

4.7 Configuration options

Table 31 shows the configuration options of the core (VHDL generics).

Table 31.Configuration options

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address (i.e. 31 downto
20)

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. Sets 12 bits
in the 32-bit AHB address (i.e. 19 downto 8).

0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets the size
of the configuration area and the start address together
with cfgaddr. If set to 0, the configuration will be dis-
abled.

0 - 16#FFF# 16#FF0#

rrobin Selects between round-robin (1) or fixed-priority (0) bus
arbitration algorithm.

0 - 1 0

split Enable support for AHB SPLIT response 0 - 1 0

defmast Default AHB master 0 - NAHBMST-1 0

ioen AHB I/O area enable. Set to 0 to disable the I/O area 0 - 1 1

disirq Set to 1 to disable interrupt routing 0 - 1 0

nahbm Number of AHB masters 1 - NAHBMST NAHBMST

nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV

timeout Perform bus timeout checks (NOT IMPLEMENTED). 0 - 1 0

fixbrst Enable support for fixed-length bursts 0 - 1 0

debug Print configuration (0=none, 1=short, 2=all cores) 0 - 2 2

fpnpen Enables full decoding of the PnP configuration records.
When disabled the user-defined registers in the PnP con-
figuration records are not mapped in the configuration
area.

0 - 1 0

icheck Check bus index 0 - 1 1

devid Assign unique device identifier readable from plug and
play area.

N/A 0

enbusmon Enable AHB bus monitor 0 - 1 0
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assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations
are asserted with severity error.

0 - 1 0

hmstdisable Disable AHB master rule check. To disable a master rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

N/A 0

hslvdisable Disable AHB slave tests. Values are assigned as for
hmstdisable.

N/A 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

N/A 0

mprio Master(s) with highest priority. This value is converted
to a vector where each position corresponds to a master.

To prioritize masters x and y set this generic to 2x + 2y.

N/A 0

mcheck Check if there are any intersections between core mem-
ory areas. If two areas intersect an assert with level fail-
ure will be triggered (in simulation). mcheck = 1 does
not report intersects between AHB IO areas and AHB
memory areas (as IO areas are allowed to override mem-
ory areas). mcheck = 2 triggers on all overlaps.

0 - 2 1

ccheck Perform sanity checks on PnP configuration records (in
simulation).

0 - 1 1

acdm AMBA compliant data multiplexing (for HSIZE >
word). If this generic is set to 1, and the AMBA bus data
width in the system exceeds 32-bits, the core will ensure
AMBA compliant data multiplexing for access sizes
(HSIZE) over 32-bits. GRLIB cores have an optimiza-
tion where they drive the same data on all lanes. Read
data is always taken from the lowest lanes. If an AMBA
compliant core from another vendor is introduced in the
design, that core may not always place valid data on the
low part of the bus. By setting this generic to 1, the
AHBCTRL core will replicate the data, allowing the
non-GRLIB cores to be instantiated without modifica-
tion.

0 - 1 0

index AHB index for trace print-out, currently unused N/A 0

ahbtrace AHB trace print-out to simulator console in simulation. 0 - 1 0

hwdebug Enable hardware debug registers. If this generic is set to
1 the configuration area will include to diagnostic regis-
ters at offsets 0xFF4 and 0xFF8.

Offset 0xFF4 will show a 32-bit register where bit n
shows the current status of AHB master n’s HBUSREQ
signal.

Offset 0xFF8 will show a 32-bit register where bit n
shows the current SPLIT status of AHB master n. The bit
will be set when AHB master n receives a SPLIT reply
and will be re-set to ‘0’ when HSPLIT for AHB master n
has been asserted.

This functionality is not intended to be used in produc-
tion systems but can provide valuable information while
debugging systems with cores that have problems with
AMBA SPLIT replies.

0 - 1 0

Table 31.Configuration options

Generic Function Allowed range Default
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4.8 Signal descriptions

Table 32 shows the interface signals of the core (VHDL ports).

4.9 Library dependencies

Table 33 shows libraries used when instantiating the core (VHDL libraries).

4.10 Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl
  generic (
    defmast : integer := 0;-- default master
    split   : integer := 0;-- split support
    rrobin  : integer := 0;-- round-robin arbitration
    timeout : integer range 0 to 255 := 0;  -- HREADY timeout
    ioaddr  : ahb_addr_type := 16#fff#;  -- I/O area MSB address
    iomask  : ahb_addr_type := 16#fff#;   -- I/O area address mask
    cfgaddr : ahb_addr_type := 16#ff0#;  -- config area MSB address
    cfgmask : ahb_addr_type := 16#ff0#; -- config area address maskk
    nahbm   : integer range 1 to NAHBMST := NAHBMST; -- number of masters
    nahbs   : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
    ioen    : integer range 0 to 15 := 1;   -- enable I/O area
    disirq  : integer range 0 to 1 := 0; -- disable interrupt routing

 fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts
 debug : integer range 0 to 2 := 2; -- print configuration to consolee

    fpnpen : integer range 0 to 1 := 0;     -- full PnP configuration decoding
    icheck  : integer range 0 to 1 := 1

 devid       : integer := 0;     -- unique device ID
    enbusmon    : integer range 0 to 1 := 0; --enable bus monitor
    assertwarn  : integer range 0 to 1 := 0; --enable assertions for warnings
    asserterr   : integer range 0 to 1 := 0; --enable assertions for errors
    hmstdisable : integer := 0; --disable master checks
    hslvdisable : integer := 0; --disable slave checks
    arbdisable  : integer := 0; --disable arbiter checks
    mprio       : integer := 0; --master with highest priority
    enebterm    : integer range 0 to 1 := 0  --enable early burst termination
);
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    msti    : out ahb_mst_in_type;
    msto    : in  ahb_mst_out_vector;
    slvi    : out ahb_slv_in_type;

Table 32.Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

MSTI * Output AMBA AHB master interface record array -

MSTO * Input AMBA AHB master interface record array -

SLVI * Output AMBA AHB slave interface record array -

SLVO * Input AMBA AHB slave interface record array -

* see GRLIB IP Library User’s Manual

Table 33.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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    slvo    : in  ahb_slv_out_vector;
 testen  : in  std_ulogic := ’0’;

    testrst : in  std_ulogic := ’1’;
    scanen  : in  std_ulogic := ’0’;
    testoen : in  std_ulogic := ’1’
  );
  end component;

4.11 Instantiation

This example shows the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

.

.

  -- AMBA signals
 signal ahbsi : ahb_slv_in_type;

  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

-- ARBITER

ahb0 : ahbctrl -- AHB arbiter/multiplexer
  generic map (defmast => CFG_DEFMST, split => CFG_SPLIT,
rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm => 8, nahbs => 8)
  port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- AHB slave

sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

e1 : eth_oc
      generic map (mstndx => 2, slvndx => 5, ioaddr => CFG_ETHIO, irq => 12, memtech =>
memtech)
      port map (rstn, clkm, ahbsi, ahbso(5), ahbmi  => ahbmi,
ahbmo => ahbmo(2), ethi1, etho1);
...
end;

4.12 Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units are printed to the
console during the start of simulation. Reporting starts by scanning the master interface array from 0
to NAHBMST - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid
vendor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
descriptions for these ids are obtained from the GRLIB.DEVICES package, and are then printed on
standard out together with the master number. If the index check is enabled (done with a VHDL
generic), the report module also checks if the hindex number returned in the record matches the array
number of the record currently checked (the array index). If they do not match, the simulation is
aborted and an error message is printed.
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This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0
to NAHBSLV - 1 and the same information is printed and the same checks are done as for the master
interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-
rently defined are AHB memory, AHB I/O and APB I/O. APB I/O ranges are ignored by this module.

# vsim -c -quiet leon3mp
VSIM 1> run
# LEON3 MP Demonstration design
# GRLIB Version 1.0.7
# Target technology: inferred,  memory library: inferred
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: Configuration area at 0xfffff000, 4 kbyte
# ahbctrl: mst0: Aeroflex Gaisler        Leon3 SPARC V8 Processor
# ahbctrl: mst1: Aeroflex Gaisler        AHB Debug UART
# ahbctrl: slv0: European Space Agency   Leon2 Memory Controller
# ahbctrl:       memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mbyte
# ahbctrl:       memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slv1: Aeroflex Gaisler        AHB/APB Bridge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memory Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Aeroflex Gaisler        Generic UART
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Aeroflex Gaisler        Multi-processor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Aeroflex Gaisler        Modular Timer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv7: Aeroflex Gaisler        AHB Debug UART
# apbctrl:       I/O ports at 0x80000700, size 256 byte
# apbctrl: slv11: Aeroflex Gaisler        General Purpose I/O port
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# grgpio11: 8-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
# apbuart1: Generic UART rev 1, fifo 4, irq 2
# ahbuart7: AHB Debug UART rev 0
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte

VSIM 2>
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5 AHBJTAG - JTAG Debug Link with AHB Master Interface

5.1 Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

5.2 Operation

5.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 34. JTAG debug link Command/Address register
34 33 32 31 0

W SIZE AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer

33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved

31 30 AHB address

Table 35. JTAG debug link Data register
32 31 0

SEQ AHB DATA

32 Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out or write
data shifted in, the subsequent transfer will be to next word address. When read out from the device,
this bit is ‘1’ if the AHB access has completed and ‘0’ otherwise.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

Figure 5. JTAG Debug link block diagram

AHB master interface

AMBA AHB

JTAG Communication
Interface

JTAG TAP
Controller

TCK

TMS

TDI

TDO
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As of version 1 of the JTAG debug link the core will signal AHB access completion by setting bit 32
of the data register. In previous versions the debug host could not determine if an AHB accesses had
finished when the read data was shifted out of the JTAG debug link data register. As of version 1 a
debug host can look at bit 32 of the received data to determine if the access was successful. If bit 32 is
‘1’ the access completed and the data is valid. If bit 32 is ‘0’, the AHB access was not finished when
the host started to read data. In this case the host can repeat the read of the data register until bit 32 is
set to ‘1’, signaling that the data is valid and that the AMBA AHB access has completed.

It should be noted that while bit 32 returns ‘0’, new data will not be shifted into the data register. The
debug host should therefore inspect bit 32 when shifting in data for a sequential AHB access to see if
the previous command has completed. If bit 32 is ‘0’, the read data is not valid and the command just
shifted in has been dropped by the core.

Inspection of bit 32 should not be done for JTAG Debug links with version number 0.

5.3 Implementation

5.3.1 Clocking

Except for the TAP state machine and instruction register, the JTAG debug link operates in the AMBA
clock domain. To detect when to shift the address/data register, the JTAG clock and TDI are resyn-
chronized to the AMBA domain. The JTAG clock must be less than 1/3 of the AHB clock frequency
for the debug link commands to work when nsync=2, and less than 1/2 of the AHB frequency when
nsync=1.

5.4 Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

5.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x01C. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
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5.6 Configuration options

Table 36 shows the configuration options of the core (VHDL generics).

Table 36.Configuration options

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

hindex AHB master index 0 - NAHBMST-1 0

nsync Number of synchronization registers between clock
regions

1 - 2 1

idcode JTAG IDCODE instruction code (generic tech only) 0 - 255 9

manf Manufacturer id. Appears as bits 11-1 in TAP controllers
device identification register. Used only for generic tech-
nology. Default is Aeroflex Gaisler manufacturer id.

0 - 2047 804

part Part number (generic tech only). Bits 27-12 in device id.
reg.

0 - 65535 0

ver Version number (generic tech only). Bits 31-28 in device
id. reg.

0 - 15 0

ainst Code of the JTAG instruction used to access JTAG
Debug link command/address register.
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 16, for all other
technologies the default value (2) can be used.

0 - 255 2

dinst Code of the JTAG instruction used to access JTAG
Debug link data register
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 17, for all other
technologies the default value (3) can be used.

0 - 255 3

scantest Enable scan test support 0 - 1 0

oepol Output enable polarity for TDOEN 0 - 1 1

tcknen Support externally inverted TCK (generic tech only) 0 - 1 0
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5.7 Signal descriptions

Table37shows the interface signals of the core (VHDL ports).

5.8 Signal definitions and reset values

The signals and their reset values are described in table 38.

Table 37.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

AHBI *** Input AHB Master interface input -

AHBO *** Output AHB Master interface output -

TAPO_TCK N/A Output TAP Controller User interface TCK signal** High

TAPO_TDI N/A Output TAP Controller User interface TDI signal** High

TAPO_INST[7:0] N/A Output TAP Controller User interface INSTsignal** High

TAPO_RST N/A Output TAP Controller User interface RST signal** High

TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High

TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High

TAPO_UPD N/A Output TAP Controller User interface UPD signal** High

TAPI_TDO N/A Input TAP Controller User interface TDO signal** High

TRST N/A Input JTAG TRST signal Low

TDOEN N/A Output Output-enable for TDO See oepol

TCKN N/A Input Inverted JTAG clock* (if tcknen is set) -

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and TDO are not used.
Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core through TAP controller
instantiation.

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

***) see GRLIB IP Library User’s Manual

Table 38.Signal definitions and reset values

Signal name Type Function Active Reset value

dsutck Input JTAG clock - -

dsutms Input JTAG TMS High -

dsutdi Input JTAG TDI High -

dsutdo Output JTAG TDO High undefined
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5.9 Timing

The timing waveforms and timing parameters are shown in figure 6 and are defined in table 39.

5.10 Library dependencies

Table 40 shows libraries used when instantiating the core (VHDL libraries).

5.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.jtag.all;

entity ahbjtag_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- JTAG signals
    tck  : in std_ulogic;
    tms  : in std_ulogic;
    tdi  : in std_ulogic;
    tdo  : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

Table 39.Timing parameters

Name Parameter Reference edge Min Max Unit

tAHBJTAG0 clock period - 100 - ns

tAHBJTAG1 clock low/high period - 40 - ns

tAHBJTAG2 data input to clock setup risingdsutck edge 15 - ns

tAHBJTAG3 data input from clock hold risingdsutck edge 0 - ns

tAHBJTAG4 clock to data output delay fallingdsutck edge - 25 ns

Table 40.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER JTAG Signals, component Signals and component declaration

Figure 6. Timing waveforms

dsutdi, dsutms

dsutck

dsutdo

tAHBJTAG3tAHBJTAG4

tAHBJTAG2

tAHBJTAG0 tAHBJTAG1
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  -- AMBA signals
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal gnd : std_ulogic;

constant clkperiod : integer := 100;

begin

gnd <= ‘0’;

  -- AMBA Components are instantiated here
  ...

-- AHB JTAG
  ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
 port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
               open, open, open, open, open, open, open, gnd);

jtagproc : process
  begin
wait;
    jtagcom(tdo, tck, tms, tdi, 100, 20, 16#40000000#, true);
    wait;
   end process;

end;

5.12 Simulation

DSU communication over the JTAG debug link can be simulated usingjtagcomprocedure. Thejtag-
comprocedure sends JTAG commands to the AHBJTAG on JTAG signals TCK, TMS, TDI and TDO.
The commands read out and report the device identification code, optionally put the CPU(s) in debug
mode, perform three write operations to the memory and read out the data from the memory. The
JTAG test works if the generic JTAG tap controller is used and will not work with built-in TAP mac-
ros (such as Altera and Xilinx JTAG macros) since these macros don’t have visible JTAG pins. The
jtagcom procedure is part ofjtagtst package ingaisler library and has following declaration:

procedure jtagcom(signal tdo           : in std_ulogic;
                    signal tck, tms, tdi : out std_ulogic;
                    cp, start, addr      : in integer;

 -- cp - TCK clock period in ns
 -- start - time in us when JTAG test is started
 -- addr - read/write operation destination address

                    haltcpu          : in boolean);
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6 AHBRAM - Single-port RAM with AHB interface

6.1 Overview

AHBRAM implements on-chip RAM with an AHB slave interface. Memory size is configurable in
binary steps through a VHDL generic. Minimum size is 1KiB and maximum size is dependent on tar-
get technology and physical resources. Read accesses have zero or one waitstate (configured at imple-
mentation time), write access have one waitstate. The RAM supports byte- and half-word accesses, as
well as all types of AHB burst accesses.

Internally, the AHBRAM instantiates a SYNCRAM block with byte writes. Depending on the target
technology map, this will translate into memory with byte enables or to multiple 8-bit wide SYN-
CRAM blocks.

The size of the RAM implemented within AHBRAM can be read via the core’s AMBA plug&play
version field. The version field will display log2(number of bytes), for a 1 KiB SYNCRAM the ver-
sion field will have the value 10, where 210 = 1024 bytes = 1 KiB.

6.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

6.3 Configuration options

Table 41 shows the configuration options of the core (VHDL generics).

Table 41.Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together withhaddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes RAM size in KiB. The size of the RAM implemented
will be the minumum size that will hold the size speci-
fied bykbytes. A value of 1 here will instantiate a 1 KiB
SYNCRAM, a value of 3 will instantiate a 4 KiB SYN-
CRAM. The actual RAM usage on the target technology
then depends on the available RAM resources and the
technology map.

target-dependent 1

pipe Add registers on data outputs. If set to 0 the AMBA data
outputs will be connected directly to the core’s internal
RAM. If set to 1 the core will include registers on the
data outputs. Settings this generic to 1 makes read
accesses have one waitstate, otherwise the core will
respond to read accesses with zero waitstates.

0 - 1 0

maccsz Maximum access size supported. This generic restricts
the maximum AMBA access size supported by the core
and selects the width of the SYNCRAMBW RAM used
internally. The default value is assigned from AHBDW,
which sets the maximum bus width for the GRLIB
design.

32, 64, 128, 256 AHBDW
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6.4 Signal descriptions

Table 42 shows the interface signals of the core (VHDL ports).

6.5 Library dependencies

Table 43 shows libraries used when instantiating the core (VHDL libraries).

6.6 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbram
generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
tech : integer := 0; kbytes : integer := 1);
port (
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

6.7 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

.

.

ahbram0 : ahbram generic map (hindex => 7, haddr => CFG_AHBRADDR,
tech => CFG_MEMTECH, kbytes => 8)
    port map ( rstn, clkm, ahbsi, ahbso(7));

Table 42.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AMB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 43.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration
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7 AHBDPRAM - Dual-port RAM with AHB interface

7.1 Overview

AHBDPRAM implements a 32-bit wide on-chip RAM with one AHB slave interface port and one
back-end port for a user application. The AHBDPRAM is therefore useful as a buffer memory
between the AHB bus and a custom IP core with a RAM interface

The memory size is configurable in binary steps through theabitsVHDL generic. The minimum size
is 1kB while maximum size is dependent on target technology and physical resources. Read accesses
are zero-waitstate, write access have one waitstate. The RAM optionally supports byte- and half-word
accesses, as well as all types of AHB burst accesses. Internally, the AHBRAM instantiates one 32-bit
or four 8-bit wide SYNCRAM_DP blocks. The target technology must have support for dual-port
RAM cells.

The back-end port consists of separate clock, address, datain, dataout, enable and write signals. All
these signals are sampled on the rising edge of the back-end clock (CLKDP), implementing a syn-
chronous RAM interface. Read-write collisions between the AHB port and the back-end port are not
handled and must be prevented by the user. If byte write is enabled, the WRITE(0:3) signal controls
the writing of each byte lane in big-endian fashion. WRITE(0) controls the writing of DATAIN(31:24)
and so on. If byte write is disabled, WRITE(0) controls writing to the complete 32-bit word.

7.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

7.3 Configuration options

Table 44 shows the configuration options of the core (VHDL generics).

Table 44.Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together withhaddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 2

abits Address bits. The RAM size in Kbytes is equal to
2**(abits +2)

8 - 19 8

bytewrite If set to 1, enabled support for byte and half-word writes 0 - 1 0
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7.4 Signal descriptions

Table 45 shows the interface signals of the core (VHDL ports).

7.5 Library dependencies

Table 46 shows libraries used when instantiating the core (VHDL libraries).

7.6 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbdpram
  generic (
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#fff#;
    tech    : integer := 2;
    abits   : integer range 8 to 19 := 8;
    bytewrite : integer range 0 to 1 := 0
  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    clkdp   : in std_ulogic;
    address : in std_logic_vector((abits -1) downto 0);
    datain  : in std_logic_vector(31 downto 0);
    dataout : out std_logic_vector(31 downto 0);
    enable  : in std_ulogic;-- active high chip select
    write  : in std_logic_vector(0 to 3)-- active high byte write enable
  );
  end component;

Table 45.Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB Reset Low

CLK N/A Input AHB Clock -

AHBSI * Input AMB slave input signals -

AHBSO * Output AHB slave output signals -

CLKDP Input Clock for back-end port -

ADDRESS(abits-1:0) Input Address for back-end port -

DATAIN(31 : 0) Input Write data for back-end port -

DATAOUT(31 : 0) Output Read data from back-end port -

ENABLE Input Chip select for back-end port High

WRITE(0 : 3) Input Write-enable byte select for back-end port High

* see GRLIB IP Library User’s Manual

Table 46.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration
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8 AHBROM - Single-port ROM with AHB interface

8.1 Overview

The AHBROM core implements a 32-bit wide on-chip ROM with an AHB slave interface. Read
accesses take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM supports
byte- and half-word accesses, as well as all types of AHB burst accesses.

8.2 PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -o prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA tar-
gets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For ASIC
implementations, the ROM will be synthesized as gates. It is then recommended to use thepipeoption
to improve the timing.

8.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x01B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

8.4 Configuration options

Table 47 shows the configuration options of the core (VHDL generics).

Table 47.Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together withhaddr.

0 - 16#FFF# 16#FF0#

tech Not used

pipe Add a pipeline stage on read data 0 0

kbytes Not used
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8.5 Signal descriptions

Table 48 shows the interface signals of the core (VHDL ports).

8.6 Library dependencies

Table 49 shows libraries used when instantiating the core (VHDL libraries).

8.7 Component declaration

component ahbrom
generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
pipe : integer := 0; tech : integer := 0);
port (
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

8.8 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
.
.

brom : entity work.ahbrom
      generic map (hindex => 8, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP)
      port map ( rstn, clkm, ahbsi, ahbso(8));

Table 48.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AMB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 49.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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9 AHBSTAT - AHB Status Registers

9.1 Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tol-
erant core.

The status register and the failing address register are accessed from the AMBA APB bus.

9.2 Operation

9.2.1 Errors

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01”) is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated, as described hereunder.

Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

9.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only
difference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected.

When the CE bit is set the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the CE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.

The correctable error signals from the fault tolerant units should be connected to thestati.cerrorinput
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response.

9.2.3 Interrupts

The interrupt is generated on the line selected by thepirq VHDL generic.

The interrupt is connected to the interrupt controller to inform the processor of the error condition.
The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit and the monitoring becomes active again.
Interrupts are generated for both AMBA error responses and correctable errors as described above.

9.3 Registers

The core is programmed through registers mapped into APB address space.

Table 50.AHB Status registers

APB address offset Registers

0x0 AHB Status register

0x4 AHB Failing address register
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9.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

9.5 Configuration options

Table 53 shows the configuration options of the core (VHDL generics).

9.6 Signal descriptions

Table 54shows the interface signals of the core (VHDL ports).

Table 51. AHB Status register
31 10 9 8 7 6 3 2 0

RESERVED CE NE HWRITE HMASTER HSIZE

31: 10 RESERVED

9 CE: Correctable Error. Set if the detected error was caused by a correctable error and zero otherwise.

8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by
writing a zero to it.

7 The HWRITE signal of the AHB transaction that caused the error.

6: 3 The HMASTER signal of the AHB transaction that caused the error.

2: 0 The HSIZE signal of the AHB transaction that caused the error

Table 52. AHB Failing address register
31 0

AHB FAILING ADDRESS

31: 0 The HADDR signal of the AHB transaction that caused the error.

Table 53.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAHBSLV-1 0

paddr APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by the core 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3

Table 54.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB slave input signals -

AHBSI * Input AHB slave output signals -

STATI CERROR Input Correctable Error Signals High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual
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9.7 Library dependencies

Table 55 shows libraries used when instantiating the core (VHDL libraries).

9.8 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
registercerror vector. The connection of the different memory controllers to external memory is not
shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

--other signals
....

    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo, sdo2: sdctrl_out_type;

 signal sdi : sdctrl_in_type;

-- correctable error vector
signal stati : ahbstat_in_type;

 signal aramo : ahbram_out_type;

begin

  -- AMBA Components are defined here ...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 3)

Table 55.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component  Component declaration
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 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
 stati.cerror(3 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
 a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,

 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);

stati.cerror(0) <= aramo.ce;
-- SDRAM controller
  sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
    ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,

 cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);

 stati.cerror(1) <= sdo.ce;

-- Memory controller
  mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,

 edacen => 1, errcnt => 1, cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);

 stati.cerror(2) <= memo.ce;
end;



AEROFLEX GAISLER 60 GRIP

10 AHBTRACE - AHB Trace buffer

10.1 Overview

The trace buffer consists of a circular buffer that stores AMBA AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis.

The trace buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag.

10.2 Operation

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AMBA
AHB transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each transfer.
Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is gener-
ated when a breakpoint is hit.

Note: the LEON3 and LEON4 Debug Support Units (DSU3/DSU4) also includes an AHB trace
buffer. The standalone trace buffer is intended to be used in system without a processor or when the
DSU3 is not present.

Table 56.AHB Trace buffer data allocation

Bits Name Definition

127:96 Time tag The value of the time tag counter

95 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

Figure 7. Block diagram

AHB slave interface

AMBA AHB

Trace buffer RAMTrace control

AHB Trace Buffer

IRQ
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The size of the trace buffer is configured by means of thekbytesVHDL generic, defining the size of the
complete buffer in kbytes.

The size of the trace buffer iskbytes kbyte, with the resulting line depth ofkbytes/16 kbyte.

10.3 Registers

10.3.1 Register address map

The trace buffer occupies 128 KiB of address space in the AHB I/O area. The following register
address are decoded:

10.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

Table 57.Trace buffer address space

Address Register

0x000000 Trace buffer control register

0x000004 Trace buffer index register

0x000008 Time tag counter

0x00000C Trace buffer master/slave filter register

0x000010 AHB break address 1

0x000014 AHB mask 1

0x000018 AHB break address 2

0x00001C AHB mask 2

0x010000 - 0x020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

Table 58.Trace buffer control register
31 16 15 14 12 11 5 4 3 2 1 0

DCNT BA BSEL RESERVED AF FR FW DM EN

31: 16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15 Bus select Available (BA) - If this field is set to ‘1’, the core has several buses connected. The bus to
trace is selected via the BSEL field. If this field is ‘0’, the core is only capable of tracing one AHB
bus.

14: 12 Bus select (BSEL) - If the BA field is ‘1’ this field selects the bus to trace. If the BA field is ‘0’, this
field is not writable.

11: 5 RESERVED

4 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer. This bit can only be set of the
core has been implemented with support for filtering

3 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer. This
bit can only be set of the core has been implemented with support for filtering.

2 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.
This bit can only be set of the core has been implemented with support for filtering.

1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.

0 Trace enable (EN) - Enables the trace buffer
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10.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

10.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace buffer is
enabled. The value of the counter is stored in the trace to provide a time tag.

10.3.5 Trace buffer master/slave filter register

The master/slave filter register allows filtering out specified master and slaves from the trace. This
register can only be assigned if the trace buffer has been implemented with support for filtering.

10.3.6 Trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the DCNT
field in the trace buffer control register to a non-zero value. In this case, the DCNT value will be dec-
remented for each additional trace until it reaches zero and after two additional entries, the trace
buffer is frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared during break-
point detection. To break on AHB load or store accesses, the LD and/or ST bits should be set.

Table 59.Trace buffer index register
31 4 3 0

INDEX 0x0

31: 4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on
the size of the trace buffer

3: 0 Read as 0x0

Table 60.Trace buffer time tag counter
31 0

TIME TAG VALUE

Table 61.Trace buffer master/slave filter register
31 16 15 0

SMASK[15:0] MMASK[15:0]

31: 16 Slave Mask (SMASK) - If SMASK[n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.

15: 0 Master Mask (MMASK) - If MMASK[n] is set to ‘1’, the trace buffer will not save accesses per-
formed by master n.

Table 62.Trace buffer AHB breakpoint address register
31 2 1 0

BADDR[31:2] 0b00

31: 2 Breakpoint address (BADDR) - Bits 31:2 of breakpoint address

1: 0 Reserved, read as 0

Table 63.Trace buffer AHB breakpoint mask register
31 2 1 0

BMASK[31:2] LD ST
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10.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x017. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

10.5 Configuration options

Table 64 shows the configuration options of the core (VHDL generics).

10.6 Signal descriptions

Table65 shows the interface signals of the core (VHDL ports).

10.7 Library dependencies

Table 66 shows libraries used when instantiating the core (VHDL libraries).

31: 2 Breakpoint mask (BMASK) - Bits 31:2 of breakpoint mask

1 Load (LD) - Break on data load address

0 Store (ST) - Break on data store address

Table 64.Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 20-bit I/O address.

0 - 16#FFF# 16#000#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#E00#

irq Interrupt number 0 - NAHBIRQ-1 0

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes Trace buffer size in kbytes 1 - 64 1

ahbfilt If this generic is set to 1 the core will be implemented
with support for AHB trace buffer filters.

0 - 1 0

ntrace Number of buses to trace. This generic is only available
if the entity ahbtrace_mmb is instantiated.

1 - 8 1

Table 65.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 66.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration

Table 63.Trace buffer AHB breakpoint mask register
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10.8 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbtrace is
  generic (
    hindex  : integer := 0;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#E00#;
    tech    : integer := 0;
    irq     : integer := 0;
    kbytes  : integer := 1);
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type);
end component;

-- Tracebuffer that can trace separate bus:
component ahbtrace_mb is
  generic (

 hindex : integer := 0;
ioaddr  : integer := 16#000#;

    iomask    : integer := 16#E00#;
    tech    : integer := DEFMEMTECH;
    irq     : integer := 0;
    kbytes  : integer := 1);
  port (
    rst    : in  std_ulogic; clk    : in  std_ulogic;
    ahbsi  : in  ahb_slv_in_type;       -- Register interface
    ahbso  : out ahb_slv_out_type;
    tahbmi : in  ahb_mst_in_type; tahbsi : in  ahb_slv_in_type -- Trace
  );
  end component;

-- Tracebuffer that can trace several separate buses:
component ahbtrace_mmb is
  generic (

 hindex  : integer := 0;
ioaddr    : integer := 16#000#;

    iomask    : integer := 16#E00#;
    tech    : integer := DEFMEMTECH;
    irq     : integer := 0;
    kbytes  : integer := 1;

ntrace : integer range 1 to 8 := 1);
  port (
    rst  : in  std_ulogic; clk    : in  std_ulogic;
    ahbsi  : in  ahb_slv_in_type;       -- Register interface
    ahbso  : out ahb_slv_out_type;
    tahbmiv : in  ahb_mst_in_vector_type(0 to ntrace-1);

 tahbsiv : in  ahb_slv_in_vector_type(0 to ntrace-1) -- Trace
  );
  end component;
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11 AHBUART- AMBA AHB Serial Debug Interface

11.1 Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
a read or write transfer can be generated to any address on the AMBA AHB bus.

11.2 Operation

11.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

Figure 8. Block diagram

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

Figure 9. Data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 10. Commands

Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

Read command

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16]
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read accesses, the control byte and address is sent once and the corresponding number of data words
is returned.

11.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL bit is set in the UART control register. If the BL bit
is reset by software, the baud rate discovery process is restarted. The baud-rate discovery is also
restarted when a ‘break’ or framing error is detected by the receiver, allowing to change to baudrate
from the external transmitter. For proper baudrate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler = (((system_clk*10)/(baudrate*8))-5)/10

11.3 Registers

The core is programmed through registers mapped into APB address space.

0: Receiver enable (EN) - if set, enables both the transmitter and receiver. Reset value: ‘0’.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked. Reset value: ‘0’.

0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface. Read only. Reset
value: ‘0’.

1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Read only. Reset value:
‘1’

2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. Read only. Reset value:
‘1’

3: Break (BR) - indicates that a BREAKE has been received. Reset value: ‘0’
4: Overflow (OV) - indicates that one or more character have been lost due to receiver overflow. Reset value: ‘0’
6: Frame error (FE) - indicates that a framing error was detected. Reset value: ‘0’

Table 67.AHB UART registers

APB address offset Register

0x4 AHB UART status register

0x8 AHB UART control register

0xC AHB UART scaler register

Figure 11. AHB UART control register

01231

RESERVED ENBL

Figure 12. AHB UART status register

0123456731

RESERVED DRTSTHBROVFE
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17:0 Baudrate scaler reload value = (((system_clk*10)/(baudrate*8))-5)/10. Reset value: “3FFFF“.

11.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11.5 Configuration options

Table 68 shows the configuration options of the core (VHDL generics).

11.6 Signal descriptions

Table 69shows the interface signals of the core (VHDL ports)..

Table 68.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 69.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High

TXD Output UART transmit data High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Figure 13. AHB UART scaler reload register

0171831

RESERVED SCALER RELOAD VALUE
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11.7 Library dependencies

Table 70 shows libraries used when instantiating the core (VHDL libraries).

11.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity ahbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- UART signals
    ahbrxd : in  std_ulogic;
    ahbtxd : out std_ulogic
    );
end;

architecture rtl of ahbuart_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- UART signals
  signal ahbuarti : uart_in_type;
  signal ahbuarto : uart_out_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- AHB UART
  ahbuart0 : ahbuart
  generic map (hindex => 5, pindex => 7, paddr => 7)
  port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

  -- AHB UART input data
  ahbuarti.rxd <= ahbrxd;

  -- connect AHB UART output to entity output signal
  ahbtxd <= ahbuarto.txd;

end;

Table 70.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER UART Signals, component Signals and component declaration
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12 AMBAMON - AMBA Bus Monitor

12.1 Overview

The AMBA bus monitor checks the AHB and APB buses for violations against a set of rules. When
an error is detected a signal is asserted and error message is (optionally) printed.

12.2 Rules

This section lists all rules checked by the AMBA monitor. The rules are divided into four different
tables depending on which type of device they apply to.

Some requirements of the AMBA specification are not adopted by the GRLIB implementation (on a
system level). These requirements are listed in the table below.

Table 71.Requirements not checked in GRLIB

Rule
Number Description References

1 A slave which issues RETRY must only be accessed by one master at a
time.

AMBA Spec. Rev 2.0 3-38.

Table 72.AHB master rules.

Rule
Number Description References

1 Busy can only occur in the middle of bursts. That is only after a NON-
SEQ, SEQ or BUSY.

AMBA Spec. Rev 2.0 3-9.

http://www.arm.com/support/faqip/
492.html

2 Busy can only occur in the middle of bursts. It can be the last access of
a burst but only for INCR bursts.

AMBA Spec. Rev 2.0 3-9.

http://www.arm.com/support/faqip/
492.html

3 The address and control signals must reflect the next transfer in the
burst during busy cycles.

AMBA Spec. Rev 2.0 3-9.

4 The first transfer of a single access or a burst must be NONSEQ (this is
ensured together with rule 1).

AMBA Spec. Rev 2.0 3-9.

5 HSIZE must never be larger than the bus width. AMBA Spec. Rev 2.0 3-43.

6 HADDR must be aligned to the transfer size. AMBA Spec. Rev 2.0 3-12, 3-25.

http://www.arm.com/support/faqip/
582.html

7 Address and controls signals can only change when hready is low if
the previous HTRANS value was IDLE, BUSY or if an ERROR,
SPLIT or RETRY response is given.

http://www.arm.com/support/faqip/
487.html

http://www.arm.com/support/faqip/
579.html

8 Address and control signals cannot change between consecutive
BUSY cycles.

AMBA Spec. Rev 2.0 3-9.

9 Address must be related to the previous access according to HBURST
and HSIZE and control signals must be identical for SEQUENTIAL
accesses.

AMBA Spec. Rev 2.0 3-9.

10 Master must cancel the following transfer when receiving an RETRY
response.

AMBA Spec. Rev 2.0 3-22.

11 Master must cancel the following transfer when receiving an SPLIT
response.

AMBA Spec. Rev 2.0 3-22.
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12 Master must reattempt the transfer which received a RETRY response. AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

13 Master must reattempt the transfer which received a SPLIT response. AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

14 Master can optionally cancel the following transfer when receiving an
ERROR response. Only a warning is given if assertions are enabled if
it does not cancel the following transfer.

AMBA Spec. Rev 2.0 3-23.

15 Master must hold HWDATA stable for the whole data phase when wait
states are inserted. Only the appropriate byte lanes need to be driven
for subword transfers.

AMBA Spec. Rev 2.0 3-7. AMBA
Spec. Rev 2.0 3-25.

16 Bursts must not cross a 1 kB address boundary. AMBA Spec. Rev 2.0 3-11.

17 HMASTLOCK indicates that the current transfer is part of a locked
sequence. It must have the same timing as address/control.

AMBA Spec. Rev 2.0 3-28.

18 HLOCK must be asserted at least one clock cycle before the address
phase to which it refers.

AMBA Spec. Rev 2.0 3-28.

19 HLOCK must be asserted for the duration of a burst and can only be
deasserted so that HMASTLOCK is deasserted after the final address
phase.

http://www.arm.com/support/faqip/
597.html

20 HLOCK must be deasserted in the last address phase of a burst. http://www.arm.com/support/faqip/
588.html

21 HTRANS must be driven to IDLE during reset. http://www.arm.com/support/faqip/
495.html

22 HTRANS can only change from IDLE to NONSEQ or stay IDLE
when HREADY is deasserted.

http://www.arm.com/support/faqip/
579.html

Table 73.AHB slave rules.

Rule
Number Description References

1 AHB slave must respond with a zero wait state OKAY response to
BUSY cycles in the same way as for IDLE.

AMBA Spec. Rev 2.0 3-9.

2 AHB slave must respond with a zero wait state OKAY response to
IDLE.

AMBA Spec. Rev 2.0 3-9.

3 HRESP should be set to ERROR, SPLIT or RETRY only one cycle
before HREADY is driven high.

AMBA Spec. Rev 2.0 3-22.

4 Two-cycle ERROR response must be given. AMBA Spec. Rev 2.0 3-22.

5 Two-cycle SPLIT response must be given. AMBA Spec. Rev 2.0 3-22.

6 Two-cycle RETRY response must be given. AMBA Spec. Rev 2.0 3-22.

7 SPLIT complete signalled to master which did not have pending
access.

AMBA Spec. Rev 2.0 3-36.

8 Split complete must not be signalled during same cycle as SPLIT. http://www.arm.com/support/faqip/
616.html

9 It is recommended that slaves drive HREADY high and HRESP to
OKAY when not selected. A warning will be given if this is not fol-
lowed.

http://www.arm.com/support/faqip/
476.html

Table 72.AHB master rules.

Rule
Number Description References
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10 It is recommended that slaves do not insert more than 16 wait states. If
this is violated a warning will be given if assertions are enabled.

AMBA Spec. Rev 2.0 3-20.

11 Slaves should not assert the HSPLIT (Split complete) signal for more
than one cycle for each SPLIT response. If a slave asserts HSPLIT for
more than one cycle it will not cause the system to malfunction. It can
however be a indication that a core does not perform as expected.
Therefore assertion of HSPLIT during more than one cycle for a
SPLIT response is reported as a warning.

No reference

Table 74.APB slave rules.

Rule
Number Description References

1 The bus must move to the SETUP state or remain in the IDLE state
when in the IDLE state.

AMBA Spec. Rev 2.0 5-4.

2 The bus must move from SETUP to ENABLE in one cycle. AMBA Spec. Rev 2.0 5-4.

3 The bus must move from ENABLE to SETUP or IDLE in one cycle. AMBA Spec. Rev 2.0 5-5.

4 The bus must never be in another state than IDLE, SETUP, ENABLE. AMBA Spec. Rev 2.0 5-4.

5 PADDR must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

6 PWRITE must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

7 PWDATA must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

8 Only one PSEL must be enabled at a time. AMBA Spec. Rev 2.0 5-4.

9 PSEL must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

Table 75.Arbiter rules

Rule
Number Description References

1 HreadyIn to slaves and master must be driven by the currently selected
device.

http://www.arm.com/support/faqip/
482.html

2 A master which received a SPLIT response must not be granted the
bus until the slave has set the corresponding HSPLIT line.

AMBA Spec. Rev 2.0 3-35.

3 The dummy master must be selected when a SPLIT response is
received for a locked transfer.

http://www.arm.com/support/faqip/
14307.html

Table 73.AHB slave rules.

Rule
Number Description References
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12.3 Configuration options

Table 76 shows the configuration options of the core (VHDL generics).

12.4 Signal descriptions

Table 77 shows the interface signals of the core (VHDL ports).

Table 76.Configuration options

Generic Function Allowed range Default

asserterr Enable assertions for AMBA requirements. Violations
are asserted with severity error.

0 - 1 1

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 1

hmstdisable Disable AHB master rule check. To disable a master rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

- 0

hslvdisable Disable AHB slave tests. Values are assigned as for
hmstdisable.

- 0

pslvdisable Disable APB slave tests. Values are assigned as for hmst-
disable.

- 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

- 0

nahbm Number of AHB masters in the system. 0 - NAHBMST NAHBMST

nahbs Number of AHB slaves in the system. 0 - NAHBSLV NAHBSLV

napb Number of APB slaves in the system. 0 - NAPBSLV NAPBSLV

ebterm Relax rule checks to allow use in systems with early
burst termination. This generic should be set to 0 for sys-
tems that use GRLIB’s AHBCTRL core.

0 - 1 0

Table 77.Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

AHBMI * Input AHB master interface input record -

AHBMO * Input AHB master interface output record array -

AHBSI * Input AHB slave interface input record -

AHBSO * Input AHB slave interface output record array -

APBI * Input APB slave interface input record

APBO * Input APB slave interface output record array

ERR N/A Output Error signal (error detected) High

* see GRLIB IP Library User’s Manual
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12.5 Library dependencies

Table 78 shows libraries used when instantiating the core (VHDL libraries).

12.6 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
  port (
    clk : in std_ulogic;
    rst : in std_ulogic
end;

architecture rtl of ambamon_ex is
-- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

begin
  -- AMBA Components are instantiated here
   ...
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
  port (
    clk : in  std_ulogic;
    rst : in  std_ulogic;
    err : out std_ulogic
end;

architecture rtl of ambamon_ex is
  -- AHB signals
  signal ahbmi  : ahb_mst_in_type;
  signal ahbmo  : ahb_mst_out_vector := (others => apb_none);

  -- AHB signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => apb_none);

  -- APB signals

Table 78.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER SIM Component Component declaration
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  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

begin

  mon0 : ambamon
  generic map(
    assert_err => 1,
    assert_war => 0,
    nahbm      => 2,
    nahbs      => 2,
    napb       => 1
  )
  port map(
    rst        => rst,
    clk        => clk,
    ahbmi      => ahbmi,
    ahbmo      => ahbmo,
    ahbsi      => ahbsi,
    ahbso      => ahbso,
    apbi       => apbi,
    apbo       => apbo,
    err        => err);

end;
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13 APBCTRL - AMBA AHB/APB bridge with plug&play support

13.1 Overview

The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard.

The controller supports up to 16 slaves. The actual maximum number of slaves is defined in the
GRLIB.AMBA package, in the VHDL constant NAPBSLV. The number of slaves can also be set
using thenslavesVHDL generic.

Figure 14. AHB/APB bridge block diagram

13.2 Operation

13.2.1 Decoding

Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in the
GRLIB IP Library User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte. Writes to unassigned areas will be ignored, while reads from unassigned areas
will return an arbitrary value. AHB error response will never be generated.

13.2.2 Plug&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB IP Library User’s Manual for more information). These records
are combined into an array which is connected to the APB bridge.

The plug&play information is mapped on a read-only address area at the top 4 kbytes of the bridge
address space. Each plug&play block occupies 8 bytes. The address of the plug&play information for
a certain unit is defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the
address for the plug&play records is thus 0x800FF000 + n*8.

Figure 15. APB plug&play information
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13.3 APB bus monitor

An APB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the APB parts in the AMBA monitor core (AMBAMON). For more information
on which rules are checked se the AMBAMON documentation.

13.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x006. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13.5 Configuration options

Table 79 shows the configuration options of the core (VHDL generics).

Table 79.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together with haddr.

0 - 16#FFF# 16#FFF#

nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV

debug Print debug information during simulation 0 - 2 2

icheck Enable bus index checking (PINDEX) 0 - 1 1

enbusmon Enable APB bus monitor 0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations
are asserted with severity error.

0 - 1 0

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

pslvdisable Disable APB slave rule check. To disable a slave rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

N/A 0

mcheck Check if there are any intersections between APB slave
memory areas. If two areas intersect an assert with level
failure will be triggered (in simulation).

0 - 1 1

ccheck Perform sanity checks on PnP configuration records (in
simulation).

0 - 1 1
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13.6 Signal descriptions

Table 80 shows the interface signals of the core (VHDL ports).

13.7 Library dependencies

Table 81 shows libraries used when instantiating the core (VHDL libraries).

13.8 Component declaration

library grlib;
use grlib.amba.all;

component apbctrl
  generic (
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#fff#;
    nslaves : integer range 1 to NAPBSLV := NAPBSLV;
    debug   : integer range 0 to 2 := 2;   -- print config to console
    icheck  : integer range 0 to 1 := 1
  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbi    : in  ahb_slv_in_type;
    ahbo    : out ahb_slv_out_type;
    apbi    : out apb_slv_in_type;
    apbo    : in  apb_slv_out_vector
  );
  end component;

13.9 Instantiation

This example shows how an APB bridge can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

.

.

Table 80.Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

AHBI * Input AHB slave input -

AHBO * Output AHB slave output -

APBI * Output APB slave inputs -

APBO * Input APB slave outputs -

* see GRLIB IP Library User’s Manual

Table 81.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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  -- AMBA signals

 signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);

begin

-- APB bridge

apb0 : apbctrl-- AHB/APB bridge
  generic map (hindex => 1, haddr => CFG_APBADDR)
  port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo );

-- APB slaves

uart1 : apbuart
    generic map (pindex => 1, paddr => 1,  pirq => 2)
    port map (rstn, clk, apbi, apbo(1), u1i, u1o);

irqctrl0 : irqmp
    generic map (pindex => 2, paddr => 2)
    port map (rstn, clk, apbi, apbo(2), irqo, irqi);

...
end;

13.10 Debug print-out

The APB bridge can print-out the plug-play information from the attached during simulation. This is
enabled by setting the debug VHDL generic to 2. Reporting starts by scanning the array from 0 to
NAPBSLV - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid ven-
dor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
description for these ids are obtained from the GRLIB.DEVICES package, and is printed on standard
out together with the slave number. If the index check is enabled (done with a VHDL generic), the
report module also checks if the pindex number returned in the record matches the array number of
the record currently checked (the array index). If they do not match, the simulation is aborted and an
error message is printed.

The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and APB I/
O. All APB devices are in the APB I/O range so the type does not have to be checked. From this infor-
mation, the report module calculates the start address of the device and the size of the range. The
information finally printed is start address and size.
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14 APBPS2 - PS/2 host controller with APB interface

14.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 16
shows a model of APBPS2 and the electrical interface.

PS/2 data is sent in 11 bits frames. The first bit is a start bit followed by eight data bits, one odd parity
bit and finally one stop bit. Figure 17 shows a typical PS/2 data frame.

14.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboard or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the receiver buffer full (RF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it’s up to
the software to handle any resend operations if the parity bit is wrong. Figure 18 shows a flow chart
for the operations of the receiver state machine.

Figure 16. APBPS2 electrical interface
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Figure 17. PS/2 data frame
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14.3 Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 89.

If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 19 shows the flow chart for the transmission state machine.

14.4 Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 kHz. To transmit data, a PS/2 host must inhibit
communication by pulling the clock low for at least 100 microseconds. To do this, APBPS2 divides
the APB clock with either a fixed or programmable division factor. The divider consist of a 17-bit
down-counter and can divide the APB clock with a factor of 1 - 131071. The division rate, and the
reset value of the timer reload register, is set to thefKHzgeneric divided by 10 in order to generate the
100 microsecond clock low time. If the VHDL genericfixedis 0, the division rate can be programmed
through the timer reload register and should be programmed with the system frequency in kHz
divided by ten. The reset value of the reload register is always set to thefKHz value divided by ten.
However, the register will not be readable via the APB interface unless thefixedVHDL generic has
been set to 0.

Figure 18. Flow chart for the receiver state machine
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14.5 Registers

The core is controlled through registers mapped into APB address space.

14.5.1 PS/2 Data Register

[7:0]: Receiver holding FIFO (read access) and Transmitter holding FIFO (write access). If the receiver FIFO is not empty,
read accesses retrieve the next byte from the FIFO. Bytes written to this field are stored in the transmitter holding
FIFO if it is not full.

Table 82.APB PS/2 registers

APB address offset Register

0x00 PS/2 Data register

0x04 PS/2 Status register

0x08 PS/2 Control register

0x0C PS/2 Timer reload register

Waitrequest

Figure 19. Flow chart for the transmitter state machine
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14.5.2 PS/2 Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register (read only).
1: Parity error (PE) - indicates that a parity error was detected.
2: Framing error (FE) - indicates that a framing error was detected.
3: Keyboard inhibit (KI) - indicates that the keyboard is inhibited.
4: Receiver buffer full (RF) - indicates that the output buffer (FIFO) is full (read only).
5:  Transmitter buffer full (TF) - indicates that the input buffer (FIFO) is full (read only).
[26:22]:  Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO (read only).
[31:27]: Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO (read only).

14.5.3 PS/2 Control Register

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received
3: Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted

14.5.4 PS/2 Timer Reload Register

[16:0]: PS/2 timer reload register

14.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 21. PS/2 status register
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14.7 Configuration options

Table 83 shows the configuration options of the core (VHDL generics).

14.8 Signal descriptions

Table84 shows the interface signals of the core (VHDL ports).

14.9 Library dependencies

Table 85 shows libraries used when instantiating the core (VHDL libraries).

14.10 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

Table 83.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

fKHz Frequency of APB clock in KHz. This value divided by
10 is the reset value of the timer reload register.

1 - 1310710 50000

fixed Used fixed clock divider to generate PS/2 clock. 0 - 1 0

oepol Output enable polarity 0 - 1 0

Table 84.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

PS2I PS2_CLK_I Input PS/2 clock input -

PS2_DATA_I Input PS/2 data input -

PS2O PS2_CLK_O Output PS/2 clock output -

PS2_CLK_OE Output PS/2 clock output enable Low

PS2_DATA_O Output PS/2 data output -

PS2_DATA_OE Output PS/2 data output enable Low

* see GRLIB IP Library User’s Manual

Table 85.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component PS/2 signal and component declaration
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use grlib.amba.all;
use grlib.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity apbps2_ex is
 port (
    rstn : in std_ulogic;
    clk : in std_ulogic;

    -- PS/2 signals
    ps2clk : inout std_ulogic;
    ps2data : inout std_ulogic
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- PS/2 signals
  signal kbdi : ps2_in_type;
  signal kbdo : ps2_out_type;

begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirq => 4)
      port map(rstn, clkm, apbi, apbo(5), kbdi, kbdo);

kbdclk_pad : iopad generic map (tech => padtech)
      port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk_oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
        port map (ps2data, kbdo.ps2_data_o, kbdo.ps2_data_oe, kbdi.ps2_data_i);

end;
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14.11 Keboard scan codes

Table 86.Scan code set 2, 104-key keyboard

KEY MAKE BREAK
-
- KEY MAKE BREAK

-
- KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [ 54 FO,54

B 32 F0,32 `0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U
ARROW

E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D
ARROW

E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R ARROW E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 5 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 6 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 4 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 1 F0,01 ] 5B F0,5B

3 26 F0,26 F10 9 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 52 F0,52

5 2E F0,2E F12 7 F0,07 , 41 F0,41

6 36 F0,36 PRNT
SCRN

E0,12,
E0,7C

E0,F0,
7C,E0,
F0,12

. 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE E1,14,77,
E1,F0,14,
F0,77

-NONE-
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Table 87.Windows multimedia scan codes

KEY MAKE BREAK

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favor-
ites

E0, 18 E0, F0, 18

Table 88.ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E
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14.12 Keyboard commands

Table 89.Transmit commands:

Command Description

0xED Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an
argument byte*

0xEE Echo command - expects an echo response

0xF0 Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03
which determines the scan code set to use. 0x00 returns the current set.

0xF2 Read ID - the keyboard responds by sending a two byte device ID of 0xAB 0x83

0xF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which
determines the typematic rate.

0xF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an
acknowledgement.

0xF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-
ment.

0xF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

0xFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte

0xFF Reset - resets the keyboard

* bit 0 controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 90.Receive commands:

Command Description

0xFA Acknowledge

0xAA Power on self test passed (BAT completed)

0xEE Echo respond

0xFE Resend - upon receipt of the resend command the host should retransmit the last byte

0x00 Error or buffer overflow

0xFF Error of buffer overflow

Table 91.The typematic rate/delay argument byte

MSB LSB

0 DELAY DELAY RATE RATE RATE RATE RATE
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Table 92.Typematic repeat rates

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

00h 30 08h 15 10h 7.5 18h 3.7

01h 26.7 09h 13.3 11h 6.7 19h 3.3

02h 24 0Ah 12 12h 6 1Ah 3

03h 21.8 0Bh 10.9 13h 5.5 1Bh 2.7

04h 20.7 0Ch 10 14h 5 1Ch 2.5

05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3

06h 17.1 0Eh 8.6 16h 4.3 1Eh 2.1

07h 16 0Fh 8 17h 4 1Fh 2

Table 93.Typematic delays

Bits 5-6 Delay (seconds)

00b 0.25

01b 0.5

10b 0.75

11b 1
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15 APBUART - AMBA APB UART Serial Interface

15.1 Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-
bit clock divider. Two FIFOs are used for data transfer between the APB bus and UART, whenfifosize
VHDL generic > 1. Two holding registers are used data transfer between the APB bus and UART,
whenfifosizeVHDL generic = 1. Hardware flow-control is supported through the RTSN/CTSN hand-
shake signals, whenflow VHDL generic is set. Parity is supported, whenparity VHDL generic is set.

15.2 Operation

15.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO/holding register by writing to the data register. This FIFO is configurable
to different sizes via thefifosizeVHDL generic. When the size is 1, only a single holding register is
used but in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO/holding register to the transmitter shift register and converted to
a serial stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed
by eight data bits, an optional parity bit, and one stop bit (figure 25). The least significant bit of the
data is sent first.

Figure 24. Block diagram
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Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register. Transmission resumes and the TS is cleared when a new character is
loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the status register. If the
transmitter is disabled, it will immediately stop any active transmissions including the character cur-
rently being shifted out from the transmitter shift register. The transmitter holding register may not be
loaded when the transmitter is disabled or when the FIFO (or holding register) is full. If this is done,
data might be overwritten and one or more frames are lost.

The discussion above applies to any FIFO configurations including the special case with a holding
register (VHDL genericfifosize= 1). If FIFOs are used (VHDL genericfifosize> 1) some additional
status and control bits are available. The TF status bit (not to be confused with the TF control bit) is
set if the transmitter FIFO is currently full and the TH bit is set as long as the FIFO islessthan half-
full (less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of data
entries in the FIFO.

When flow control is enabled, the CTSN input must be low in order for the character to be transmit-
ted. If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is
connected to a receivers RTSN, overrun can effectively be prevented.

15.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO.

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set. The data frame is not stored in the FIFO if an error is
detected. Also, the new error status bits are or:ed with the old values before they are stored into the
status register. Thus, they are not cleared until written to with zeros from the AMBA APB bus. If both
the receiver FIFO and shift registers are full when a new start bit is detected, then the character held in

Figure 25. UART data frames
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Data frame with parity:
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the receiver shift register will be lost and the overrun bit will be set in the UART status register. A
break received (BR) is indicated when a BREAK has been received, which is a framing error with all
data received being zero.

If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and
the receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When the VHDL genericfifosize> 1, which means that holding registers are not considered here,
some additional status and control bits are available. The RF status bit (not to be confused with the RF
control bit) is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is
half-full (at least half of the entries in the FIFO contain data frames). The RF control bit enables
receiver FIFO interrupts when set. A RCNT field is also available showing the current number of data
frames in the FIFO.

15.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate, the number of
scaler bits can be increased with VHDL genericsbits. The scaler is clocked by the system clock and
generates a UART tick each time it underflows. It is reloaded with the value of the UART scaler
reload register after each underflow. The resulting UART tick frequency should be 8 times the desired
baud-rate. One appropriate formula to calculate the scaler value for a desired baud rate, using integer
division where the remainder is discarded, is:

scaler value = (system_clock_frequency) / (baud_rate * 8 + 7).

To calculate the exact required scaler value use:

scaler value = (system_clock_frequency) / (baud_rate * 8) - 1

If the EC bit is set, the ticks will be generated with the same frequency as the external clock input
instead of at the scaler underflow rate. In this case, the frequency of external clock must be less than
half the frequency of the system clock.

15.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

15.5 FIFO debug mode

FIFO debug mode is entered by setting the debug mode bit in the control register. In this mode it is
possible to read the transmitter FIFO and write the receiver FIFO through the FIFO debug register.
The transmitter output is held inactive when in debug mode. A write to the receiver FIFO generates an
interrupt if receiver interrupts are enabled.

15.6 Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL genericfifosize= 1) and
when FIFOs are used (VHDL genericfifosize> 1). When holding registers are used, the UART will
generate an interrupt under the following conditions: when the transmitter is enabled, the transmitter
interrupt is enabled and the transmitter holding register moves from full to empty; when the receiver is
enabled, the receiver interrupt is enabled and the receiver holding register moves from empty to full;
when the receiver is enabled, the receiver interrupt is enabled and a character with either parity, fram-
ing or overrun error is received.



AEROFLEX GAISLER 92 GRIP

For FIFOs, two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames).

To reduce interrupt occurrence a delayed receiver interrupt is available. It is enabled using the delayed
interrupt enable (DI) bit. When enabled a timer is started each time a character is received and an
interrupt is only generated if another character has not been received within 4 character + 4 bit times.
If receiver FIFO interrupts are enabled a pending character interrupt will be cleared when the FIFO
interrupt is active since the character causing the pending irq state is already in the FIFO and is
noticed by the driver through the FIFO interrupt.

There is also a separate interrupt for break characters. When enabled an interrupt will always be gen-
erated immediately when a break character is received even when delayed receiver interrupts are
enabled. When break interrupts are disabled no interrupt will be generated for break characters when
delayed interrupts are enabled.

When delayed interrupts are disabled the behavior is the same for the break interrupt bit except that an
interrupt will be generated for break characters if receiver interrupt enable is set even if break inter-
rupt is disabled.

An interrupt can also be enabled for the transmitter shift register. When enabled the core will generate
an interrupt each time the shift register goes from a non-empty to an empty state.

15.7 Registers

The core is controlled through registers mapped into APB address space.

Table 94.UART registers

APB address offset Register

0x0 UART Data register

0x4 UART Status register

0x8 UART Control register

0xC UART Scaler register

0x10 UART FIFO debug register
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15.7.1 UART Data Register

15.7.2 UART Status Register

Table 95. UART data register
31 8 7 0

RESERVED DATA

7: 0 Receiver holding register or FIFO (read access)

7: 0 Transmitter holding register or FIFO (write access)

Table 96. UART status register
31 26 25 20 19 11 10 9 8 7 6 5 4 3 2 1 0

RCNT TCNT RESERVED RF TF RH TH FE PE OV BR TE TS DR

31: 26 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO. Reset: 0

25: 20 Transmitter FIFO count (TCNT) - shows the number of data frames in the transmitter FIFO. Reset: 0

10 Receiver FIFO full (RF) - indicates that the Receiver FIFO is full. Reset: 0

9 Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full. Reset: 0

8 Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data. Reset: 0

7 Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full. Reset: 0

6 Framing error (FE) - indicates that a framing error was detected. Reset: 0

5 Parity error (PE) - indicates that a parity error was detected. Reset: 0

4 Overrun (OV) - indicates that one or more character have been lost due to overrun. Reset: 0

3 Break received (BR) - indicates that a BREAK has been received. Reset: 0

2 Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty. Reset: 1

1 Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Reset: 1

0 Data ready (DR) - indicates that new data is available in the receiver holding register. Reset: 0
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15.7.3 UART Control Register

15.7.4 UART Scaler Register

15.7.5 UART FIFO Debug Register

Table 97. UART control register
31 30 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FA RESERVED SI DI BI DB RF TF EC LB FL PE PS TI RI TE RE

31 FIFOs available (FA) - Set to 1 when receiver and transmitter FIFOs are available. When 0, only
holding register are available. Read only.

30: 15 RESERVED

14 Transmitter shift register empty interrupt enable (SI) - When set, an interrupt will be generated when
the transmitter shift register becomes empty. See section 15.6 for more details.

13 Delayed interrupt enable (DI) - When set, delayed receiver interrupts will be enabled and an inter-
rupt will only be generated for received characters after a delay of 4 character times + 4 bits if no
new character has been received during that interval. This is only applicable if receiver interrupt
enable is set. See section 15.6 for more details. Not Reset.

12 Break interrupt enable (BI) - When set, an interrupt will be generated each time a break character is
received. See section 16.6 for more details. Not Reset.

11 FIFO debug mode enable (DB) - when set, it is possible to read and write the FIFO debug register.
Not Reset.

10 Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled. Not
Reset.

9 Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
Not Reset.

8 External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK. Reset: 0

7 Loop back (LB) - if set, loop back mode will be enabled. Not Reset.

6 Flow control (FL) - if set, enables flow control using CTS/RTS (when implemented). Reset: 0

5 Parity enable (PE) - if set, enables parity generation and checking (when implemented). Not Reset.

4 Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity) (when implemented). Not
Reset.

3 Transmitter interrupt enable (TI) - if set, interrupts are generated when characters are transmitted
(see section 15.6 for details). Not Reset.

2 Receiver interrupt enable (RI) - if set, interrupts are generated when characters are received (see sec-
tion 15.6 for details). Not Reset.

1 Transmitter enable (TE) - if set, enables the transmitter. Reset: 0

0 Receiver enable (RE) - if set, enables the receiver. Reset: 0

Table 98. UART scaler reload register
31 sbits sbits-1 0

RESERVED SCALER RELOAD VALUE

sbits-1:0 Scaler reload value

Table 99. UART FIFO debug register
31 8 7 0

RESERVED DATA

7: 0 Transmitter holding register or FIFO (read access)

7: 0 Receiver holding register or FIFO (write access)
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15.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00C. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

15.9 Configuration options

Table 100 shows the configuration options of the core (VHDL generics).

15.10 Signal descriptions

Table101 shows the interface signals of the core (VHDL ports).

Table 100.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

console Prints output from the UART on console during VHDL
simulation and speeds up simulation by always returning
‘1’ for Data Ready bit of UART Status register. Does not
affect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

parity Enables parity 0 - 1 1

flow Enables flow control 0 - 1 1

fifosize Selects the size of the Receiver and Transmitter FIFOs 1, 2, 4, 8, 16, 32 1

abits Selects the number of APB address bits used to decode
the register addresses

3 - 8 8

sbits Selects the number of bits in the scaler 12-32 12

Table 101.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

UARTI RXD Input UART receiver data -

CTSN Input UART clear-to-send Low

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send Low

TXD Output UART transmit data -

SCALER Output UART scaler value -

TXEN Output Output enable for transmitter High

FLOW Output Unused -

RXEN Output Receiver enable High

* see GRLIB IP Library User’s Manual
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15.11 Library dependencies

Table 102 shows libraries that should be used when instantiating the core.

15.12 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- UART signals
    rxd : in  std_ulogic;
    txd : out std_ulogic
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- UART signals
  signal uarti : uart_in_type;
  signal uarto : uart_out_type;

begin

  -- AMBA Components are instantiated here
   ...

  -- APB UART
  uart0 : apbuart
  generic map (pindex => 1, paddr => 1,  pirq => 2,
console => 1, fifosize => 1)
  port map (rstn, clk, apbi, apbo(1), uarti, uarto);

  -- UART input data
  uarti.rxd <= rxd;

  -- APB UART inputs not used in this configuration
  uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

  -- connect APB UART output to entity output signal
  txd <= uarto.txd;

end;

Table 102.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signals, component Signal and component declaration
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16 APBVGA - VGA controller with APB interface

16.1 Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer,
and a ROM for character pixel information. The video controller is controlled through an APB inter-
face.

A block diagram for the data path is shown in figure 26.

16.2 Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by

Figure 26. APBVGA block diagram
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only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

16.3 Registers

The APB VGA is controlled through three registers mapped into APB address space.

16.3.1 VGA Data Register

[19:8]: Video memory address (write access)
[7:0]: Video memory data (write access)

16.3.2 VGA Background Color

[23:16]: Video background color red.
[15:8]: Video background color green.
[7:0]: Video background color blue.

16.3.3 VGA Foreground Color

[23:16]: Video foreground color red.
[15:8]: Video foreground color green.
[7:0]: Video foreground color blue.

16.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 103.APB VGA registers

APB address offset Register

0x0 VGA Data register (write-only, reads will return 0x00000000).

0x4 VGA Background color (write-only, reads will return 0x00000000).

0x8 VGA Foreground color (write-only, reads will return 0x00000000).

Figure 27. VGA data register
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Figure 28. VGA Background color
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Figure 29. VGA Foreground color
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16.5 Configuration options

Table 104 shows the configuration options of the core (VHDL generics).

16.6 Signal descriptions

Table105 shows the interface signals of the core (VHDL ports).

16.7 Library dependencies

Table 106 shows libraries used when instantiating the core (VHDL libraries).

16.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

Table 104.Configuration options

Generic Function Allowed range Default

memtech Technology to implement on-chip RAM 0 - NTECH 2

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 105.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

VGACLK N/A Input VGA Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

VGAO HSYNC Output Horizontal synchronization High

VSYNC Vertical synchronization High

COMP_SYNC Composite synchronization Low

BLANK Blanking Low

VIDEO_OUT_R[7:0] Video out, color red -

VIDEO_OUT_G[7:0] Video out, color green -

VIDEO_OUT_B[7:0] Video out, color blue -

BITDEPTH[1:0] Constant High -

* see GRLIB IP Library User’s Manual

Table 106.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component VGA signal and component declaration
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library gaisler;
use gaisler.misc.all;

.

.

architecture rtl of apbuart_ex is

signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
signal vgao  : apbvga_out_type;

begin
  -- AMBA Components are instantiated here
   ...

  -- APB VGA
  vga0 : apbvga
  generic map (memtech => 2, pindex => 6, paddr => 6)
  port map (rstn, clk, vgaclk, apbi, apbo(6), vgao);
end;
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17 B1553BC - AMBA plug&play interface for Actel Core1553BBC

17.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC). The interface connects to the
MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the
Actel Core1553BBC core.

The interface provides a complete, MIL-STD-1553B Bus Controller (BC). The interface reads mes-
sage descriptor blocks from the memory and generates messages that are transmitted on and transmit-
ted on the 1553B bus. Data received is written to the memory.

The interface consists of five main blocks: the 1553B encoder, the 1553B decoder, a protocol control-
ler block, a CPU interface, and a backend interface.

A single 1553B encoder takes each word to be transmitted and serializes it using Manchester encod-
ing. The encoder includes independent logic to prevent the BC from transmitting for greater than the
allowed period and to provide loopback fail logic. The loopback logic monitors the received data and
verifies that the interface has correctly received every word that is transmitted. The encoder output is
gated with the bus enable signals to select which buses the encoder should be transmitting. Since the
BC knows which bus is in use at any time, only a single decoder is required.

The decoder takes the serial Manchester received data from the bus and extracts the received data
words The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to
sample the incoming serial data. The data is then deserialized and the 16-bit word decoded. The
decoder detects whether a command, status or data word has been received and checks that no
Manchester encoding or parity errors occurred in the word.

The protocol controller block handles all the message sequencing and error recovery. This is a com-
plex state machine that reads the 1553B message frames from memory and transmits them on the
1553B bus. The AMBA interface allows a system processor to access the control registers. It also
allows the processor to directly access the memory connected to the backend interface, this simplifies
the system design.

The B1553BC core provides an AMBA interface with GRLIB plug&play for the Actel Core1553BBC
core (MIL-STD-1553B Bus Controller). B1553BC implements two AMBA interfaces: one AHB
master interface for the memory interface, and one APB slave interface for the CPU interface and
control registers.

The Actel Core1553BBC core, entity named BC1553B, is configured to use the shared memory inter-
face, and only internal register access is allowed through the APB slave interface. Data is read and
stored via DMA using the AHB master interface.

Figure 30. Block diagram
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17.2 AHB interface

The Core1553BBC operates on a 65536 x 16 bit memory buffer, and therefore a 128 kilobyte aligned
memory area should be allocated. The memory is accessed via the AMBA AHB bus. The
Core1553BBC uses only 16 address bits, and the top 15 address bits of the 32-bit AHB address can be
programmed in the AHB page address register. The 16-bit address provided by the Core1553BBC is
left-shifted one bit, and forms the AHB address together with the AHB page address register. Note
that all pointers given to the Core1553BBC core need to be right-shifted one bit because of this. All
AHB accesses are done as half word single transfers.

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven with
‘0’.

17.3 Operation

To transmit data on the 1553 bus, an instruction list and 1553 messages should be set up in the mem-
ory by the processor. After the bus interface has been activated, it will start to process the instruction
list and read/write data words from/to the specified memory locations. Interrupts are generated when
interrupt instructions are executed, on errors or when the interface has completed the list.

17.4 Synthesis

The B1553BC core is a wrapper providing GRLIB compatible signals and plug&play information
around the GR1553B core, which in turn provides an AMBA interface around the Microsemi/Actel
Core1553BBC core.

17.5 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Core1553BBC are mapped on the eight lowest APB addresses. These addresses are 32-bit word
aligned although only the lowest 16 bits are used. Refer to theActel Core1553BBC MIL-STD-1553B
Bus Controllerdata sheet for detailed information.

Table 107.B1553BC registers

APB address offset Register

0x00 Control/Status

0x04 Setup

0x08 List pointer

0x0C Message pointer

0x10 Clock value

0x14 Asynchronous list pointer

0x18 Stack pointer

0x1C Interrupt register

0x20 GR1553 status/control

0x24 AHB page address register

Table 108. GR1553 status register (read)
31 3 2 1 0

RESERVED extflag memfail busy
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17.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x070. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

17.7 Configuration options

Table 111 shows the configuration options of the core (VHDL generics).

17.8 Configuration options for underlying GR1553BC core

Table 111 shows the configuration options of the core (VHDL generics).

31: 3 RESERVED

2 External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.

1 Memory failure. Shows the value of the memfail output from Core1553BBC.

0 Busy. Shows the value of the busy output from Core1553BBC.

Table 109. GR1553 status register (write)
31 1 0

RESERVED extflag

31: 2 RESERVED

0 External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.

Table 110. GR1553 status register (write)
31 17 16 0

ahbaddr RESERVED

31: 17 Holds the 15 top most bits of the AHB address of the allocated memory area

16: 0 RESERVED

Table 111.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt number 0 - NAHBIRQ -1 0

Table 112.Configuration options

Generic Function Allowed range Default

endian Data endianness of the AHB bus (Big = 0, Little = 1) 0 - 1 0

Table 108. GR1553 status register (read)
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17.9 Signal descriptions

Table113 shows the interface signals of the core (VHDL ports).

Table 113.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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17.10 Signal descriptions for underlying GR1553BC core

Table113 shows the interface signals of the core (VHDL ports).

Table 114.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High

BUSAINN Input Negative data input from the A receiver Low

BUSBINP N/A Input Positive data to the B receiver High

BUSBINN Input Negative data to the B receiver Low

1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High

BUSAOUTIN Output Inhibit for the A transmitter High

BUSAOUTP N/A Output Positive data to the A transmitter High

BUSAOUTN Output Negative data to the A transmitter Low

BUSBINEN N/A Output Enable for the B receiver High

BUSBOUTIN Output Inhibit for the B transmitter High

BUSBOUTP N/A Output Positive output to the B transmitter High

BUSBOUTN Output Negative output to the B transmitter Low

Interrupt

INTOUT N/A Output Interrupt High

AHB signals

HGRANT N/A Input Bus grant High

HREADY N/A Input Transfer done High

HRESP N/A Input Response type -

HRDATA N/A Input Read data bus -

HBUSREQ N/A Output Bus request High

HLOCK N/A Output Lock request High

HTRANS N/A Output Transfer type -

HADDR N/A Output Address bus (byte addresses) -

HWRITE N/A Output Write High

HSIZE N/A Output Transfer size -

HBURST N/A Output Burst type -

HPROT N/A Output Protection control -

HWDATA N/A Output Write data bus -

APB signals

PSEL N/A Input Slave select High

PENABLE N/A Input Strobe High

PADDR N/A Input Address bus (byte addresses) -

PWRITE N/A Input Write High

PWDATA N/A Input Write data bus -

PRDATA N/A Output Read data bus -
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17.11 Library dependencies

Table 115 shows libraries used when instantiating the core (VHDL libraries).

The B1553BC depends on GRLIB, GAISLER, GR1553 and Core1553BBC.

17.12 Library dependencies for underlying GR1553BC core

Table 115 shows libraries used when instantiating the core (VHDL libraries).

The GR1553BC depends on GR1553 and Core1553BBC.

17.13 Component declaration

The core has the following component declaration.

component b1553bc is
    generic (
      hindex  : integer := 0;
      pindex  : integer := 0;
      paddr   : integer := 0;
      pmask   : integer := 16#fff#;
      pirq    : integer := 0
      );
    port (
      rstn    : in  std_ulogic;
      clk     : in  std_ulogic;
      b1553i  : in  b1553_in_type;
      b1553o  : out b1553_out_type;
      apbi    : in  apb_slv_in_type;
      apbo    : out apb_slv_out_type;
      ahbi    : in  ahb_mst_in_type;
      ahbo    : out ahb_mst_out_type
      );
  end component;

17.14 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;
...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
...
bc1553_0 : b1553bc
    generic map (hindex => 2, pindex => 12, paddr => 12, pirq => 2)
    port map (rstn, clkm, bin, bout, apbi, apbo(12), ahbmi, ahbmo(2));

Table 115.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration

Table 116.Library dependencies

Library Package Imported unit(s) Description

IEEE Std_Logic_1164 All Type declarations
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18 B1553BRM - AMBA plug&play interface for Actel Core1553BRM

18.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC), Remote Terminal (RT) or
Monitor Terminal (MT). The interface connects to the MIL-STD-1553B bus through external trans-
ceivers and transformers. The interface is based on the Actel Core1553BRM core.

The interface consists of six main blocks: 1553 encoder, 1553B decoders, a protocol controller block,
AMBA bus interface, command word legality interface, and a backend interface.

The interface can be configured to provide all three functions BC, RT and MT or any combination of
the three. All variations use all six blocks except for the command legalization interface, which is only
required on RT functions that implement RT legalization function externally.

A single 1553 encoder takes each word to be transmitted and serializes it using Manchester encoding.
The encoder also includes independent logic to prevent the interface from transmitting for greater
than the allowed period as well as loopback fail logic. The loopback logic monitors the received data
and verifies that the interface has correctly received every word that it transmits. The output of the
encoder is gated with the bus enable signals to select which buses the interface should be transmitting
on. Two decoders take the serial Manchester received data from each bus and extract the received data
words.

The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to sample
the incoming serial data. The data is then de-serialized and the 16-bit word decoded. The decoder
detects whether a command, status, or data word has been received, and checks that no Manchester
encoding or parity errors occurred in the word.

The protocol controller block handles all the message sequencing and error recovery for all three
operating modes, Bus Controller, Remote Terminal, and Bus Monitor. This is complex state machine
that processes messages based on the message tables setup in memory, or reacts to incoming com-
mand words. The protocol controller implementation varies depending on which functions are imple-
mented. The AMBA interface allows a system processor to access the control registers. It also allows
the processor to directly access the memory connected to the backend interface, this simplifies the
system design.

The interface comprises 33 16-bit registers. Of the 33 registers, 17 are used for control function and
16 for RT command legalization.

The B1553BRM core provides an AMBA interface for the Actel Core1553BRM core (MIL-STD-
1553B Bus Controller/Remote Terminal/Bus Monitor). The B1553BRM core implements two AMBA
interfaces: one AHB master interface for the memory interface, and one APB slave interface for the
CPU interface and control registers.

The Actel Core1553BRM core, entity named BRM, is configured to use the shared memory interface,
and only internal register access is allowed through the APB slave interface. Data is read and stored
via DMA using the AHB master interface.
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18.2 AHB interface

The amount of memory that the Mil-Std-1553B interface can address is 128 (2**abit VHDL generic,
i.e. abit => 128) kbytes. The base address of this memory area must be aligned to a boundary of its
own size and written into the AHB page address register.

The 16 bit address provided by the Core1553BRM core is shifted left one bit, and forms the AHB
address together with the AHB page address register. Note that all pointers given to the
Core1553BRM core needs to be right shifted one bit because of this.

The amount of memory needed for the Core1553BRM core is operation and implementation specific.
Any configuration between 1 to 128 kilobytes is possible although a typical system needs at least 4
kbyte of memory. The allocated memory area needs to be aligned to a boundary of its own size and
the number of bits needed to address this area must be specificed with theabits VHDL generic.

The address bus of the Core1553BRM is 16 bits wide but the amount of bits actually used depends on
the setup of the data structures. The AHB page address register should be programmed with the 32-
abits top bits of the 32-bit AHB address,abit being a VHDL generic. The address provided by the
Core1553BRM core is shifted left one bit, and forms the AHB address together with the AHB page
address register. Note that all pointers given to the Core1553BRM core needs to be right shifted one
bit because of this.

When the Core1553BRM core has been granted access to the bus it expects to be able to do a series of
uninterrupted accesses. To handle this requirement the AHB master locks the bus during these trans-
fers. In the worst case, the Core1553BRM can do up to 7 writes in one such access and each write
takes 2 plus the number of waitstate cycles with 4 idle cycles between each write strobe. This means
care has to be taken if using two simultaneous active Core1553BRM cores on the same AHB bus.All
AHB accesses are done as half word single transfers.

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with "0011" i.e a not cache-
able, not bufferable, privileged data access. During all AHB accesses the AMBA AHB lock signal
HLOCK is driven with `1' and `0' otherwise.

18.3 Operation

The mode of operation can be selected with the mselin VHDL generic or later changed by writing to
the “operation and status” register of the Core1553BRM core. For information about how the core
functions during the different modes of operation see theActel Core1553BRM MIL-STD-1553 BC,
RT, and MT data sheet.

Figure 31. Block diagram
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18.4 Synthesis

The B1553BRM core is a wrapper providing GRLIB compatible signals and plug&play information
around the GR1553BRM core, which in turn provides an AMBA interface around the Microsemi/
Actel Core1553BRM core.

18.5 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Core1553BRM are mapped on the 33 lowest APB addresses. These addresses are 32-bit word aligned
although only the lowest 16 bits are used. Refer to theActel Core1553BRM MIL-STD-1553 BC, RT,
and MT data sheet for detailed information.

B1553BRM status/control register

13 Bus reset. If set a bus reset mode code has been received. Generates an irq when set.
12:5 Reserved
4: Address error. Shows the value of the rtaderr output from Core1553BRM.
3: Memory failure. Shows the value of the memfail output from Core1553BRM.
2: Busy. Shows the value of the busy output from Core1553BRM.
1: Active. Show the value of the active output from Core1553BRM.
0: Ssyfn. Connects directly to the ssyfn input of the Core1553BRM core. Resets to 1.

B1553BRM interrupt register

2: Message interrupt acknowledge. Controls the intackm input signal of the Core1553BRM core.
1: Hardware interrupt acknowledge. Controls the intackh input signal of the Core1553BRM core.
0: Interrupt level. Controls the intlevel input signal of the Core1553BRM core.

AHB page address register

[31:17]: Holds the top most bits of the AHB address of the allocated memory area.

Table 117.B1553BRM registers

APB address offset Register

0x00 - 0x84 Core1553BRM registers

0x100 B1553BRM status/control

0x104 B1553BRM interrupt settings

0x108 AHB page address register

Figure 32. B1553BRM status/control register

01331

RESERVED ssysfnactivebusymemfailrtaderr

24

reserved

5121312

busrst

Figure 33. B1553RM interrupt register

0131

RESERVED intlevelintackhintackm

2

Figure 34. AHB page address register

031

RESERVEDahbaddr

abits
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18.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x072. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

18.7 Configuration options

Table 118 shows the configuration options of the core (VHDL generics).

The VHDL generics hindex, pindex, paddr, pmask and pirq belong to the B1553BRM entity.

The VHDL generics endian, ahbaddr and abits belong to the GR1553BRM entity.

The VHDL generics rtaddr, rtaddrp, lockn, mselin and abstdin belong to the Core1553BRM core, and
drive the corresponding signal or generic.

The VHDL generics bcenable, rtenable, mtenable, legregs, enhanced, initfreq and betiming belong to
the RTL version of the Core1553BRM core, and are otherwise ignored.

Table 118.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0-NAHBMST-1 0

pindex APB slave index 0-NAPBSLV-1 0

paddr ADDR field of the APB BAR 0-16#FFF# 0

pmask MASK field of the APB BAR 0-16#FF0# 16#FF0#

pirq Index of the interrupt line 0-NAHBIRQ-1 0

endian Data endianness of the AHB bus (Big = 0, Little = 1) 0 -1 0

ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#

abits Number of bits needed to address the memory area 12-17 17

rtaddr RT address 0 - 31 0

rtaddrp RT address parity bit. Set to achieve odd parity. 0 - 1 1

lockn Lock rtaddrin, rtaddrp, mselin and abstdin 0-1 0

mselin Mode select 0-3 0

abstdin Bus standard A/B 0-1 0

bcenable Enable bus controller 0-1 1

rtenable Enable remote terminal 0-1 1

mtenable Enable bus monitor 0-1 1

legregs Enable legalization registers 0-1 1

enhanced Enable enhanced register 0-1 1

initfreq Initial operation frequency 12,16,20,24 20

betiming Backend timing 0-1 1
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18.8 Signal descriptions

Table119 shows the interface signals of the core (VHDL ports).

Table 119.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

RSTOUTN N/A Output Reset from BRM core Low

CLK N/A Input System clock (AHB) -

TCLK N/A Input External time base -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

BRMI - Input BRM input signals -

cmdok Command word validation alright High

BRMO - Output BRM output signals -

msgstart Message process started High

cmdsync Start of command word on bus High

syncnow Synchronize received High

busreset Reset command received High

opmode Operating mode -

cmdval Active command -

cmdokout Command word validated High

cmdstb Active command value changed High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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18.9 Signal descriptions of the underlying GR1553BRM core

Table119 shows the interface signals of the core (VHDL ports).

Table 120.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

RSTOUTN N/A Output Reset Low

CLK N/A Input Clock -

TCLK N/A Input Transmit clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High

BUSAINN N/A Input Negative data input from the A receiver Low

BUSBINP N/A Input Positive data to the B receiver High

BUSBINN N/A Input Negative data to the B receiver Low

1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High

BUSAOUTIN N/A Output Inhibit for the A transmitter High

BUSAOUTP N/A Output Positive data to the A transmitter High

BUSAOUTN N/A Output Negative data to the A transmitter Low

BUSBINEN N/A Output Enable for the B receiver High

BUSBOUTIN N/A Output Inhibit for the B transmitter High

BUSBOUTP N/A Output Positive output to the B transmitter High

BUSBOUTN N/A Output Negative output to the B transmitter Low

BRM input signals

CMDOK N/A Input Command word validation alright High

BRM output signals

MSGSTART N/A Output Message process started High

CMDSYNC N/A Output Start of command word on bus High

SYNCNOW N/A Output Synchronize received High

BUSRESET N/A Output Reset command received High

OPMODE N/A Output Operating mode -

CMDVAL N/A Output Active command -

CMDOKOUT N/A Output Command word validated High

CMDSTB N/A Output Active command value changed High

Interrupts

INTOUTH N/A Output Hardware interrupt request High

INTOUTM N/A Output Message interrupt request High

AHB signals

HGRANT N/A Input Bus grant High

HREADY N/A Input Transfer done High

HRESP N/A Input Response type -

HRDATA N/A Input Read data bus -

HBUSREQ N/A Output Bus request High

HLOCK N/A Output Lock request High

HTRANS N/A Output Transfer type -

HADDR N/A Output Address bus (byte addresses) -
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18.10 Library dependencies

Table 121 shows libraries used when instantiating the core (VHDL libraries).

The B1553BRM depends on VHDL libraries GRLIB, GAISLER, GR1553 and Core1553BRM.

18.11 Library dependencies of the underlying GR1553BRM core

Table 121 shows libraries used when instantiating the core (VHDL libraries).

The GR1553BRM depends on VHDL libraries GR1553 and Core1553BRM.

18.12 Component declaration

The core has the following component declaration.

component b1553brm is
     generic (
       hindex       : integer := 0;
       pindex       : integer := 0;
       paddr        : integer := 0;
       pmask        : integer := 16#ff0#;
       pirq         : integer := 0;
       ahbaddr      : integer range 0 to 16#FFFFF# := 0;
       abits : integer range 12 to 17 := 16;
       rtaddr       : integer range 0 to 31 := 0;
       rtaddrp      : integer range 0 to 1  := 1;
       lockn        : integer range 0 to 1  := 1;
       mselin       : integer range 0 to 3  := 1;
       abstdin      : integer range 0 to 1  := 0;

       bcenable     : integer range 0 to 1  := 1;

HWRITE N/A Output Write High

HSIZE N/A Output Transfer size -

HBURST N/A Output Burst type -

HPROT N/A Output Protection control -

HWDATA N/A Output Write data bus -

APB signals

PSEL N/A Input Slave select High

PENABLE N/A Input Strobe High

PADDR N/A Input Address bus (byte addresses) -

PWRITE N/A Input Write High

PWDATA N/A Input Write data bus -

PRDATA N/A Output Read data bus -

Table 121.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration

Table 122.Library dependencies

Library Package Imported unit(s) Description

IEEE Std_Logic_1164 All Type declarations

Table 120.Signal descriptions

Signal name Field Type Function Active
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       rtenable     : integer range 0 to 1  := 1;
       mtenable     : integer range 0 to 1  := 1;
       legregs      : integer range 0 to 4  := 1;
       enhanced     : integer range 0 to 1  := 1;
       initfreq     : integer range 12 to 24:= 20;
       betiming     : integer range 0 to 1  := 1
       );
     port (
       rstn      : in    std_ulogic;
       rstoutn   : out   std_ulogic;
       clk       : in    std_ulogic;
       tclk      : in    std_ulogic;
       brmi      : in    brm1553_in_type;
       brmo      : out   brm1553_out_type;
       b1553i    : in    b1553_in_type;
       b1553o    : out   b1553_out_type;
       apbi      : in    apb_slv_in_type;
       apbo      : out   apb_slv_out_type;
       ahbi      : in    ahb_mst_in_type;
       ahbo      : out   ahb_mst_out_type
       );
  end component;

18.13 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;

...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
signal brmi : brm1553_in_type;
signal brmo : brm1553_out_type;
...

bc1553_0 : b1553brm
    generic map (hindex => 2, pindex => 12, paddr => 16#10#, pirq => 2,
abits => 17, mselin => 0)
    port map (rstn, open, clkm, gnd(0), brmi, brmo, bin, bout, apbi, apbo(12), ahbmi,
ahbmo(2));
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19 B1553RT - AMBA plug&play interface for Actel Core1553BRT

19.1 Overview

The interface provides a complete Mil-Std-1553B Remote Terminal (RT). The interface connects to
the MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the
Actel Core1553BRT core.

The interface provides a complete, dual-redundant MIL-STD-1553B remote terminal (RT) apart from
the transceivers required to interface to the bus. At a high level, the interface simply provides a set of
memory mapped sub-addresses that ‘receive data written to’ or ‘transmit data read from.’ The inter-
face requires 2,048 words of memory, which can be shared with a local processor. The interface sup-
ports all 1553B mode codes and allows the user to designate as illegal any mode code or any
particular sub-address for both transmit and receive operations. The command legalization can be
done internally or via an external command legalization interface.

The interface consists of six main blocks: 1553B encoders, 1553B decoders, backend interface, com-
mand decoder, RT controller blocks and a command legalization block.

A single 1553B encoder is used for the interface. This takes each word to be transmitted and serializes
it, after which the signal is Manchester encoded. The encoder also includes both logic to prevent the
RT from transmitting for greater than the allowed period and loopback fail logic. The loopback logic
monitors the received data and verifies that the interface has correctly received every word that it
transmits. The output of the encoder is gated with the bus enable signals to select which buses the RT
should use to transmit.

The interface includes two 1553B decoders. The decoder takes the serial Manchester data received
from the bus and extracts the received data words. The decoder contains a digital phased lock loop
(PLL) that generates a recovery clock used to sample the incoming serial data. The data is then dese-
rialized and the 16-bit word decoded. The decoder detects whether a command or data word is
received, and also performs Manchester encoding and parity error checking.

The command decoder and RT controller blocks decode the incoming command words, verifying the
legality. Then the protocol state machine responds to the command, transmitting or receiving data or
processing a mode code.

The B1553RT core provides an AMBA interface with GRLIB plug&play for the Actel Core1553BRT
(MIL-STD-1553B Remote Terminal). B1553RT implements two AMBA interfaces: one AHB master
interface for the memory interface, and one APB slave interface for the control registers.

The Actel Core1553BRT core, entity named RT1553B, is configured to use the shared memory inter-
face. Data is read and stored via DMA using the AHB master interface.

Figure 35. B1553RT block diagram
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19.2 Synthesis

The B1553RT core is a wrapper providing GRLIB compatible signals and plug&play information
around the GR1553B core, which in turn provides an AMBA interface around the Microsemi/Actel
Core1553BRT core.

19.3 Operation

19.3.1 Memory map

The Core1553BRT core operates on a 2048*16 bit memory buffer, and therefore a 4 kilobyte memory
area should be allocated. The memory is accessed via the AMBA AHB bus. The Core1553BRT uses
only 11 address bits, and the top 20 address bits of the 32-bit AHB address can be programmed in the
AHB page address register. The 11-bit address provided by the Core1553BRT core is left-shifted one
bit, and forms the AHB address together with the AHB page address register. All AHB accesses are
done as half word single transfers.

The used memory area has the following address map. Note that all 1553 data is 16 bit wide and will
occupy two bytes. Every sub-address needs memory to hold up to 32 16 bit words.

19.3.2 Data transfers

At the start of a bus transfer the core writes the 1553B command word (if the wrtcmd bit is set in the
control register) to the address subaddress*2 for receive commands and 0x7C0 + subaddress*2 for
transmit commands. After a bus transfer has completed a transfer status word is written to the same
location as the command word (if wrttsw bit is set in the control register). The command word of the
last transfer can always be read out through the interrupt vector and command value register.

Table 123.Memory map for 1553 data

Address Content

0x000-0x03F RX transfer status/command words

0x040-0x07F Receive sub-address 1 ...

0x780-0x7BF Receive sub-address 30

0x7C0-0x7FF TX transfer status/command words

0x800-0x83F Not used, except 0x800-0x801 for vector word if extmdata=1

0x840-0x87F Transfer sub-address 1 ...

0xF80-0xFBF Transfer sub-address 30

0xFC0-0xFFF Not used, except 0xFC0-0xFC1 for vector word if extmdata=1
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The transfer status word written to memory has the following layout:

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven with
‘0’.

19.3.3 Mode commands

All mode codes defined by 1553B are legal except dynamic bus control (0), selected transmitter shut-
down (20) and override selected transmitter shutdown (21).

Like data transfers, mode commands will write a command word before the transfer if the wrtcmd bit
is set and a transmit status word after if the wrttsw bit is set. The transmit vector word and sync with
data word will also store/fetch the data word from memory if the extmdata control bit is set. The loca-
tions are tabulated below. The default mapping for sync with data word with subaddress 0 places the
data word and TSW at the same address 0, therefore a re-mapping has been implemented if wrttsw is
set.

Table 124.Transfer Status Word layout

Bit Name Description

15 USED Always set to 1 at the end of bus transfer

14 OKAY Set to 1 if no errors were detected

13 BUSN Set to 0 if transfer was on bus A, to 1 if bus B

12 BROADCAST Transfer was a broadcast command

11 LPBKERRB The loopback logic detected error on bus B

10 LPBKERRA The loopback logic detected error on bus A

9 ILLCMD Illegal command

8 MEMIFERR DMA access error did not omplete in time

7 MANERR Manchester coding error detected

6 PARERR Parity error detected

5 WCNTERR Wrong number of words was received

4:0 COUNT For sub address 1-30: number of words received/transmitted, 0 means 32

For sub address 0 and 31: received/transmitted mode code
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The transfer BIT word mode code transfers a word as specified in the table below:

19.4 Registers

The core is programmed through registers mapped into APB address space.

Table 125.Mode command memory map

Mode codes Subaddress CMD / TSW Location
Data word location
(if extmdata=1)

1 synchronize
2 transmit status
3 initiate self-test
4 transmitter shutdown
5 override tx shutdown
6 inhibit TF
7 override inhibit TF
8 reset

0 0x7C0 (no data)

31 0x7FE (no data)

16 tx vector word 0 0x7C0 0x800

31 0x7FE 0xFC0

17 synchronize with data 0 0x000 0x000 if wrttsw=0
0x7C0 if wrttsw=1

31 0x03E 0x7C0

18 tx last command
19 tx BIT word

0 0x7C0 (internal)

31 0x7FE (internal)

Table 126.Built In Test word

Bit Name Description

15 BUSINUSE Set to 0 if transfer was on bus A, to 1 if bus B

14 LPBKERRB The loopback logic detected error on bus B. Cleared by CLRERR.

13 LPBKERRA The loopback logic detected error on bus A. Cleared by CLRERR.

12 SHUTDOWNB Indicates that bus B has been shutdown

11 SHUTDOWNA Indicates that bus A has been shutdown

10 TFLAGINH Terminal flag inhibit setting

9 WCNTERR Word count error has occured. Cleared by CLRERR.

8 MANERR Manchester coding error detected. Cleared by CLRERR.

7 PARERR Parity error detected. Cleared by CLRERR.

6 RTRTTO RT to RT transfer timeout. Cleared by CLRERR.

5 MEMFAIL DMA transfer not completed in time. Cleared by CLRERR.

4:0 VERSION Core1553RT version

Table 127.B1553RT registers

APB Address offset Register

0x00 Status

0x04 Control

0x08 Vector word

0x0C Interrupt vector and command value

0x10 AHB page address register

0x14 Interrupt pending/mask register
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Status register (read only)

31:28 Core revision, read-only field.
0001: Added brdis,disabl,extleg fields. Remapped sync data word if extmdata and wrttsw are set.
0000: First revision. Reset mode command resets all control registers.

27:4 Reserved
3: Reads ‘1’ if configured with external legalization interface, ‘0’ if all supported accesses are legal
2: RT address error. Incorrect RT address parity bit.
1: Memory failure. DMA transfer did not complete in time. Cleared using CLRERR bit in control register.
0: Busy. Indicates that the RT is busy with a transfer.

Control register

31:23 Reserved
22: If ‘1’ the disable bit (bit 21) will be set to ‘1’ automatically when a reset mode command is recieved.
21: Set to ‘1’ to disable 1553 transceiver (both receiver and transmitter). Reset to ‘1’.
20: Writing ‘1’ will reset the Core1553RT and forces the B1553RT DMA to idle state. Self clearing.
19: Set to ‘1’ to enable internal loopback of subaddress 30. Transmits from sa 30 reads from the receive buffer for sa 30.
18: Set to ‘1’ to enable broadcasts messages. If ‘0’ address 31 is treated as normal RT address.
17: ‘1’ enables interrupts for bad messages. If ‘0’ only good messages generates interrupts.
16: If ‘1’ mode code data is written to / read from memory. If ‘0’ the vword register is used for transmit vector word

mode code and the data for synchronize with data is discarded.
15: If ‘1’ the command word is written to memory at the start of a bus transfer.
14: If ‘1’ the transfer status word is written to memory at the end of a bus transfer.
13: RT address parity bit. Odd parity over rtaddr and rtaddrp must be achieved.
12:8 RT address.
7:6 Clock speed. Should be set to indicate the clock frequency of the core. 0 - 12, 1 - 16, 2 - 20, 3 - 24 MHz
5: Set to ‘1’ and then to ‘0’ to clear internal errors.
4: Clear the interrupt. Should be set to ‘1’ to give a interrupt pulse on each message.
3: Controls the terminal flag bit in the 1553B status word. This can be masked by the "inhibit

terminal flag bit" mode code.
2: Controls the subsystem flag bit in the 1553B status word.
1: Controls the busy bit in the 1553B status word.
0: Controls the service request bit in the 1553B status word.

Vector word register

[15:0] Used for transmit vector word mode code if extmdata bit is ‘0’ in control register.

Figure 36. Status register
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Interrupt vector and command value register

[18:7] For each message the CMDVAL output of Core1553BRT is latched into this register.
18 - broadcast
17 - 1 for transmit, 0 for receive
16:12 - subaddress
11:7 - word count / mode code

[6:0] Shows the value of the interrupt vector output of the Core1553BRT.

AHB page address register

[31:12]: Holds the 20 top most bits of the AHB address of the allocated memory area. Resets to the value specified with the
ahbaddr VHDL generic.

Interrupt pending/mask register

[31:19]: Reserved.
18: MASK2 - Interrupt mask for AHBERR interrupt. Interrupt enabled if 1.
17: MASK1 - Interrupt mask for MEMFAIL interrupt. Interrupt enabled if 1.
18: MASK0 - Interrupt mask for RT interrupt. Interrupt enabled if 1.
[15:3]: Reserved.
2 : AHBERR - 1 if an AHB error has occured
1: MEMFAIL - 1 if an Core1553RT DMA has not occured in time.
0: RT - 1 if the Core1553RT has received/transmitted a message.

19.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x071. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 39. Interrupt vector register

031

RESERVED intvect

7 618

cmdval

Figure 40. Address register

031

RESERVEDahbaddr

12

Figure 41. Address register

031

RESERVED RT

1

MEMFAILAHBERR

216

MASK0

17

MASK1MASK2

18

RESERVED



AEROFLEX GAISLER 121 GRIP

19.6 Configuration options

Table 128 shows the configuration options of the core (VHDL generics).

All VHDL generics except endian are reset values for the corresponding bits in the wrapper control
register.

Table 128.Configuration options

Generic Function Allowed range Default

endian Endianness of the AHB bus (Big = 0) 0 - 1 0

ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#

clkspd Clock speed 0 - 3 1

rtaddr RT address 0 - 31 0

rtaddrp RT address parity bit. Set to achieve odd parity. 0 - 1 1

wrtcmd Write command word to memory 0 - 1 1

wrttsw Write status word to memory 0 - 1 1

extmdata Read/write mode code data from/to memory 0 - 1 0

intenbbr Generate interrupts for bad messages 0 - 1 0

bcasten Broadcast enable 0 - 1 1

sa30loop Use sub-address 30 as loopback 0 - 1 0
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19.7 Signal descriptions

Table129 shows the interface signals of the core (VHDL ports).

Table 129.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

RTI - Input RT input signals -

cmdok Command word validation alright High

useextok Enable external command word validation High

RTO - Output RT output signals -

msgstart Message process started High

cmdsync Start of command word on bus High

syncnow Synchronize received High

busreset Reset command received High

cmdval Active command -

cmdokout Command word validated High

cmdstb Active command value changed High

addrlat Address latch enable High

intlat Interrupt latch enable High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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19.8 Signal descriptions for underlying GR1553RT core

Table129 shows the interface signals of the core (VHDL ports).

Table 130.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High

BUSAINN N/A Input Negative data input from the A receiver Low

BUSBINP N/A Input Positive data to the B receiver High

BUSBINN N/A Input Negative data to the B receiver Low

1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High

BUSAOUTIN N/A Output Inhibit for the A transmitter High

BUSAOUTP N/A Output Positive data to the A transmitter High

BUSAOUTN N/A Output Negative data to the A transmitter Low

BUSBINEN N/A Output Enable for the B receiver High

BUSBOUTIN N/A Output Inhibit for the B transmitter High

BUSBOUTP N/A Output Positive output to the B transmitter High

BUSBOUTN N/A Output Negative output to the B transmitter Low

RT input signals

CMDOK N/A Input Command word validation alright High

USEEXTOK N/A Input Enable external command word validation High

RT output signals

MSGSTART N/A Output Message process started High

CMDSYNC N/A Output Start of command word on bus High
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19.9 Library dependencies

Table 131 shows libraries that should be used when instantiating the core (VHDL libraries).

The B1553RT depends on GRLIB, GAISLER, GR1553 and Core1553BRT.

SYNCNOW N/A Output Synchronize received High

BUSRESET N/A Output Reset command received High

CMDVAL N/A Output Active command -

CMDOKOUT N/A Output Command word validated High

CMDSTB N/A Output Active command value changed High

ADDRLAT N/A Output Address latch enable High

INTLAT N/A Output Interrupt latch enable High

Interrupt

INTOUT N/A Output Interrupt High

AHB signals

HGRANT N/A Input Bus grant High

HREADY N/A Input Transfer done High

HRESP N/A Input Response type -

HRDATA N/A Input Read data bus -

HBUSREQ N/A Output Bus request High

HLOCK N/A Output Lock request High

HTRANS N/A Output Transfer type -

HADDR N/A Output Address bus (byte addresses) -

HWRITE N/A Output Write High

HSIZE N/A Output Transfer size -

HBURST N/A Output Burst type -

HPROT N/A Output Protection control -

HWDATA N/A Output Write data bus -

APB signals

PSEL N/A Input Slave select High

PENABLE N/A Input Strobe High

PADDR N/A Input Address bus (byte addresses) -

PWRITE N/A Input Write High

PWDATA N/A Input Write data bus -

PRDATA N/A Output Read data bus -

Table 131.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration

Table 130.Signal descriptions

Signal name Field Type Function Active
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19.10 Library dependencies for underlying GR1553RT core

Table 131 shows libraries that should be used when instantiating the core (VHDL libraries).

The GR1553RT depends on GR1553 and Core1553BRT.

19.11 Component declaration

The core has the following component declaration.

component b1553rt is
    generic (
        hindex    : integer := 0;
        pindex    : integer := 0;
        paddr     : integer := 0;
        pmask     : integer := 16#fff#;
        pirq      : integer := 0;
        ahbaddr   : integer range 0 to 16#FFFFF# := 0;
        clkspd    : integer range 0 to 3 := 1;
        rtaddr    : integer range 0 to 31 := 0;
        rtaddrp   : integer range 0 to 1 := 1;
        wrtcmd    : integer range 0 to 1 := 1;
        wrttsw    : integer range 0 to 1 := 1;
        extmdata  : integer range 0 to 1 := 0;
        intenbbr  : integer range 0 to 1 := 0;
        bcasten   : integer range 0 to 1 := 1;
        sa30loop  : integer range 0 to 1 := 0);
    port (
      rstn      : in    std_ulogic;
      clk       : in    std_ulogic;
      b1553i    : in    b1553_in_type;
      b1553o    : out   b1553_out_type;
      rti       : in    rt1553_in_type;
      rto       : out   rt1553_out_type;
      apbi      : in    apb_slv_in_type;
      apbo      : out   apb_slv_out_type;
      ahbi      : in    ahb_mst_in_type;
      ahbo      : out   ahb_mst_out_type);
  end component;

19.12 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;
...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
signal rti : rt1553_in_type;
signal rto : rt1553_out_type;
...
rt : b1553rt
    generic map (hindex => 3, pindex => 13, paddr => 13, pmask => 16#fff#,
pirq => 3, rtaddr => 1, rtaddrp => 0, sa30loop => 1)
    port map (rstn, clkm, bin, bout, rti, rto, apbi, apbo(13), ahbmi, ahbmo(3));

  rti.useextok <= ’0’;

Table 132.Library dependencies

Library Package Imported unit(s) Description

IEEE Std_Logic_1164 All Type declarations
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20 CAN_OC - GRLIB wrapper for OpenCores CAN Interface core

20.1 Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB I/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through theirq generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies.

This CAN interface implements the CAN 20.A and 2.0B protocols. It is based on the Philips SJA1000
and has a compatible register map with a few exceptions.

20.2 Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

20.3 AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.

Figure 42. Block diagram
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20.4 BasicCAN mode

20.4.1 BasicCAN register map

Table 133.BasicCAN address allocation

Address Operating mode Reset mode

Read Write Read Write

0 Control Control Control Control

1 (0xFF) Command (0xFF) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 (0xFF) - Acceptance code Acceptance code

5 (0xFF) - Acceptance mask Acceptance mask

6 (0xFF) - Bus timing 0 Bus timing 0

7 (0xFF) - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 TX id1 TX id1 (0xFF) -

11 TX id2, rtr, dlc TX id2, rtr, dlc (0xFF) -

12 TX data byte 1 TX data byte 1 (0xFF) -

13 TX data byte 2 TX data byte 2 (0xFF) -

14 TX data byte 3 TX data byte 3 (0xFF) -

15 TX data byte 4 TX data byte 4 (0xFF) -

16 TX data byte 5 TX data byte 5 (0xFF) -

17 TX data byte 6 TX data byte 6 (0xFF) -

18 TX data byte 7 TX data byte 7 (0xFF) -

19 TX data byte 8 TX data byte 8 (0xFF) -

20 RX id1 - RX id1 -

21 RX id2, rtr, dlc - RX id2, rtr, dlc -

22 RX data byte 1 - RX data byte 1 -

23 RX data byte 2 - RX data byte 2 -

24 RX data byte 3 - RX data byte 3 -

25 RX data byte 4 - RX data byte 4 -

26 RX data byte 5 - RX data byte 5 -

27 RX data byte 6 - RX data byte 6 -

28 RX data byte 7 - RX data byte 7 -

29 RX data byte 8 - RX data byte 8 -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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20.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

20.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

Table 134.Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR.5 - reserved

CR.4 Overrun Interrupt Enable 1 - enabled, 0 - disabled

CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled

CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled

CR.0 Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode.

Table 135.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 - not used (go to sleep in SJA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer
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20.4.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first when
the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

20.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register.

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is 0.

Table 136.Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning
limit (96).

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 137.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved

IR.6 - reserved

IR.5 - reserved

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.

IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)

IR.0 Receive interrupt This bit is set while there are more messages in the fifo.
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20.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

20.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer.

20.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

Table 138.Transmit buffer layout

Addr Name Bits

7 6 5 4 3 2 1 0

10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

12 TX data 1 TX byte 1

13 TX data 2 TX byte 2

14 TX data 3 TX byte 3

15 TX data 4 TX byte 4

16 TX data 5 TX byte 5

17 TX data 6 TX byte 6

18 TX data 7 TX byte 7

19 TX data 8 TX byte 8
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20.5 PeliCAN mode

20.5.1 PeliCAN register map

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below.

Table 139.PeliCAN address allocation

#

Operating mode Reset mode

Read Write Read Write

0 Mode Mode Mode Mode

1 (0x00) Command (0x00) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 Interrupt enable Interrupt enable Interrupt enable Interrupt enable

5 reserved (0x00) - reserved (0x00) -

6 Bus timing 0 - Bus timing 0 Bus timing 0

7 Bus timing 1 - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 reserved (0x00) - reserved (0x00) -

11 Arbitration lost capture - Arbitration lost capture -

12 Error code capture - Error code capture -

13 Error warning limit - Error warning limit Error warning limit

14 RX error counter - RX error counter RX error counter

15 TX error counter - TX error counter TX error counter

16 RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0

17 RX ID 1 RX ID 1 TX ID 1 TX ID 1 Acceptance code 1 Acceptance code 1

18 RX ID 2 RX ID 2 TX ID 2 TX ID 2 Acceptance code 2 Acceptance code 2

19 RX data 1 RX ID 3 TX data 1 TX ID 3 Acceptance code 3 Acceptance code 3

20 RX data 2 RX ID 4 TX data 2 TX ID 4 Acceptance mask 0 Acceptance mask 0

21 RX data 3 RX data 1 TX data 3 TX data 1 Acceptance mask 1 Acceptance mask 1

22 RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask 2 Acceptance mask 2

23 RX data 5 RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3

24 RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -

25 RX data 7 RX data 5 TX data 7 TX data 5 reserved (0x00) -

26 RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -

27 FIFO RX data 7 - TX data 7 reserved (0x00) -

28 FIFO RX data 8 - TX data 8 reserved (0x00) -

29 RX message counter - RX msg counter -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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20.5.2 Mode register

Writing to MOD.1-3 can only be done when reset mode has been entered previously.

In Listen only mode the core will not send any acknowledgements. Note that unlike the SJA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

20.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

Table 140.Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJA1000)

MOD.3 Acceptance filter mode 1 - single filter mode, 0 - dual filter mode

MOD.2 Self test mode If set the controller is in self test mode

MOD.1 Listen only mode If set the controller is in listen only mode

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode

Table 141.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 Self reception request Transmits and simultaneously receives a message

CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer



AEROFLEX GAISLER 133 GRIP

20.5.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

20.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

Table 142.Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error warning
limit.

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 143.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.5 Error passive interrupt Set when the core goes between error active and error passive

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while the fifo is not empty.
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20.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

20.5.7 Arbitration lost capture register

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

20.5.8 Error code capture register

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 144.Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description

IR.7 Bus error interrupt 1 - enabled, 0 - disabled

IR.6 Arbitration lost interrupt 1 - enabled, 0 - disabled

IR.5 Error passive interrupt 1 - enabled, 0 - disabled

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt 1 - enabled, 0 - disabled

IR.2 Error warning interrupt 1 - enabled, 0 - disabled.

IR.1 Transmit interrupt 1 - enabled, 0 - disabled

IR.0 Receive interrupt 1 - enabled, 0 - disabled

Table 145.Bit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description

ALC.7-5 - reserved

ALC.4-0 Bit number Bit where arbitration is lost

Table 146.Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0 - transmission error

ECC.4-0 Segment Where in the frame the error occurred

Table 147.Error code interpretation

ECC.7-6 Description

0 Bit error

1 Form error

2 Stuff error

3 Other
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Bit 4 downto 0 of the ECC register is interpreted as below

20.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

20.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event resets
this counter to 0.

20.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

Table 148.Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame

0x02 ID.28 - ID.21

0x06 ID.20 - ID.18

0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 - ID.13

0x0F ID.12 - ID.5

0x0E ID.4 - ID.0

0x0C Bit RTR

0x0D Reserved bit 1

0x09 Reserved bit 0

0x0B Data length code

0x0A Data field

0x08 CRC sequence

0x18 CRC delimiter

0x19 Acknowledge slot

0x1B Acknowledge delimiter

0x1A End of frame

0x12 Intermission

0x11 Active error flag

0x16 Passive error flag

0x13 Tolerate dominant bits

0x17 Error delimiter

0x1C Overload flag
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20.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

TX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 - FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard frame. 1 = EFF, 0 = SFF.
Bit 6 -  RTR should be set to 1 for an remote transmission request frame.
Bit 5:4 -  are don’t care.
Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value greater than 8 is used 8 bytes

will be transmitted.

TX identifier 1 (this field is the same for both SFF and EFF frames)

Bit 7:0 -  The top eight bits of the identifier.

TX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4:0 -  Don’t care.

Table 149.

# Write (SFF) Write(EFF)

16 TX frame information TX frame information

17 TX ID 1 TX ID 1

18 TX ID 2 TX ID 2

19 TX data 1 TX ID 3

20 TX data 2 TX ID 4

21 TX data 3 TX data 1

22 TX data 4 TX data 2

23 TX data 5 TX data 3

24 TX data 6 TX data 4

25 TX data 7 TX data 5

26 TX data 8 TX data 6

27 - TX data 7

28 - TX data 8

Table 150.TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0

Table 151.TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 152.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 - - - - -
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TX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

TX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

TX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2:0 -  Don’t care

Data field

For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is
transmitted starting from the MSB at the lowest address.

Table 153.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 154.TX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 155.TX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 - - -
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20.5.13 Receive buffer

RX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 -  Frame format of received message. 1 = EFF, 0 = SFF.
Bit 6 - 1 if RTR frame.
Bit 5:4 - Always 0.
Bit 3:0 - DLC specifies the Data Length Code.

RX identifier 1(this field is the same for both SFF and EFF frames)

Bit 7:0 - The top eight bits of the identifier.

RX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4 - 1 if RTR frame.
Bit 3:0 - Always 0.

Table 156.

# Read (SFF) Read (EFF)

16 RX frame information RX frame information

17 RX ID 1 RX ID 1

18 RX ID 2 RX ID 2

19 RX data 1 RX ID 3

20 RX data 2 RX ID 4

21 RX data 3 RX data 1

22 RX data 4 RX data 2

23 RX data 5 RX data 3

24 RX data 6 RX data 4

25 RX data 7 RX data 5

26 RX data 8 RX data 6

27 RX FI of next message in fifo RX data 7

28 RX ID1 of next message in fifo RX data 8

Table 157.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

Table 158.RX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 159.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 RTR 0 0 0 0
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RX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2- 1 if RTR frame
Bit 1:0 - Don’t care

Data field

For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28.

20.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.

There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller filters
are used and if either of these signals a match the message is accepted. Each filter consists of two parts
the acceptance code and the acceptance mask. The code registers are used for specifying the pattern to
match and the mask registers specify don’t care bits. In total eight registers are used for the acceptance
filter as shown in the table below. Note that they are only read/writable in reset mode.

Table 160.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 161.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 162.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0
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Single filter mode, standard frame

When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are unused.
ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACR0-3 are compared against
the incoming message in the following way:

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit
ACR3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Filter 1
ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are compared against upper nibble of data byte 1
ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2
ACR2.7-0 & ACR3.7-5 are compared to ID.28-18
ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Table 163.Acceptance filter registers

Address Description

16 Acceptance code 0 (ACR0)

17 Acceptance code 1 (ACR1)

18 Acceptance code 2 (ACR2)

19 Acceptance code 3 (ACR3)

20 Acceptance mask 0 (AMR0)

21 Acceptance mask 1 (AMR1)

22 Acceptance mask 2 (AMR2)

23 Acceptance mask 3 (AMR3)
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Filter 1
ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

20.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

20.6 Common registers

There are three common registers with the same addresses and the same functionality in both Basi-
CAN and PeliCAN mode. These are the clock divider register and bus timing register 0 and 1.

20.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

20.6.2 Bus timing 0

The CAN core system clock is calculated as:

tscl = 2*tclk*(BRP+1)
where tclk is the system clock.

The sync jump width defines how many clock cycles (tscl) a bit period may be adjusted with by one
re-synchronization.

Table 164.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN

CDR.6 - unused (cbp bit of SJA1000)

CDR.5 - unused (rxinten bit of SJA1000)

CDR.4 - reserved

CDR.3 Clock off Disable the clkout output

CDR.2-0 Clock divisor Frequency selector

Table 165.Bit interpretation of bus timing 0 register (BTR0) (address 6)

Bit Name Description

BTR0.7-6 SJW Synchronization jump width

BTR0.5-0 BRP Baud rate prescaler
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20.6.3 Bus timing 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

ttseg1 = tscl * ( TSEG1+1)
ttseg2 = tscl * ( TSEG2+1)
tbit = ttseg1 + ttseg2 + tscl

The additional tscl term comes from the initial sync segment. Sampling is done between TSEG1 and
TSEG2 in the bit period.

20.7 Design considerations

This section lists known differences between this CAN controller and SJA1000 on which is it based:

• All bits related to sleep mode are unavailable

• Output control and test registers do not exist (reads 0x00)

• Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented

• Overrun irq and status not set until fifo is read out

BasicCAN specific differences:

• The receive irq bit is not reset on read, works like in PeliCAN mode

• Bit CR.6 always reads 0 and is not a flip flop with no effect as in SJA1000

PeliCAN specific differences:

• Writing 256 to tx error counter gives immediate bus-off when still in reset mode

• Read Buffer Start Address register does not exist

• Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)

• The core transmits active error frames in Listen only mode

20.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 166.Bit interpretation of bus timing 1 register (BTR1) (address 7)

Bit Name Description

BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point

BTR1.6-4 TSEG2 Time segment 2

BTR1.3-0 TSEG1 Time segment 1
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20.9 Configuration options

Table 167 shows the configuration options of the core (VHDL generics).

20.10 Signal descriptions

Table 168 shows the interface signals of the core (VHDL ports).

20.11 Library dependencies

Table 169 shows libraries that should be used when instantiating the core.

20.12 Component declaration

library grlib;
use grlib.amba.all;
use gaisler.can.all;

component can_oc
   generic (
    slvndx    : integer := 0;
    ioaddr    : integer := 16#000#;
    iomask    : integer := 16#FF0#;
    irq       : integer := 0;
    memtech   : integer := 0);
   port (
      resetn  : in  std_logic;
      clk     : in  std_logic;

Table 167.Configuration options

Generic Function Allowed range Default

slvndx AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The AHB I/O area base address. Compared with bit 19-8
of the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0 - NTECH

Table 168.Signal descriptions

Signal name Field Type Function Active

CLK Input AHB clock

RESETN Input Reset Low

AHBSI * Input AMBA AHB slave inputs -

AHBSO * Input AMBA AHB slave outputs

CAN_RXI Input CAN receiver input High

CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

Table 169.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER CAN Component Component declaration
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      ahbsi   : in  ahb_slv_in_type;
      ahbso   : out ahb_slv_out_type;
      can_rxi : in  std_logic;
      can_txo : out std_logic
);
   end component;
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21 CLKGEN - Clock generation

21.1 Overview

The CLKGEN clock generator implements internal clock generation and buffering.

21.2 Technology specific clock generators

21.2.1 Overview

The core is a wrapper that instantiates technology specific primitives depending on the value of the
techVHDL generic. Each supported technology has its own subsection below. Table 170 lists the sub-
section applicable for each technology setting. The table is arranged after the technology’s numerical
value in GRLIB. The subsections are ordered in alphabetical order after technology vendor.

Table 170.Overview of technology specific clock generator sections

Technology Numerical value Comment Section

inferred 0 Default when no technology specific generator is available. 21.2.2

virtex 1 21.2.12

virtex2 2 21.2.13

memvirage 3 No technology specific clock generator available. 21.2.2

axcel 4 21.2.3

proasic 5 21.2.3

atc18s 6 No technology specific clock generator available. 21.2.2

altera 7 21.2.7

umc 8 No technology specific clock generator available. 21.2.2

rhumc 9 21.2.10

apa3 10 21.2.5

spartan3 11 21.2.11

ihp25 12 No technology specific clock generator available. 21.2.2

rhlib18t 13 21.2.9

virtex4 14 21.2.13

lattice 15 No technology specific clock generator available. 21.2.2

ut25 16 No technology specific clock generator available. 21.2.2

spartan3e 17 21.2.11

peregrine 18 No technology specific clock generator available. 21.2.2

memartisan 19 No technology specific clock generator available. 21.2.2

virtex5 20 21.2.14

custom1 21 No technology specific clock generator available. 21.2.2

ihp25rh 22 No technology specific clock generator available. 21.2.2

stratix1 23 21.2.7

stratix2 24 21.2.7

eclipse 25 No technology specific clock generator available. 21.2.2

stratix3 26 21.2.8

cyclone3 27 21.2.6

memvirage90 28 No technology specific clock generator available. 21.2.2

tsmc90 29 No technology specific clock generator available. 21.2.2

easic90 30 21.2.15

atc18rha 31 No technology specific clock generator available. 21.2.2
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21.2.2 Generic technology

This implementation is used when the clock generator does not support instantiation of technology
specific primitives or when the inferred technology has been selected.

This implementation connects the input clock, CLKIN or PCICLKIN depending on thepcienandpci-
sysclkVHDL generic, to the SDCLK, CLK1XU, and CLK outputs. The CLKN output is driven by the
inverted input clock. The PCICLK output is directly driven by PCICLKIN. Both clock lock signals
are always driven to ‘1’ and the CLK2X output is always driven to ‘0’.

In simulation, CLK, CLKN and CLK1XU transitions are skewed 1 ns relative to the SDRAM clock
output.

21.2.3 ProASIC

This technology selection does not instantiate any technology specific primitives. The core’s clock
output, CLK, is driven by the CLKIN or PCICLKIN input depending on the value of VHDL generics
pcienand pcisysclk.

The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

21.2.4 Actel Axcelerator

This technology selection has two modes. The first one is used if VHDL genericsclk_mulandclk_div
are equal and does not instantiate any technology specific primitives. The core’s clock output, CLK, is
driven by the CLKIN or PCICLKIN input depending on the value of VHDL genericspcienandpcisy-
sclk.

The second mode is used if VHDL genericsclk_mulandclk_divare different and instantiates a PLL.
The core’s clock output CLK is either driven by the pciclkin input or the main output from the PLL
depending on the values of VHDL genericspcienandpcisysclk. When the PLL drives the CLK output

smic013 32 No technology specific clock generator available. 21.2.2

tm65gpl 33 No technology specific clock generator available. 21.2.2

axdsp 34 21.2.3

spartan6 35 21.2.11

virtex6 36 21.2.14

actfus 37 21.2.17

stratix4 38 21.2.18

st65lp 39 No technology specific clock generator available. 21.2.2

st65gp 40 No technology specific clock generator available. 21.2.2

easic45 41 21.2.16

Generics used in this technology: pcisysclk

Instantiated technology primitives: None

Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Generics used in this technology: pcisysclk, clk_mul, clk_div, pcien, freq

Instantiated technology primitives: PLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 170.Overview of technology specific clock generator sections

Technology Numerical value Comment Section
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the resulting frequency is the frequency of CLKIN multiplied by the VHDL genericclk_mul and
divided by the VHDL genericclk_div. Clock buffers are not instantiated within the clock generator
and has to be done externally.

For both modes the following applies:

The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

21.2.5 Actel ProASIC3

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the reg-
ular FPGA routing fabric. Figure 43 shows the instantiated primitives, the PLL EXTFB input is not
shown and the EXTFB port on the instantiated component is always tied to ground. The figure shows
which of the core’s output ports that are driven by the PLL. The PCICLOCK will directly connected
to PCICLKIN if VHDL genericpcienis non-zero, while CGO.PCILOCK is always driven high. The
VHDL genericspcienandpcisysclkare used to select the reference clock. The values driven on the
PLL inputs are listed in tables 171 and 172.

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv

Instantiated technology primitives: PLLINT, PLL

Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clk1xu, clk2xu

Figure 43. Actel ProASIC3 clock generation
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The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 172 lists the signal value depending on the value of VCOF-
REQUENCY.

Table 171.Constant input signals on Actel ProASIC3 PLL

Signal name Value Comment

OADIV[4:0] VHDL genericclk_odiv - 1 Output divider

OAMUX[2:0] 0b100 Post-PLL MUXA

DLYGLA[4:0] 0 Delay on Global A

OBDIV[4:0] VHDL genericclkb_odiv - 1 when
clkb_odiv > 0, otherwise 0

Output divider

OBMUX[2:0] 0 when VHDL genericclkb_odiv = 0,
otherwise 0b100

Post-PLL MUXB

DLYYB[4:0] 0 Delay on YB

DLYGLB[4:0] 0 Delay on Global B

OCDIV[4:0] VHDL genericclkc_odiv - 1 when
clkc_odiv > 0, otherwise 0

Output divider

OCMUX[2:0] 0 when VHDL genericclkc_odiv = 0,
otherwise 0b100

Post-PLL MUXC

DLYYC[4:0] 0 Delay on YC

DLYGLC[4:0] 0 Delay on Global C

FINDIV[6:0] VHDL genericclk_div - 1 Input divider

FBDIV[6:0] VHDL genericclk_mul - 1 Feedback divider

FBDLY[4:0] 0 Feedback delay

FBSEL[1:0] 0b01 2-bit PLL feedback MUX

XDLYSEL 0 1-bit PLL feedback MUX

VCOSEL[2:0] See table 172 below VCO gear control. Selects one of four
frequency ranges.

Table 172.VCOSEL[2:0] on Actel ProASIC3 PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]

< 44 0b000

< 88 0b010

< 175 0b100

>= 175 0b110

VCOFREQUENCY
freq clkmul⋅

clkdiv
--------------------------------- 1000⁄=
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21.2.6 Altera Cyclone III

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 44. The
ALTPLL attributes are listed in table 173. As can be seen in this table the attributes
OPERATION_MODE and COMPENSATE_CLOCK depend on the VHDL genericsdramen.

The value driven on the ALTPLL clock enable signal is dependent on the VHDL genericsclk2xenand
sdramen, table 174 lists the effect of these generics.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen

Instantiated technology primitives: ALTPLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 173.Altera Cyclone III ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen= 0

INTENDED_DEVICE_FAMILY “Cyclone III” “Cyclone III”

OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”

COMPENSATE_CLOCK “CLK1” “clock0”

INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL genericfreq) 1000000000 / (VHDL genericfreq)

WIDTH_CLOCK 5 5

CLK0_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul

CLK0_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

CLK1_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul

CLK1_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

CLK2_MULTIPLY_BY VHDL genericclk_mul * 2 VHDL genericclk_mul * 2

CLK2_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

*Any attributes not listed are assumed to have their default value

Table 174.Effect of VHDL genericsclk2xen andsdramen on ALTPLL clock enable input

Value of sdramen Value of clk2xen Value of CLKENA[5:0]

0 0 0b000001

0 1 0b000101

1 0 0b000011

1 1 0b000111

Figure 44. Altera Cyclone III ALTPLL
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Table 175 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL genericspcienandpcisysclk. If pcienis 0 orpcisysclkis 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero andpcisysclkis 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL genericpcienis non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

21.2.7 Altera Stratix 1/2

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 45. The
ALTPLL attributes are listed in table 176. As can be seen in this table the OPERATION_MODE
attribute depends on the VHDL genericsdramen.

Table 175.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal

CLKIN/PCICLKIN* Input INCLK[0]

CLK Output CLK[0]

CLKN Output CLK[0] (CLK[0] through an inverter)

CLK2X Output CLK[2]

SDCLK Output CLK[1]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen

Instantiated technology primitives: ALTPLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 176.Altera Stratix 1/2 ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen= 0

OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”

INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL genericfreq) 1000000000 / (VHDL genericfreq)

WIDTH_CLOCK 6 6

CLK0_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul

CLK0_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

CLK1_MULTIPLY_BY VHDL genericclk_mul * 2 VHDL genericclk_mul * 2

CLK1_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

EXTCLK0_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul

EXTCLK0_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

*Any attributes not listed are assumed to have their default value

Figure 45. Altera Stratix 1/2 ALTPLL
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The values driven on the ALTPLL clock enable signals are dependent on the VHDL genericclk2xen,
table 177 lists the effect ofclk2xen.

Table 178 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL genericspcienandpcisysclk. If pcienis 0 orpcisysclkis 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero andpcisysclkis 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL genericpcienis non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

21.2.8 Altera Stratix 3

This technology is not fully supported at this time.

21.2.9 RHLIB18t

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

21.2.10 RHUMC

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

Table 177.Effect of VHDL genericclk2xen on ALTPLL clock enable inputs

Signal Value with clk2xen = 0 Value with clk2xen /= 0

CLKENA[5:0] 0b000001 0b000011

EXTCLKENA[3:0] 0b0001 0b0011

Table 178.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal

CLKIN/PCICLKIN* Input INCLK[0]

CLK Output CLK[0]

CLKN Output CLK[0] (CLK[0] through an inverter)

CLK2X Output CLK[1]

SDCLK Output EXTCLK[0]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div

Instantiated technology primitives: lfdll_top

Signals not driven in this technology: -

Generics used in this technology: None

Instantiated technology primitives: pll_ip

Signals not driven in this technology: -
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21.2.11 Xilinx Spartan 3/3e/6

The main clock is generated with a DCM which is instantiated with the attributes listed in table 179.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL genericspcienandpcisysclk. The main DCM’s con-
nections is shown in figure 46.

If the VHDL genericclk2xenis non-zero the DCM shown in figure 47 is instantiated. The attributes of
this DCM are the same as in table 179, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2 and the CLK_FEEDBACK attribute is set to “1X”. The dll0lock signal is
connected to the LOCKED output of the main clock DCM. When this signal is low all the bits in the

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x, clkb, clkc

Table 179.Spartan 3/e DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL genericclk_div

CLKFX_MULTIPLY Determined by core’s VHDL genericclk_mul

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “2X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080”

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 46. Spartan 3/e generation of main clock
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shift register connected to the CLK2X DCM’s RST input are set to ‘1’. When the dll0lock signal is
asserted it will take four main clock cycles until the RST input is deasserted. Depending on the value
of theclkselVHDL generic the core’s CLK2X output is either driven by a BUFG or a BUFGMUX.
Figure 48 shows the two alternatives and how the CGI.CLKSEL(0) input is used to selected between
the CLK0 and CLK2X output of the CLK2X DCM.

The value of theclk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. The core’s CLKN output is driven by the selected signal through an inverter. Figure 49
illustrates the connections.

If the VHDL genericclk2xenis zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 50.

Figure 47. Spartan 3/e generation of CLK2X clock when VHDL genericclk2xen is non-zero
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Figure 48. Spartan 3/e selection of CLK2X clock when VHDL genericclk2xen is non-zero
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If the SDRAM clock is enabled, via thesdramenVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 51 is instantiated. This DCM has the same
attributes as the CLK2X DCM. The input to the SDRAM DCM input clock is determined via the
clk2xenVHDL generic. If the VHDL generic is set to 0 the input is the main CLK, if the generic is set
to 1 the input is the clk_p out of the CLK2X DCM shown in figure 48. If theclk2xenVHDL generic is
set to 2 the clock input to the SDRAM DCM depends on theclkselVHDL generic. The input in this
last case is the CLK2X output shown in figure 50.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramenVHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of theclk2xenVHDL generic. If theclk2xenVHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 48, in other words it also
depends on theclkselVHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via thepcienVHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 52 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

Figure 50. Spartan 3/e generation of CLK2X clock when VHDL genericclk2xen is zero
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21.2.12 Xilinx Virtex

The main clock is generated with the help of a CLKDLL. Figure 53 below shows how the CLKDLL
primitive is connected. The input clock source is either the core’s CLKIN input or the PCICLKIN
input. This is selected with the VHDL genericspcienandpcisysclk. The figure shows three potential
drivers of the BUFG driving the output clock CLK, the driver is selected via the VHDL generics
clk_mulandclk_div. If clk_mul/clk_divis equal to 2 the CLK2X output is selected, ifclk_div/clk_mul
equals 2 the CLKDV output is selected, otherwise the CLK0 output drives the BUFG. The inverted
main clock output, CLKN, is the BUFG output connected via an inverter.

The figure shows a dashed line connecting the CLKDLL’s LOCKED output to the core output
CGO.CLKLOCK. The driver of the CGO.CLKLOCK output depends on the instantiation of a
CLKDLL for the SDRAM clock. See description of the SDRAM clock below.

If the SDRAM clock is enabled, via thesdramenVHDL generic, and the clock generator is config-
ured to use clock feedback, VHDL genericnoclkfbset to 0, a CLKDLL is instantiated as depicted in
figure 54. Note how the CLKDLL’s RST input is connected via a shift register clocked by the main
clock. The shift register is loaded with all ‘1’ when the LOCKED signal of the main clock CLKDLL
is low. When the LOCKED signal from the main clock CLKDLL is asserted the SDRAM CLKDLL’s
RST input will be deasserted after four main clock cycles.

For all other configurations the SDRAM clock is driven by the main clock and the CGO.CLKLOCK
signal is driven by the main clock CLKDLL’s LOCKED output. The SDRAM CLKDLL must be
present if the core’s CLK2X output shall be driven.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk

Instantiated technology primitives: BUFG, BUFGDLL, CLKDLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Figure 52. Spartan 3/e PCI clock generation
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If PCI clock generation is enabled via thepcienVHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 55 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

21.2.13 Xilinx Virtex 2/4

The main clock is generated with a DCM which is instantiated with the attributes listed in table 180.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL genericspcienandpcisysclk. The main DCM’s con-
nections is shown in figure 56.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x, clkb, clkc

Figure 54. Virtex generation of SDRAM clock with feedback clock enabled
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If the VHDL genericclk2xenis non-zero the DCM shown in figure 57 is instantiated. The attributes of
this DCM are the same as in table 180, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of theclkselVHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 58 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 180.Virtex 2/4 DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL genericclk_div

CLKFX_MULTIPLY Determined by core’s VHDL genericclk_mul

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “1X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080”

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 56. Virtex 2/4 generation of main clock
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The value of theclk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 56.

If the VHDL genericclk2xenis zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 59.

If the SDRAM clock is enabled, via thesdramenVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 60. The input to the SDRAM DCM input clock
is determined via theclk2xenVHDL generic. If the VHDL generic is set to 0 the input is the main
CLK, if the generic is set to 1 the input is the clk_p out of the CLK2X DCM shown in figure 57. If the
clk2xenVHDL generic is set to 2 the clock input to the SDRAM DCM depends on theclkselVHDL
generic. The input in this last case is the CLK2X output shown in figure 58.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is

Figure 57. Virtex 2/4 generation of CLK2X clock when VHDL genericclk2xen is non-zero

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

CLK
BUFG

clk_o
clk_p

clk_n

dll2xlock

dll0lock

CLK
GND

SHIFTREG

Figure 58. Virtex 2/4 selection of CLK2X clock when VHDL genericclk2xen is non-zero
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utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramenVHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of theclk2xenVHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 58, in other words it also
depends on theclkselVHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via thepcienVHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 61 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

21.2.14 Xilinx Virtex 5/6

The main clock is generated with a DCM which is instantiated with the attributes listed in table 181.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x, clkb, clkc

Figure 60. Virtex 2/4 generation of SDRAM clock
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Figure 61. Virtex 2/4 PCI clock generation

BUFG
BUFGDLL

PCICLKIN PCICLKINPCICLK PCICLK

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic set to 1



AEROFLEX GAISLER 160 GRIP

CLKIN input. This is selected with the VHDL genericspcienandpcisysclk. The main DCM’s con-
nections is shown in figure 62.

If the VHDL genericclk2xenis non-zero the DCM shown in figure 63 is instantiated. The attributes of
this DCM are the same as in table 181, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of theclkselVHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 64 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 181.Virtex 5 DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL genericclk_div

CLKFX_MULTIPLY Determined by core’s VHDL genericclk_mul

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “1X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080”

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 62. Virtex 5 generation of main clock
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The value of theclk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 62.

If the VHDL genericclk2xenis zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven directly by
the main clock DCM’s CLK2X output.

If the SDRAM clock is enabled, via thesdramenVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 65. This DCM has the same attributes as the
main clock DCM described in table 181, with the exceptions that CLKFX_MULTIPLY and
CLKFX_DIVIDE are both set to 2 and DESKEW_ADJUST is set to “SOURCE_SYNCHRONOUS”.

The input to the SDRAM DCM input clock is determined via theclk2xenVHDL generic. If the
VHDL generic is set to 0 the input is the main CLK, if the generic is set to 1 the input is the clk_p out
of the CLK2X DCM shown in figure 57. If theclk2xenVHDL generic is set to 2 the clock input to the
SDRAM DCM depends on theclkselVHDL generic. The input in this last case is the CLK2X output
shown in figure 64.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

Figure 63. Virtex 5 generation of CLK2X clock when VHDL genericclk2xen is non-zero
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Figure 64. Virtex 5 selection of CLK2X clock when VHDL genericclk2xen is non-zero
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If the SDRAM clock is disabled (sdramenVHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of theclk2xenVHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 64, in other words it also
depends on theclkselVHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via thepcienVHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 66 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

21.2.15 eASIC90 (Nextreme)

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien

Instantiated technology primitives: eclkgen

Signals not driven in this technology: sdclk, pciclk, clk1xu, clk2xu, clkb, clkc

Figure 65. Virtex 5 generation of SDRAM clock
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21.2.16 eASIC45 (Nextreme2)

An example instantiating eASIC’s clock generator wrapper that generates clk, clkn and clk2x is pro-
vided. Note that the example does not instantiate buffers on the clock outputs. Please contact Aeroflex
Gaisler for information concerning the use of this clock generator.

21.2.17 Actel Fusion

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the reg-
ular FPGA routing fabric. Figure 67 shows the instantiated primitives, the PLL EXTFB input is not
shown and the EXTFB port on the instantiated component is always tied to ground. The OADIVRST
port on the PLL is driven by CGI.PLLRST. The figure shows which of the core’s output ports that are
driven by the PLL. The PCICLOCK will directly connected to PCICLKIN if VHDL genericpcienis
non-zero, while CGO.PCILOCK is always driven high. The VHDL genericspcienandpcisysclkare
used to select the reference clock. The values driven on the PLL inputs are listed in tables 182 and
183.

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien, sdramen, clk2xen

Instantiated technology primitives: eclkgen

Signals not driven in this technology: clk1xu, clk2xu, clkb, clkc

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv

Instantiated technology primitives: PLLINT, PLL

Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clk1xu, clk2xu

Table 182.Constant input signals on Actel Fusion PLL

Signal name Value Comment

OADIVHALF 0 Division by half

OADIV[4:0] VHDL genericclk_odiv - 1 Output divider

OAMUX[2:0] 0b100 Post-PLL MUXA

DLYGLA[4:0] 0 Delay on Global A

OBDIV[4:0] VHDL genericclkb_odiv - 1 when
clkb_odiv > 0, otherwise 0

Output divider

OBMUX[2:0] 0 when VHDL genericclkb_odiv = 0,
otherwise 0b100

Post-PLL MUXB

Figure 67. Actel Fusion clock generation
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The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 172 lists the signal value depending on the value of VCOF-
REQUENCY.

21.2.18 Altera Stratix 4

This technology is not fully supported at this time.

DLYYB[4:0] 0 Delay on YB

DLYGLB[4:0] 0 Delay on Global B

OCDIV[4:0] VHDL genericclkc_odiv - 1 when
clkc_odiv > 0, otherwise 0

Output divider

OCMUX[2:0] 0 when VHDL genericclkc_odiv = 0,
otherwise 0b100

Post-PLL MUXC

DLYYC[4:0] 0 Delay on YC

DLYGLC[4:0] 0 Delay on Global C

FINDIV[6:0] VHDL genericclk_div - 1 Input divider

FBDIV[6:0] VHDL genericclk_mul - 1 Feedback divider

FBDLY[4:0] 0 Feedback delay

FBSEL[1:0] 0b01 2-bit PLL feedback MUX

XDLYSEL 0 1-bit PLL feedback MUX

VCOSEL[2:0] See table 172 below VCO gear control. Selects one of four
frequency ranges.

Table 183.VCOSEL[2:0] on Actel Fusion PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]

< 44 0b000

< 88 0b010

< 175 0b100

>= 175 0b110

Table 182.Constant input signals on Actel Fusion PLL

Signal name Value Comment

VCOFREQUENCY
freq clkmul⋅

clkdiv
--------------------------------- 1000⁄=
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21.3 Configuration options

Table 184 shows the configuration options of the core (VHDL generics).

Table 184.Configuration options

Generic name Function Allowed range Default

tech Target technology 0 - NTECH inferred

clk_mul Clock multiplier, used in clock scaling. Not all techbolo-
gies support clock scaling.

1

clk_div Clock divisor, used in clock scaling. Not all technologies
support clock scaling.

1

sdramen When this generic is set to 1 the core will generate a
clock on the SDCLK. Not supported by all technologies.
See technology specific description.

0

noclkfb When this generic is set to 0 the core will use the
CGI.PLLREF input as feedback clock for some technol-
ogies. See technology specific description.

1

pcien When this generic is set to 1 the PCI clock is activated.
Otherwise the PCICLKIN input is typically unused. See
technology specific descriptions.

0

pcidll When this generic is set to 1, a DLL will be instantiated
for the PCI input clock for some technologies. See the
technology specific descriptions.

0

pcisysclk When this generic is set to 1 the clock generator will use
the pciclkin input as the main clock reference. This also
requires generic pcien to be set to 1.

0

freq Clock frequency in kHz 25000

clk2xen Enables 2x clock output. Not available in all technolgies
and may have additional options. See technology specific
description.

0

clksel Enable clock select. Not available in all technologies. 0

clk_odiv ProASIC3/Fusion output divider for GLA. Only used in
ProASIC3/Fusion technology.

1 - 32 1

clkb_odiv ProASIC3/Fusion output divider for GLB. Only used in
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLB.

0 - 32 0

clkc_odiv ProASIC3/Fusion output divider for GLC. Only used in
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLC.

0 - 32 0
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21.4 Signal descriptions

Table 185 shows the interface signals of the core (VHDL ports).

21.5 Library dependencies

Table 186 shows the libraries used when instantiating the core (VHDL libraries).

21.6 Instantiation

This example shows how the core can be instantiated together with the GRLIB reset generator.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity clkgen_ex is
  port (
    resetn  : in  std_ulogic;
    clk  : in  std_ulogic; -- 50 MHz main clock
    pllref   : in  std_ulogic

 );
end;

architecture example of clkgen_ex is

Table 185.Signal descriptions

Signal name Field Type Function Active

CLKIN N/A Input Reference clock input -

PCICLKIN N/A Input PCI clock input

CLK N/A Output Main clock -

CLKN N/A Output Inverted main clock -

CLK2X N/A Output 2x clock -

SDCLK N/A Output SDRAM clock -

PCICLK N/A Output PCI clock -

CGI PLLREF Input Optional reference for PLL -

PLLRST Input Optional reset for PLL

PLLCTRL Input Optional control for PLL

CLKSEL Input Optional clock select

CGO CLKLOCK Output Lock signal for main clock

PCILOCK Output Lock signal for PCI clock

CLK4X N/A Output 4x clock

CLK1XU N/A Output Unscaled 1x clock

CLK2XU N/A Output Unscaled 2x clock

CLKB N/A Output GLB output from ProASIC3/Fusion PLL -

CLKC N/A Output GLC output from ProASIC3/Fusion PLL

Table 186.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Component, signals Core signal definitions

TECHMAP ALLCLKGEN Component Technology specific CLKGEN components
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signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std_ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

begin
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;

  pllref_pad : clkpad generic map (tech => padtech) port map (pllref, cgi.pllref);

 clk_pad : clkpad generic map (tech => padtech) port map (clk, lclk);

 clkgen0 : clkgen -- clock generator
    generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,

 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)
    port map (lclk, lclk, clkm, open, open, sdclkl, open, cgi, cgo, open, clk50);

  sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24)
port map (sdclk, sdclkl);

  resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst);

 rst0 : rstgen -- reset generator
 port map (rst, clkm, cgo.clklock, rstn, rstraw);

end;
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22 DDRSPA - 16-, 32- and 64-bit DDR266 Controller

22.1 Overview

DDRSPA is a DDR266 SDRAM controller with AMBA AHB back-end. The controller can interface
two 16-, 32- or 64-bit DDR266 memory banks to a 32-bit AHB bus. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR SDRAM access. The
DDR controller is programmed by writing to a configuration register mapped located in AHB I/O
address space. Internally, DDRSPA consists of a ABH/DDR controller and a technology specific
DDR PHY. Currently supported technologies for the PHY includes Xilinx Virtex2/Virtex4 and Altera
Stratix-II. The modular design of DDRSPA allows to add support for other target technologies in a
simple manner.

22.2 Operation

22.2.1 General

Double data-rate SDRAM (DDR RAM) access is supported to two banks of 16-, 32- or 64-bit
DDR266 compatible memory devices. The controller supports 64M, 128M, 256M, 512M and 1G
devices with 9- 12 column-address bits, up to 14 row-address bits, and 4 internal banks. The size of
each of each chip select can be programmed in binary steps between 8 Mbyte and 1024 Mbyte. The
DDR data width is set by theddrbitsVHDL generic, and will affect the width of DM, DQS and DQ
signals. The DDR data width does not change the behavior of the AHB interface, except for data
latency. When the VHDL genericmobileis set to a value not equal to 0, the controller supports mobile
DDR SDRAM (LPDDR).

22.2.2 Read cycles

An AHB read access to the controller will cause a corresponding access to the external DDR RAM.
The read cycle is started by performing an ACTIVATE command to the desired bank and row, fol-
lowed by a READ command. CAS latency of 2 (CL=2) or 3 (CL=3) can be used. Byte, half-word (16-
bit) and word (32-bit) AHB accesses are supported. Incremental AHB burst access are supported for
32-bit words only. The read cycle(s) are always terminated with a PRE-CHARGE command, no
banks are left open between two accesses. DDR read cycles are always performed in (aligned) 8-word
bursts, which are stored in a FIFO. After an initial latency, the data is then read out on the AHB bus
with zero waitstates.

Figure 68. DDRSPA Memory controller conected to AMBA bus and DDR SDRAM
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22.2.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. An AHB write burst will store up to 8 words in a FIFO, before writing the data
to the DDR memory. As in the read case, only word bursts are supported

22.2.4 Initialization

If the pwronVHDL generic is 1, then the DDR controller will automatically perform the DDR initial-
ization sequence as described in the JEDEC DDR266 standard: PRE-CHARGE, LOAD-EXTMODE-
REG, LOAD-MODE-REG, PRE-CHARGE, 2xREFRESH and LOAD-MODE-REG; or as described
in the JEDEC LPDDR standard when mobile DDR is enabled: PRE-CHARGE, 2xREFRESH,
LOAD-MODE-REG and LOAD-EXTMODE-REG. The VHDL genericscol andMbytecan be used
to also set the correct address decoding after reset. In this case, no further software initialization is
needed. The DDR initialization can be performed at a later stage by setting bit 15 in the DDR control
register.

22.2.5 Configurable DDR SDRAM timing parameters

To provide optimum access cycles for different DDR devices (and at different frequencies), three tim-
ing parameters can be programmed through the memory configuration register (SDCFG): TRCD,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 187.

If the TCD, TRP and TRFC are programmed such that the DDR200/266 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When the DDRSPA controller uses CAS latency (CL) of two cycles a DDR SDRAM speed grade of -
75Z or better is needed to meet 133 MHz timing.

When mobile DDR support is enabled, two additional timing parameters can be programmed though
the Power-Saving configuration register.

Table 187.DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to read/write (tRCD) TRCD + 2

Activate to Activate (tRC) TRCD + 8

Activate to Precharge (tRAS) TRCD + 6

Table 188.DDR SDRAM example programming

DDR SDRAM settings tRCD tRC tRP tRFC tRAS

100 MHz: CL=2, TRP=0, TRFC=4, TRCD=0 20 80 20 70 60

133 MHz: CL=2, TRP=1, TRFC=6, TRCD=1 22.5 75 22.5 67.5 52.5

Table 189.Mobile DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Power-down mode to first valid command (tXP) TXP + 1

Exit Self Refresh mode to first valid command (tXSR) TXSR + 1

CKE minimum pulse width (tCKE) TCKE + 1
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22.2.6 Extended timing fields

The DDRSPA controller can be configured with extended timing fields to provide support for
DDR333 and DDR400. These fields can be detected by checking the XTF bit in the SDCFG register.

When the extended timing fields are enabled, extra upper bits are added to increase the range of the
TRP, TRFC, TXSR and TXP fields. A new TWR field allow increasing the write recovery time. A
new TRAS field to directly control the Active to Precharge period has been added.

22.2.7 Refresh

The DDRSPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh period is
calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in SDCTRL register.

22.2.8 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile DDR func-
tionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving config-
uration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode and mobile DDR is disabled, the controller introduce a delay of 200
clock cycles and a AUTO REFRESH command before any other memory access is allowed. When
mobile DDR is enabled the delay before the AUTO REFRESH command is defined by tXSR in the
Power-Saving configuration register. The minimum duration of this mode is defined by tRFC. This
mode is only available when the VHDL genericmobile is >= 1.

22.2.9 Clock Stop

In the clock stop mode, the external clock to the SDRAM is stop at a low level (DDR_CLK is low and
DDR_CLKB is high). This reduce the power consumption of the SDRAM while retaining the data. To
enable the clock stop mode, set the PMODE bits in the Power-Saving configuration register to “100”
(Clock Stop). The controller will enter clock stop mode after every memory access (when the control-
ler has been idle for 16 clock cycles), until the PMODE bits are cleared. The REFRESH command

Table 190.DDR SDRAM extended timing parameters

SDRAM timing parameter Minimum timing (clocks)

Activate to Activate (tRC) TRAS+TRCD + 2

Activate to Precharge (tRAS) TRAS + 6

Write recovery time (tWR) TWR+2

Table 191.DDR SDRAM extended timing example programming

DDR SDRAM settings tRCD tRC tRP tRFC tRAS tWR

166 MHz: CL=2, TRP=1, TRFC=9, TRCD=1, TRAS=1, TWR=1 18 60 18 72 42 18

200 MHz: CL=3, TRP=1, TRFC=11, TRCD=1, TRAS=2, TWR=1 15 55 15 70 40 15
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will still be issued by the controller in this mode. This mode is only available when the VHDL generic
mobile is >= 1 and mobile DDR functionality is enabled.

22.2.10 Power-Down

When entering the power-down mode all input and output buffers, including DDR_CLK and
DDR_CLKB and excluding DDR_CKE, are deactivated. This is a more efficient power saving mode
then clock stop mode, with a grater reduction of the SDRAM’s power consumption. All data in the
SDRAM is retained during this operation. To enable the power-down mode, set the PMODE bits in
the Power-Saving configuration register to “001” (Power-Down). The controller will enter power-
down mode after every memory access (when the controller has been idle for 16 clock cycles), until
the PMODE bits is cleared. The REFRESH command will still be issued by the controller in this
mode. When exiting this mode a delay of one or two (when tXP in the Power-Saving configuration
register is ‘1’) clock cycles are added before issue any command to the memory. This mode is only
available when the VHDL genericmobile is >= 1.

22.2.11 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared followed by the mobile SDRAM initialization
sequence. The mobile SDRAM initialization sequence can be performed by setting bit 15 in the DDR
control register. This mode is only available when the VHDL genericmobileis >= 1 and mobile DDR
functionality is enabled.

22.2.12 Status Read Register

The status read register (SRR) is used to read the manufacturer ID, revision ID, refresh multiplier,
width type, and density of the SDRAM. To Read the SSR a LOAD MODE REGISTER command
with BA0 = 1 and BA1 = 0 must be issued followed by a READ command with the address set to 0.
This command sequence is executed then the Status Read Register is read. This register is only avail-
able when the VHDL genericmobile is >= 1 and mobile DDR functionality is enabled. Only
DDR_CSB[0] is enabled during this operation.

22.2.13 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This
functionality is only available when the VHDL genericmobile>= 1 and mobile DDR functionality is
enabled.

22.2.14 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL genericmobileis >= 1 and mobile DDR functionality
is enabled.
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22.2.15 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LEMR command is issued, the PLL Reset bit as programmed in SDCFG will be used, when mobile
DDR support is enabled the DS, TCSR and PASR as programmed in Power-Saving configuration reg-
ister will be used. If the LMR command is issued, the CAS latency as programmed in the Power-Sav-
ing configuration register will be used and remaining fields are fixed: 8 word sequential burst. The
command field will be cleared after a command has been executed.

22.2.16 Clocking

The DDR controller is designed to operate with two clock domains, one for the DDR memory clock
and one for the AHB clock. The two clock domains do not have to be the same or be phase-aligned.
The DDR input clock (CLK_DDR) can be multiplied and divided by the DDR PHY to form the final
DDR clock frequency. The final DDR clock is driven on one output (CLKDDRO), which should
always be connected to the CLKDDRI input. If the AHB clock and DDR clock area generated from
the same clock source, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.

The Xilinx version of the PHY generates the internal DDR read clock using an external clock feed-
back. The feed-back should have the same delay as DDR signals to and from the DDR memories. The
feed-back should be driven by DDR_CLK_FB_OUT, and returned on DDR_CLK_FB. Most Xilinx
FPGA boards with DDR provides clock feed-backs of this sort. The supported frequencies for the Xil-
inx PHY depends on the clock-to-output delay of the DDR output registers, and the internal delay
from the DDR input registers to the read data FIFO. Virtex2 and Virtex4 can typically run at 120
MHz, while Spartan3e can run at 100 MHz.

The read data clock in the Xilinx version of the PHY is generated using a DCM to offset internal
delay of the DDR clock feed back. If the automatic DCM phase adjustment does not work due to
unsuitable pin selection, extra delay can be added through the RSKEW VHDL generic. The VHDL
generic can be between -255 and 255, and is passed directly to the PHASE_SHIFT generic of the
DCM.

The Altera version of the PHY use the DQS signals and an internal PLL to generate the DDR read
clock. No external clock feed-back is needed and the DDR_CLK_FB_OUT/DDR_CLK_FB signals
are not used. The supported frequencies for the Altera PHY are 100, 110, 120 and 130 MHz. For
Altera CycloneIII, the read data clock is generated by the PLL. The phase shift of the read data clock
is set be the VHDL generic RSKEW in ps (e.g. a value of 2500 equals 90’ phase for a 100MHz sys-
tem).

22.2.17 Pads

The DDRSPA core has technology-specific pads inside the core. The external DDR signals should
therefore be connected directly the top-level ports, without any logic in between.
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22.2.18 Registers

The DDRSPA core implements two control registers. The registers are mapped into AHB I/O address
space defined by the AHB BAR1 of the core.

Table 192.DDR controller registers

Address offset - AHB I/O - BAR1 Register

0x00 SDRAM control register

0x04 SDRAM configuration register (read-only)

0x08 SDRAM Power-Saving configuration register

0x0C Reserved

0x10 Status Read Register (Only available when mobile DDR support is
enabled)

0x14 PHY configuration register 0 (Only available when VHDL generic
confapi = 1, TCI RTL_PHY)

0x18 PHY configuration register 1 (Only available when VHDL generic
confapi = 1, TCI TRL_PHY)

Table 193. SDRAM control register (SDCTRL)
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tRCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

PR IN CE SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled. This register bit is read only when
Power-Saving mode is other then none.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile DDR support is
enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile DDR sup-
port is enabled, this field is extended with the bit 30.

26 SDRAM tRCD delay. Sets tRCD to 2 + field value clocks.

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8
Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte .... “111”= 1024 Mbyte.

22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.

16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared
when initialisation is completed. This register bit is read only when Power-Saving mode is other then
none.

15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’
for correct operation. This register bit is read only when Power-Saving mode is other then none.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / DDRCLOCK

Table 194. SDRAM configuration register (SDCFG)
31 21 20 19 16 15 14 12 11 0

Reserved XTF CONFAPI MD Data width DDR Clock frequency

31: 21 Reserved

20 Extended timing fields for DDR400 available

19: 16 Register API configuration.
0 = Standard register API.
1 = TCI TSMC90 PHY register API.
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15 Mobile DDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

14: 12 DDR data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)

11: 0 Frequency of the (external) DDR clock (read-only)

Table 195.SDRAM Power-Saving configuration register
31 30 29 28 27 26 25 24 23 20 19 18 16 15 12 11 10 9 8 7 5 4 3 2 0

ME CL TRAS xXS* xXP tC tXSR tXP PMODE Reserved TWR xTRP xTRFC DS TCSR PASR

31 Mobile DDR functionality enabled. ‘1’ = Enabled (support for Mobile DDR SDRAM), ‘0’ = disa-
bled (support for standard DDR SDRAM)

30 CAS latency; ‘0’ => CL = 2, ‘1’ => CL = 3

29: 28 SDRAM extended tRAS timing, tRAS will be equal to field-value + 6 system clocks. (Reserved
when extended timing fields are disabled)

27: 26 SDRAM extended tXSR field, extend tXSR with field-value * 16 clocks (Reserved when extended
timing fields are disabled)

25 SDRAM extended tXP field, extend tXP with 2*field-value clocks (Reserved when extended timing
fields are disabled)

24 SDRAM tCKE timing, tCKE will be equal to 1 or 2 clocks (0/1). (Read only when Mobile DDR
support is disabled).

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
DDR support is disabled).

19 SDRAM tXP timing. tXP will be equal to 2 or 3 system clocks (0/1). (Read only when Mobile DDR
support is disabled).

18: 16 Power-Saving mode (Read only when Mobile DDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“100”: Clock-Stop (CKS)
“101”: Deep Power-Down (DPD)

15: 12 Reserved

11 SDRAM extended tWR timing, tWR will be equal to field-value + 2 clocks (Reserved when
extended timing fields are disabled)

10 SDRAM extended tRP timing, extend tRP with field-value * 2 clocks

9: 8 SDRAM extended tRFC timing, extend tRFC with field-value * 8 clocks

7: 5 Selectable output drive strength (Read only when Mobile DDR support is disabled).
“000”: Full
“001”: One-half
“010”: One-quarter
“011”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile DDR support is dis-
abled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile DDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 196. Status Read Register
31 16 15 0

SRR_16 SRR

Table 194. SDRAM configuration register (SDCFG)
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22.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x025. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 16 Status Read Register when 16-bit DDR memory is used (read only)

15: 0 Status Read Register when 32/64-bit DDR memory is used (read only)

Table 197. PHY configuration register 0 (TCI RTL_PHY only)
31 30 29 28 27 22 21 16 15 8 7 0

R1 R0 P1 P0 TSTCTRL1 TSTCTRL0 MDAJ_DLL1 MDAJ_DLL0

31 Reset DLL 1 (active high)

30 Reset DLL 1 (active high)

29 Power Down DLL 1 (active high)

28 Power Down DLL 1 (active high)

27: 22 Test control DLL 1
tstclkin(1) is connected to SIGI_1 on DDL 1 when bit 26:25 is NOT equal to “00“.
tstclkin(0) is connected to SIGI_0 on DDL 1 when bit 23:22 is NOT equal to “00“.

21: 16 Test control DLL 0

15: 8 Master delay adjustment input DLL 1

7: 0 Master delay adjustment input DLL 0

Table 198. PHY configuration register 1 (TCI RTL_PHY only)
31 24 23 16 15 8 7 0

ADJ_RSYNC ADJ_90 ADJ_DQS1 ADJ_DQS0

31: 24 Slave delay adjustment input for resync clock (Slave 1 DLL 1)

23: 16 Slave delay adjustment input for 90’ clock (Slave 0 DLL 1)

15: 8 Slave delay adjustment input for DQS 1 (Slave 1 DLL 0)

7: 0 Slave delay adjustment input for DQS 0 (Slave 0 DLL 0)

Table 196. Status Read Register
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22.4 Configuration options

Table 199 shows the configuration options of the core (VHDL generics).

Table 199.Configuration options

Generic Function Allowed range Default

fabtech PHY technology selection virtex2, virtex4,
spartan3e, altera

virtex2

memtech Technology selection for DDR FIFOs infered, virtex2, virtex4,
spartan3e, altera

infered

hindex AHB slave index 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area.
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address
space where DDR control register is mapped.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16

MHz DDR clock input frequency in MHz. 10 - 200 100

clkmul, clkdiv The DDR input clock is multiplied with the clkmul
generic and divided with clkdiv to create the final DDR
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200

col Default number of column address bits 9 - 12 9

Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16

pwron Enable SDRAM at power-on initialization 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low,
1=active high

0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50

rskew Additional read data clock skew
Read data clock phase for Altera CycloneIII

-255 - 255.
0 - 9999

0

mobile Enable Mobile DDR support
0: Mobile DDR support disabled
1: Mobile DDR support enabled but not default
2: Mobile DDR support enabled by default
3: Mobile DDR support only (no regular DDR support)

0 - 3 0

confapi Set the PHY configuration register API:
0 = standard register API (conf0 and conf1 disabled).
1 = TCI RTL_PHY register API.

conf0 Reset value for PHY register 0, conf[31:0] 0 - 16#FFFFFFFF# 0

conf1 Reset value for PHY register1, conf[63:32] 0 - 16#FFFFFFFF# 0

regoutput Enables registers on signal going from controller to PHY 0 - 1 0

ddr400 Enables extended timing fields for DDR400 support 0 - 1 1

scantest Enable scan test support 0 - 1 0

phyiconf PHY implementation configuration. This generic sets
technology specific implementation options for the DDR
PHY. Meaning of values depend on the setting of VHDL
genericfabtech.

For fabtech:s virtex4, virtex5, virtex6: phyiconf selects
type of pads used for DDR clock pairs. 0 instantiates a
differiental pad and 1 instantiates two outpads.

0 - 16#FFFFFFFF# 0
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22.5 Implementation

22.5.1 Technology mapping

The core has two technology mapping VHDL generics:memtechandpadtech. The VHDL generic
memtechcontrols the technology used for memory cell implementation. The VHDL genericpadtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

22.5.2 RAM usage

The FIFOs in the core are implemented with thesyncram_2p(with separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends on the DDR data width, set by theddrbits VHDL generic.

Table 200.RAM usage

RAM dimension
(depth x width)

Number of RAMs
(DDR data width 64)

Number of RAMs
(DDR data width 32)

Number of RAMs
(DDR data width 16)

4 x 128 1

4 x 32 4

5 x 64 1

5 x 32 2

6 x 32 2
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22.6 Signal descriptions

Table 201 shows the interface signals of the core (VHDL ports).

22.7 Library dependencies

Table 202 shows libraries used when instantiating the core (VHDL libraries).

Table 201.Signal descriptions

Signal name Type Function Active

RST_DDR Input Reset input for DDR clock domain Low

RST_AHB Input Reset input for AHB clock domain Low

CLK_DDR Input DDR input Clock -

CLK_AHB Input AHB clock -

LOCK Output DDR clock generator locked High

CLKDDRO Internal DDR clock output after clock multiplication

CLKDDRI Clock input for the internal DDR clock domain.
Must be connected to CLKDDRO.

AHBSI Input AHB slave input signals -

AHBSO Output AHB slave output signals -

DDR_CLK[2:0] Output DDR memory clocks (positive) High

DDR_CLKB[2:0] Output DDR memory clocks (negative) Low

DDR_CLK_FB_OUT Output Same a DDR_CLK, but used to drive an external
clock feedback.

-

DDR_CLK_FB Input Clock input for the DDR clock feed-back -

DDR_CKE[1:0] Output DDR memory clock enable High

DDR_CSB[1:0] Output DDR memory chip select Low

DDR_WEB Output DDR memory write enable Low

DDR_RASB Output DDR memory row address strobe Low

DDR_CASB Output DDR memory column address strobe Low

DDR_DM[DDRBITS/8-1:0] Output DDR memory data mask Low

DDR_DQS[DDRBITS/8-1:0] Bidir DDR memory data strobe Low

DDR_AD[13:0] Output DDR memory address bus Low

DDR_BA[1:0] Output DDR memory bank address Low

DDR_DQ[DDRBITS-1:0] BiDir DDR memory data bus -

1) see GRLIB IP Library User’s Manual 2) Polarity selected with the oepol generic

Table 202.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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22.8 Component declaration

component ddrspa
  generic (
    fabtech : integer := 0;
    memtech : integer := 0;
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#f00#;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#fff#;
    MHz     : integer := 100;
    clkmul  : integer := 2;
    clkdiv  : integer := 2;
    col     : integer := 9;
    Mbyte   : integer := 16;
    rstdel  : integer := 200;
    pwron   : integer := 0;
    oepol   : integer := 0;
    ddrbits : integer := 16;
    ahbfreq : integer := 50
  );
  port (
    rst_ddr : in  std_ulogic;
    rst_ahb : in  std_ulogic;
    clk_ddr : in  std_ulogic;
    clk_ahb : in  std_ulogic;
    lock    : out std_ulogic;-- DCM locked
    clkddro : out std_ulogic;-- DCM locked
    clkddri : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb: out std_logic_vector(2 downto 0);
    ddr_clk_fb_out  : out std_logic;
    ddr_clk_fb  : in std_logic;
    ddr_cke : out std_logic_vector(1 downto 0);
    ddr_csb : out std_logic_vector(1 downto 0);
    ddr_web : out std_ulogic;                       -- ddr write enable
    ddr_rasb : out std_ulogic;                       -- ddr ras
    ddr_casb : out std_ulogic;                       -- ddr cas
    ddr_dm : out std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dm
    ddr_dqs : inout std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dqs
    ddr_ad      : out std_logic_vector (13 downto 0);   -- ddr address
    ddr_ba      : out std_logic_vector (1 downto 0);    -- ddr bank address
    ddr_dq : inout  std_logic_vector (ddrbits-1 downto 0) -- ddr data

  );
  end component;
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22.9 Instantiation

This examples shows how the core can be instantiated.

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The SDRAM
registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
  port ( ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb : out std_logic_vector(2 downto 0);
    ddr_clk_fb  : in std_logic;
    ddr_clk_fb_out  : out std_logic;
    ddr_cke : out std_logic_vector(1 downto 0);
    ddr_csb : out std_logic_vector(1 downto 0);
    ddr_web : out std_ulogic;                       -- ddr write enable
    ddr_rasb : out std_ulogic;                       -- ddr ras
    ddr_casb : out std_ulogic;                       -- ddr cas
    ddr_dm : out std_logic_vector (7 downto 0);    -- ddr dm
    ddr_dqs : inout std_logic_vector (7 downto 0);    -- ddr dqs
    ddr_ad      : out std_logic_vector (13 downto 0);   -- ddr address
    ddr_ba      : out std_logic_vector (1 downto 0);    -- ddr bank address
    ddr_dq : inout std_logic_vector (63 downto 0); -- ddr data

);
end;

architecture rtl of mctrl_ex is

  -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock : std_ulogic;

begin

-- DDR controller

ddrc : ddrspa generic map ( fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64)
port map (
rstneg, rstn, lclk, clkm, lock, clkml, clkml,  ahbsi, ahbso(4),
ddr_clk, ddr_clkb, ddr_clk_fb_out, ddr_clk_fb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq);
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23 DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller

23.1 Overview

DDR2SPA is a DDR2 SDRAM controller with AMBA AHB back-end. The controller can interface
16-, 32- or 64-bit wide DDR2 memory with one or two chip selects. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR2 SDRAM access.
The DDR2 controller is programmed by writing to configuration registers mapped located in AHB I/
O address space.

Internally, DDR2SPA consists of a ABH/DDR2 controller and a technology specific DDR2 PHY.
Currently supported technologies for the PHY is Xilinx Virtex4 and Virtex5 and Altera StratixIII. The
modular design of DDR2SPA allows to add support for other target technologies in a simple manner.
The DDR2SPA is used in the following GRLIB template designs:leon3-xilinx-ml5xx, leon3-altera-
ep3sl150.

23.2 Operation

23.2.1 General

Single DDR2 SDRAM chips are typically 4,8 or 16 data bits wide. By putting multiple identical chips
side by side, wider SDRAM memory banks can be built. Since the command signals are common for
all chips, the memories behave as one single wide memory chip.

This memory controller supports one or two (identical) such 16/32/64-bit wide DDR2 SDRAM mem-
ory banks. The size of the memory can be programmed in binary steps between 8 Mbyte and 1024
Mbyte, or between 32 Mbyte and 4096 Mbyte. The DDR data width is set by the DDRBITS generic,
and will affect the width of DM, DQS and DQ signals. The DDR data width does not change the
behavior of the AHB interface, except for data latency.

23.2.2 Data transfers

An AHB read or write access to the controller will cause a corresponding access cycle to the external
DDR2 RAM. The cycle is started by performing an ACTIVATE command to the desired bank and
row, followed by a sequence of READ or WRITE commands (the count depending on memory width
and burst length setting). After the sequence, a PRECHARGE command is performed to deactivate
the SDRAM bank.

Figure 69. DDR2SPA Memory controller connected to AMBA bus and DDR2 SDRAM
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All access types are supported, but only incremental bursts of 32 bit width and incremental bursts of
maximum width (if wider than 32) are handled efficiently. All other bursts are handled as single-
accesses. For maximum throughput, incremental bursts of full AHB width with both alignment and
length corresponding to the burstlen generic should be performed.

The maximum supported access size can be limited by using the ahbbits generic, which is set to the
full AHB bus size by default. Accesses larger than this size are not supported.

The memory controller’s FIFO has room for two write bursts which improves throughput, since the
second write can be written into the FIFO while the first write is being written to the DDR memory.

In systems with high DDR clock frequencies, the controller may have to insert wait states for the min-
imum activate-to-precharge time (tRAS) to expire before performing the precharge command. If a new
AHB access to the same memory row is performed during this time, the controller will perform the
access in the same access cycle.

23.2.3 Initialization

If the pwron VHDL generic is 1, then the DDR2 controller will automatically on start-up perform the
DDR2 initialization sequence as described in the JEDEC DDR2 standard. The VHDL genericscol
andMbyte can be used to also set the correct address decoding after reset. In this case, no further
software initialization is needed except for enabling the auto-refresh function. If power-on initializa-
tion is not enabled, the DDR2 initialization can be started at a later stage by setting bit 16 in the DDR2
control register DDR2CFG1.

23.2.4 Big memory support

The total memory size for each chip select is set through the 3-bit wide SDRAM banks size field,
which can be set in binary steps between 8 Mbyte and 1024 Mbyte. To support setting even larger
memory sizes of 2048 and 4096 Mbyte, a fourth bit has been added to this configuration field.

Only 8 different sizes are supported by the controller, either the lower range of 8 MB - 1 GB, or the
higher range of 32 MB - 4 GB. Which range is determined by the bigmem generic, and can be read by
software through the DDR2CFG2 register.

23.2.5 Configurable DDR2 SDRAM timing parameters

To provide optimum access cycles for different DDR2 devices (and at different frequencies), six tim-
ing parameters can be programmed through the memory configuration registers: TRCD, TCL, TRTP,
TWR, TRP and TRFC. For faster memories (DDR2-533 and higher), the TRAS setting also needs to
be configured to satisfy timing. The value of these fields affects the DDR2RAM timing as described
in table 203. Note that if the CAS latency setting is changed after initialization, this change needs also
to be programmed into the memory chips by executing the Load Mode Register command.

Table 203.DDR2 SDRAM programmable minimum timing parameters

DDR2 SDRAM timing parameter Minimum timing (clocks)

CAS latency, CL TCL + 3

Activate to read/write command (tRCD) TRCD + 2

Read to precharge (tRTP) TRTP + 2

Write recovery time (tWR) TWR-2

Precharge to activate (tRP) TRP + 2

Activate to precharge (tRAS) TRAS + 1

Auto-refresh command period (tRFC) TRFC + 3
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If TRCD, TCL, TRTP, TWR, TRP, TRFC and TRAS are programmed such that the DDR2 specifica-
tions are full filled, the remaining SDRAM timing parameters will also be met. The table below shows
typical settings for 130, 200 and 400 MHz operation and the resulting DDR2 SDRAM timing (in ns):

23.2.6 Refresh

The DDR2SPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the DDR2CFG1 register. Depending on SDRAM type,
the required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh
period is calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in
DDR2CFG1 register.

23.2.7 DDR2 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG1: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LMR command is issued, the PLL Reset bit as programmed in DDR2CFG1, CAS Latency setting as
programmed in DDR2CFG4 and the WR setting from DDR2CFG3 will be used, remaining fields are
fixed: 4 word sequential burst. If the LEMR command is issued, the OCD bits will be used as pro-
grammed in the DDR2CFG1 register, and all other bits are set to zero. The command field will be
cleared after a command has been executed.

23.2.8 Registered SDRAM

Registered memory modules (RDIMM:s) have one cycle extra latency on the control signals due to
the external register. They can be supported with this core by setting the REG bit in the DDR2CFG4
register.

This should not be confused with Fully-Buffered DDR2 memory, which uses a different protocol and
is not supported by this controller.

23.2.9 Clocking

The DDR2 controller operates in two separate clock domains, one domain synchronous to the DDR2
memory and one domain synchronous to the AHB bus. The two clock domains do not have to be the
same or be phase-aligned.

The clock for the DDR2 memory domain is generated from the controller’s ddr_clk input via a tech-
nology-specific PLL component. The multiplication and division factor can be selected via the clk-
mul/clkdiv configuration options. The final DDR2 clock is driven on one output (CLKDDRO), which
should always be connected to the CLKDDRI input.

The ddr_rst input asynchronously resets the PHY layer and the built-in PLL. The ahb_rst input should
be reset simultaneously and then kept in reset until the PLL has locked (indicated by the lock output).

If the AHB and DDR2 clocks are based on the same source clock and are kept phase-aligned by the
PLL, the clock domain transition is synchronous to the least common multiple of the two clock fre-
quencies. In this case, the nosync configuration option can be used to remove the synchronization and
handshaking between the two clock domains, which saves a few cycles of memory access latency. If

Table 204.DDR2 SDRAM example programming

DDR2 SDRAM settings CL tRCD tRC tRP tRFC tRAS

130 MHz: TCL=0,TRCD=0,TRTP=0,TRP=0,TRAS=0,TRFC=7 3 15 76 15 76 61

200 MHz: TCL=0,TRCD=1,TRTP=0,TRP=1,TRAS=1,TRFC=13 3 15 60 15 80 45

400 MHz: TCL=2,TRCD=4,TRTP=1,TRP=4,TRAS=10,TRFC=29 5 15 60 15 80 45
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nosync is not set in this case, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.

The supported DDR2 frequencies depends on the clock-to-output delay of the DDR output registers,
and the internal delay from the DDR input registers to the read data FIFO. Virtex5 can typically run at
200 MHz.

When reading data, the data bus (DQ) signals should ideally be sampled 1/4 cycle after each data
strobe (DQS) edge. How this is achieved is technology-specific as described in the following sections.

23.2.10 Read data clock calibration on Xilinx Virtex

On Xilinx Virtex4/5 the data signal inputs are delayed via the I/O pad IDELAY feature to get the
required 1/4 cycle shift. The delay of each byte lane is tuned independently between 0-63 tap delays,
each tap giving 78 ps delay, and the initial value on startup is set via the generics ddelayb[7:0].

The delays can be tuned at runtime by using the DDR2CFG3 control register. There are two bits in the
control register for each byte. One bit determines if the delay should be increased or decreased and the
other bit is set to perform the update. Setting bit 31 in the DDR2CFG3 register resets the delays to the
initial value.

To increase the calibration range, the controller can add additional read latency cycles. The number of
additional read latency cycles is set by the RD bits in the DDR2CFG3 register.

23.2.11 Read data clock calibration on Altera Stratix

On Altera StratixIII, the technology’s delay chain feature is used to delay bytes of input data in a sim-
ilar fashion as the Virtex case above. The delay of each byte lane is tuned between 0-15 tap delays,
each tap giving 50 ps delay, and the initial value on startup is 0.

The delays are tuned at runtime using the DDR2CFG3 register, and extra read cycles can be added
using DDR2CFG3, the same way as described for Virtex.

The data sampling clock can also be skewed on Stratix to increase the calibration range. This is done
writing the PLL_SKEW bits in the DDR2CFG3 register.

23.2.12 Read data clock calibration on Xilinx Spartan-3

On Spartan3, a clock loop is utilized for sampling of incoming data. The DDR_CLK_FB_OUT port
should therefore be connected to a signal path of equal length as the DDR_CLK + DDR_DQS signal
path. The other end of the signal path is to be connected to the DDR_CLK_FB port. The fed back
clock can then be skewed for alignment with incoming data using the rskew generic. The rskew
generic can be set between +/-255 resulting in a linear +/-360 degree change of the clock skew. Bits
29 and 30 in the DDR2CFG3 register can be used for altering the skew at runtime.

23.2.13 Pads

The DDR2SPA core has technology-specific pads inside the core. The external DDR2 signals should
therefore be connected directly the top-level ports, without any logic in between.

23.3 Fault-tolerant operation (preliminary)

23.3.1 Overview

The memory controller can be configured to support bit-error tolerant operation by setting the ft
generic (not supported in all versions of GRLIB). In this mode, the DDR data bus is widened and the
extra bits are used to store 16 or 32 checkbits corresponding to each 64 bit data word. The variant to
be used can be configured at run-time depending on the connected DDR2 data width and the desired
level of fault tolerance.
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When writing, the controller generates the check bits and stores them along with the data. When read-
ing, the controller will transparently correct any correctable bit errors and provide the corrected data
on the AHB bus. However, the corrected bits are not written back to the memory so external scrubbing
is necessary to avoid uncorrectable errors accumulating over time.

An extra corrected error output signal is asserted when a correctable read error occurs, at the same
cycle as the corrected data is delivered. This can be connected to an interrupt input or to a memory
scrubber. In case of uncorrectable error, this is signaled by giving an AHB error response to the mas-
ter.

23.3.2 Memory setup

In order to support error-correction, the DDR2 data bus needs to be expanded. The different possible
physical configurations are tabulated below. For software, there is no noticeable difference between
these configurations.

If the hardware is built for the wider code, it is still possible to leave the upper half of the checkbit
data bus unconnected and use it for code B.

23.3.3 Error-correction properties

The memory controller uses an interleaved error correcting code which works on nibble (4-bit) units
of data. The codec can be used in two interleaving modes, mode A and mode B.

In mode A, the basic code has 16 data bits, 8 check bits and can correct one nibble error. This code is
interleaved by 4 using the pattern in table 206 to create a code with 64 data bits and 32 check bits.

This code can tolerate one nibble error in each of the A,B,C,D groups shown below. This means that
we can correct 100% of single errors in two adjacent nibbles, or in any 8/16-bit wide data bus lane,
that would correspond to a physical DDR2 chip. The code can also correct 18/23=78% of all possible
random two-nibble errors.

This interleaving pattern was designed to also provide good protection in case of reduced (32/16-bit)
DDR bus width with the same data-checkbit relation, so software will see the exact same checkbits on
diagnostic reads.

In mode B, the basic code has 32 data bits, 8 check bits and can correct one nibble error. This code is
then interleaved by a factor of two to create a code with 64 data bits and 16 check bits.

Note that when configured for a 16-bit wide DDR data bus, code A must be used to get protection
from multi-column errors since each data bus nibbles holds four code word nibbles.

Table 205.Configurations of FT DDR2 memory banks

Data bits (DDRBITS) Checkbits (FTBITS)
Interleaving
modes supported

64 32 A and B

64 16 B only

32 16 A and B

32 8 B only

16 8 A only

Table 206.Mode Ax4 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

C D A B A B C D B A D C D C B A

127:120 119:112 111:104 103:96 95:88 87:80 79:72 71:64

Ccb Dcb Acb Bcb Ccb Dcb Acb Bcb
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23.3.4 Data transfers

The read case behaves the same way as the non-FT counterpart, except a few cycles extra are needed
for error detection and correction. There is no extra time penalty in the case data is corrected com-
pared to the error-free case.

Only writes of 64 bit width or higher will translate directly into write cycles to the DDR memory.
Other types of write accesses will generate a read-modify-write cycle in order to correctly update the
check-bits. In the special case where an uncorrectable error is detected while performing the RMW
cycle, the write is aborted and the incorrect checkbits are left unchanged so they will be detected upon
the next read.

Only bursts of maximum AHB width is supported, other bursts will be treated as single accesses.

The write FIFO only has room for one write (single or burst).

23.3.5 DDR2 behavior

The behavior over the DDR2 interface is largely unchanged, the same timing parameters and setup
applies as for the non-FT case. The checkbit data and data-mask signals follow the same timing as the
corresponding signals for regular data.

23.3.6 Configuration

Whether the memory controller is the FT or the non-FT version can be detected by looking at the FTV
bit in the DDR2CFG2 register.

Checkbits are always written out to memory when writing even if EDACEN is disabled. Which type
of code, A or B, that is used for both read and write is controlled by the CODE field in the
DDR2FTCFG register.

Code checking on read is disabled on reset and is enabled by setting the EDACEN bit in the
DDR2FTCFG register. Before enabling this, the code to be used should be set in the CODE field and
the memory contents should be (re-)initialized.

23.3.7 Diagnostic checkbit access

The checkbits and data can be accessed directly for testing and fault injection. This is done by writing
the address of into the DDR2FTDA register. The check-bits and data can then be read and written via
the DDR2FTDC and DDR2FTDD register. Note that for checkbits the DDR2FTDA address is 64-bit
aligned, while for data it is 32-bit aligned.

After the diagnostic data register has been read, the FT control register bits 31:19 can be read out to
see if there were any correctable or uncorrectable errors detected, and where the correctable errors
were located. For the 64 databit wide version, there is one bit per byte lane describing whether a cor-
rectable error occurred.

23.3.8 Code boundary

The code boundary feature allows you to gradually switch the memory from one interleaving mode to
the other and regenerate the checkbits without stopping normal operation. This can be used when
recovering from memory faults, as explained further below.

Table 207.Mode Bx2 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

A B A B A B A B B A B A B A B A

95:88 87:80 79:72 71:64

Acb Bcb Acb Bcb



AEROFLEX GAISLER 187 GRIP

If the boundary address enable (BAEN) control bit is set, the core will look at the address of each
access, and use the interleaving mode selected in the CODE field for memory accesses above or equal
to the boundary address, and the opposite code for memory accesses below to the boundary address.

If the boundary address update (BAUPD) control bit is also set, the core will shift the boundary
upwards whenever the the address directly above the boundary is written to. Since the written data is
now below the boundary, it will be written using the opposite code. The write can be done with any
size supported by the controller.

23.3.9 Data muxing

When code B is used instead of code A, the upper half of the checkbits are unused. The controller
supports switching in this part of the data bus to replace another faulty part of the bus. To do this, one
sets the DATAMUX field to a value between 1-4 to replace a quarter of the data bus, or to 5 to replace
the active checkbit half.

23.3.10 Memory fault recovery

The above features are designed to, when combined and integrated correctly, make the system cabable
to deal with a permanent fault in an external memory chip.

A basic sequence of events is as follows:

1. The system is running correctly with EDAC enabled and the larger code A is used.

2. A memory chip gets a fault and delivers incorrect data. The DDR2 controller keeps delivering
error-free data but reports a correctable error on every read access.

3. A logging device (such as the memory scrubber core) registers the high frequency of correctable
errors and signals an interrupt.

4. The CPU performs a probe using the DDR2 FT diagnostic registers to confirm that the error is
permanent and on which physical lane the error is.

5. After determining that a permanent fault has occurred, the CPU reconfigures the FTDDR2 con-
troller as follows (all configuration register fields changed with a single register write):

The data muxing control field is set so the top checkbit half replaces the failed part of the data
bus.

The code boundary register is set to the lowest memory address.

The boundary address enable and boundary address update enable bits are set.

The mask correctable error bit is set

6. The memory data and checkbits are now regenerated using locked read-write cycles to use the
smaller code and replace the broken data with the upper half of the checkbit bus. This can be done in
hardware using an IP core, such as the AHB memory scrubber, or by some other means depending on
system design.

7. After the whole memory has been regenerated, the CPU disables the code boundary, changes the
code selection field to code B, and unsets the mask correctable error bit.

After this sequence, the system is now again fully operational, but running with the smaller code and
replacement chip and can again recover from any single-nibble error. Note that during this sequence,
it is possible for the system to operate and other masters can both read and write to memory while the
regeneration is ongoing.
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23.4 Registers

The DDR2SPA core implements between 5 and 12 control registers, depending on the FT generic and
target technology. The registers are mapped into AHB I/O address space defined by the AHB BAR1
of the core. Only 32-bit single-accesses are supported to the registers.

Older revisions of the core only have registers DDRCFG1-4, which are aliased on the following
addresses. For that reason, check the REG5 bit in DDR2CFG2 before using these bits for backward
compatibility.

For backward compatibility, some of the bits in DDR2CFG5 are mirrored in other registers. Writing
to these bits will affect the contents of DDR2CFG5 and vice versa.

Table 208.DDR2 controller registers

Address offset - AHB I/O - BAR1 Register

0x00 DDR2 SDRAM control register (DDR2CFG1)

0x04 DDR2 SDRAM configuration register (DDR2CFG2)

0x08 DDR2 SDRAM control register (DDR2CFG3)

0x0C DDR2 SDRAM control register (DDR2CFG4)

0x10* DDR2 SDRAM control register (DDR2CFG5)

0x14* Reserved

0x18 DDR2 Technology specific register (DDR2TSR1)

0x1C* DDR2 Technology specific register (DDR2TSR2)

0x20 DDR2 FT Configuration Register (FT only) (DDR2FTCFG)

0x24 DDR2 FT Diagnostic Address register (FT only) (DDR2FTDA)

0x28 DDR2 FT Diagnostic Checkbit register (FT only) (DDR2FTDC)

0x2C DDR2 FT Diagnostic Data register (FT only) (DDR2FTDD)

0x30 DDR2 FT Code Boundary Register (FT only) (DDR2FTBND)

* Older DDR2SPA versions contain aliases of DDR2CFG1-4 at these addresses. Therefore, check bit 15 of DDR2CFG2
before using these registers.
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Table 209. DDR2 SRAM control register 1 (DDR2CFG1)
31 30 29 28 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh OCD EMR bank
size 3

(TRCD) SDRAM bank
size2:0

SDRAM col.
size

SDRAM
command

PR IN CE SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 OCD operation

29: 28 Selects Extended mode register (1,2,3)

27 SDRAM banks size bit 3. By enabling this bit the memory size can be set to “1000” = 2048 Mbyte
and “1001” = 4096 Mbyte. See the section on big-memory support.

26 Lowest bit of TRCD field in DDR2CFG4, for backward compatibility

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8
Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte.... “111”= 1024 Mbyte.

22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.

16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared
when initialisation is completed.

15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’
for correct operation.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / DDRCLOCK

Table 210. DDR2 SDRAM configuration register 2 (DDR2CFG2) (read-only)
31 26 25 18 17 16 15 14 12 11 0

RESERVED PHY Tech BIG FTV REG5 Data width DDR Clock frequency

31: 26 Reserved

25: 18 PHY technology identifier (read-only), value 0 is for generic/unknown

17 Big memory support, if ‘1’ then memory can be set between 32 Mbyte and 4 Gbyte, if ‘0’ then mem-
ory size can be set between 8 Mbyte and 1 Gbyte (read-only).

16 Reads ‘1’ if the controller is fault-tolerant version and EDAC registers exist (read-only)

15 Reads ‘1’ if DDR2CFG5 register exists (read-only)

14: 12 SDRAM data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)

11: 0 Frequency of the (external) DDR clock (read-only)

Table 211.DDR2 SDRAM configuration register 3 (DDR2CFG3)
31 30 29 28 27 23 22 18 17 16 15 8 7 0

PLL (TRP) tWR (TRFC) RD inc/dec delay Update delay

31 Reset byte delay

30: 29 PLL_SKEW
Bit 29: Update clock phase
Bit 30: 1 = Inc / 0 = Dec clock phase

28 Lowest bit of DDR2CFG4 TRP field for backward compatibility

27: 23 SDRAM write recovery time. tWR will be equal to field value - 2DDR clock cycles

22: 18 Lower 5 bits of DDR2CFG4 TRFC field for backward compatibility.

17: 16 Number of added read delay cycles, default = 1

15: 8 Set to ‘1’ to increment byte delay, set to ‘0’ to decrement delay

7: 0 Set to ‘1’ to update byte delay
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Table 212. DDR2 SDRAM configuration register 4 (DDR2CFG4)
31 28 27 24 23 22 21 20 14 13 12 11 10 9 8 7 0

inc/dec CB delay Update CB delay RDH REG RESERVED TRTP RES TCL B8 DQS gating offset

31: 28 Set to ‘1’ to increment checkbits byte delay, set to ‘0’ to decrement delay

27: 24 Set to ‘1’ to update checkbits byte delay

23: 22 Read delay high bits, setting this field to N adds 4 x N read delay cycles

21 Registered memory (1 cycle extra latency on control signals)

20: 14 Reserved

13 SDRAM read-to-precharge timing, tRTP will be equal to field value + 2 DDR-clock cycles.

12: 11 Reserved

10: 9 SDRAM CAS latency timing. CL will be equal to field value + 3 DDR-clock cycles.
Note: You must reprogram the memory’s MR register after changing this value

8 Enables address generation for DDR2 chips with eight banks

1=addressess generation for eight banks 0=address generation for four banks

7: 0 Number of half clock cycles for which the DQS input signal will be active after a read command is
given. After this time the DQS signal will be gated off to prevent latching of faulty data. Only valid
if the dqsgating generic is enabled.

Table 213. DDR2 SDRAM configuration register 5 (DDR2CFG5)
31 30 28 27 26 25 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0

R TRP RES TRFC ODT DS RESERVED TRCD RESERVED TRAS

31 Reserved

30: 28 SDRAM tRP timing. tRP will be equal to 2 + field value DDR-clock cycles

27: 26 Reserved

25: 18 SDRAM tRFC timing. tRFC will be equal to 3 + field-value DDR-clock cycles.

17: 16 SDRAM-side on-die termination setting (0=disabled, 1-3=75/150/50 ohm)
Note: You must reprogram the EMR1 register after changing this value.

15 SDRAM-side output drive strength control (0=full strength, 1=half strength)
Note: You must reprogram the EMR1 register after changing this value

14: 11 Reserved

10: 8 SDRAM RAS-to-CAS delay (TRCD). tRCD will be equal to field value + 2 DDR-clock cycles

7: 5 Reserved

4: 0 SDRAM RAS to precharge timing. TRAS will be equal to 2+ field value DDR-clock cycles
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Table 214. DDR2 FT configuration register (DDR2FTCFG)
31 20 19 18 16 15 8 7 5 4 3 2 1 0

Diag data read error location DDERR RE
SE
RV
ED

DATAMUX CEM BAUPD BAEN CODE EDEN

31: 20 Bit field describing location of corrected errors for last diagnostic data read (read-only)

One bit per byte lane in 64+32-bit configuration

19 Set high if last diagnostic data read contained an uncorrectable error (read-only)

18: 16 Data width, read-only field. 001=16+8, 010=32+16, 011=64+32 bits

15: 8 Reserved

7: 5 Data mux control, setting this nonzero switchess in the upper checkbit half with another data lane.

For 64-bit interface

000 = no switching

001 = Data bits 15:0, 010 = Data bits 31:16, 011: Data bits 47:32, 100: Data bits 63:48,

101 = Checkbits 79:64, 110,111 = Undefined

4 If set high, the correctable error signal is masked out.

3 Enable automatic boundary shifting on write

2 Enable the code boundary

1 Code selection, 0=Code A (64+32/32+16/16+8), 1=Code B (64+16/32+8)

0 EDAC Enable

Table 215. DDR2 FT Diagnostic Address (DDR2FTDA)
31 2 1 0

MEMORY ADDRESS RESERVED

31: 3 Address to memory location for checkbit read/write, 64/32-bit aligned for checkbits/data

1: 0 Reserved (address bits always 0 due to alignment)

Table 216. DDR2 FT Diagnostic Checkbits (DDR2FTDC)
31 24 23 16 15 8 7 0

CHECKBITS D CHECKBITS C CHECKBITS B CHECKBITS A

31: 24 Checkbits for part D of 64-bit data word (undefined for code B)

23: 16 Checkbits for part C of 64-bit data word (undefined for code B)

15: 8 Checkbits for part B of 64-bit data word

7: 0 Checkbits for part A of 64-it data word.

Table 217. DDR2 FT Diagnostic Data (DDR2FTDD)
31 0

DATA BITS

31: 0 Uncorrected data bits for 32-bit address set in DDR2FTDA

Table 218. DDR2 FT Boundary Address Registre (DDR2FTBND)
31 3 2 0

CHECKBIT CODE BOUNDARY ADDRESS 0

31: 3 Code boundary address, 64-bit aligned

2: 0 Zero due to alignment
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23.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x02E. The revision
decribed in this document is revision 1. For description of vendor and device identifiers see GRLIB IP
Library User’s Manual.

23.6 Configuration options

Table 219 shows the configuration options of the core (VHDL generics).

Table 219.Configuration options

Generic Function Allowed range Default

fabtech PHY technology selection virtex4, virtex5, stratix3 virtex4

memtech Technology selection for DDR FIFOs inferred, virtex2, virtex4,
spartan3e, altera

inferred

hindex AHB slave index 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area.
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address
space where DDR control register is mapped.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16

MHz DDR clock input frequency in MHz. 10 - 200 100

clkmul, clkdiv The DDR input clock is multiplied with the clkmul
generic and divided with clkdiv to create the final DDR
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200

col Default number of column address bits 9 - 12 9

Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16

pwron Enable SDRAM at power-on initialization 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low,
1=active high

0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50

readdly Additional read latency cycles (used to increase calibra-
tion range)

0-3 1

TRFC Reset value for the tRFC timing parameter in ns. 75-155 130

ddelayb0* Input data delay for bit[7:0] 0-63 0

ddelayb1* Input data delay for bit[15:8] 0-63 0

ddelayb2* Input data delay for bit[23:16] 0-63 0

ddelayb3* Input data delay for bit[31:24] 0-63 0

ddelayb4* Input data delay for bit[39:32] 0-63 0

ddelayb5* Input data delay for bit[47:40] 0-63 0

ddelayb6* Input data delay for bit[55:48] 0-63 0

ddelayb7* Input data delay for bit[63:56] 0-63 0

cbdelayb0* Input data delay for checkbit[7:0] 0-63 0

cbdelayb1* Input data delay for checkbit[15:8] 0-63 0

cbdelayb2* Input data delay for checkbit[23:16] 0-63 0

cbdelayb3* Input data delay for checkbit[31:24] 0-63 0



AEROFLEX GAISLER 193 GRIP

23.7 Implementation

23.7.1 Technology mapping

The core has two technology mapping VHDL generics:memtechandpadtech. The VHDL generic
memtechcontrols the technology used for memory cell implementation. The VHDL genericpadtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

23.7.2 RAM usage

The FIFOs in the core are implemented with thesyncram_2p(with separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends om the DDR data width, set by theddrbits VHDL generic, and the
AHB bus width in the system.

numidelctrl* Number of IDELAYCTRL the core will instantiate - 4

norefclk* Set to 1 if no 200 MHz reference clock is connected to
clkref200 input.

0-1 0

odten Enable odt: 0 = Disabled, 1 = 75Ohm, 2 =150Ohm, 3 =
50Ohm

0-3 0

rskew** Set the phase relationship between the DDR controller
clock and the input data sampling clock. Sets the phase
in ps.

0 - 9999 0

octen** Enable on chip termination: 1 = enabled, 0 = disabled 0 - 1 0

dqsgating*** Enable gating of DQS signals when doing reads. 1 =
enable, 0 = disable

0 - 1 0

nosync Disable insertion of synchronization registers between
AHB clock domain and DDR clock domain. This can be
done if the AHB clock’s rising edges always are in phase
with a rising edge on the DDR clock. If this generic is set
to 1 the clkmul and clkdiv generics should be equal. Oth-
erwise the DDR controller may scale the incoming clock
and loose the clocks’ edge alignment in the process.

0 - 1 0

eightbanks Enables address generation for DDR2 chips with eight
banks. The DDR_BA is extended to 3 bits if set to 1.

0 - 1 0

dqsse Single-ended DQS. The value of this generic is written
to bit 10 in the memory’s Extended Mode register. If this
bit is 1 DQS is used in a single-ended mode. Currently
this bit should only, and must be, set to 1 when the
Stratix2 DDR2 PHY is used. This is the only PHY that
supports single ended DQS without modification.

0 - 1 0

burstlen DDR access burst length in 32-bit words 8,16,32,..,256 8

ahbbits AHB bus width 32,64,128,256 AHBDW

ft Enable fault-tolerant version 0 - 1 0

ftbits Extra DDR data bits used for checkbits 0,8,16,32 0

bigmem Big memory support, changes the range of supported
total memory bank sizes from 8MB-1GB to 32MB-4GB

0 - 1 0

raspipe Enables an extra pipeline stage in the address decoding
to improve timing at the cost of one DDR-cycle latency

0 - 1 0

* only available in Virtex4/5 implementation.
** only available in Altera and Spartan3 implementations.
*** only available on Nextreme/eASIC implementations

Table 219.Configuration options

Generic Function Allowed range Default
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The RAM block usage is tabulated below for the default burst length of 8 words. If the burst length is
doubled, the depths for all the RAMs double as well but the count and width remain the same.

23.7.3 Xilinx Virtex-specific issues

The Xilinx tools require one IDELAYCTRL macro to be instantiated in every region where the IDE-
LAY feature is used. Since the DDR2 PHY uses the IDELAY on every data (DQ) pin, this affects the
DDR2 core. For this purpose, the core has a numidelctrl generic, controlling how many IDELAYC-
TRL’s get instantiated in the PHY.

The tools allow for two ways to do this instantiation:

• Instantiate the same number of IDELAYCTRL as the number of clock regions containing DQ
pins and place the instances manually using UCF LOC constraints.

• Instantiate just one IDELAYCTRL, which the ISE tools will then replicate over all regions.

The second solution is the simplest, since you just need to set the numidelctrl to 1 and no extra con-
straints are needed. However, this approach will not work if IDELAY is used anywhere else in the
FPGA design.

For more information on IDELAYCTRL, see Xilinx Virtex4/5 User’s Guide.

23.7.4 Design tools

To run the design in Altera Quartus 7.2 you have to uncomment the lines in the .qsf file that assigns
the MEMORY_INTERFACE_DATA_PIN_GROUP for the DDR2 interface. These group assign-
ments result in error when Altera Quartus 8.0 is used.

Table 220.Block-RAM usage for default burst length

DDR
width

AHB
width

Write FIFO block-RAM usage Read-FIFO block-RAM usage
Total RAM
countCount Depth Width Count Depth Width

16 32 1 16 32 1 8 32 2

16 64 2 8 32 2 4 32 4

16 128 4 4 32 4 2 32 8

16 256 8 2 32 8 1 32 16

32 32 2 8 32 1 4 64 3

32 64 2 8 32 1 4 64 3

32 128 4 4 32 2 2 64 6

32 256 8 2 32 4 1 64 12

64 32 4 4 32 1 2 128 5

64 64 4 4 32 1 2 128 5

64 128 4 4 32 1 2 128 5

64 256 8 2 32 2 1 128 10
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23.8 Signal descriptions

Table 221 shows the interface signals of the core (VHDL ports).

Table 221.Signal descriptions

Signal name Type Function Active

RST_DDR Input Reset input for the DDR PHY Low

RST_AHB Input Reset input for AHB clock domain Low

CLK_DDR Input DDR input Clock -

CLK_AHB Input AHB clock -

CLKREF200 Input 200 MHz reference clock -

LOCK Output DDR clock generator locked High

CLKDDRO Internal DDR clock output after clock multiplication

CLKDDRI Clock input for the internal DDR clock domain.
Must be connected to CLKDDRO.

AHBSI Input AHB slave input signals -

AHBSO Output AHB slave output signals -

DDR_CLK[2:0] Output DDR memory clocks (positive) High

DDR_CLKB[2:0] Output DDR memory clocks (negative) Low

DDR_CLK_FB_OUT Output DDR data synchronization clock, connect this to a
signal path with equal length of the DDR_CLK trace
+ DDR_DQS trace

-

DDR_CLK_FB Input DDR data synchronization clock, connect this to the
other end of the signal path connected to
DDR_CLK_FB_OUT

-

DDR_CKE[1:0] Output DDR memory clock enable High

DDR_CSB[1:0] Output DDR memory chip select Low

DDR_WEB Output DDR memory write enable Low

DDR_RASB Output DDR memory row address strobe Low

DDR_CASB Output DDR memory column address strobe Low

DDR_DM[(DDRBITS+FTBITS)/8-1:0] Output DDR memory data mask Low

DDR_DQS[(DDRBITS+FTBITS)/8-1:0] Bidir DDR memory data strobe Low

DDR_DQSN[(DDRBITS+FTBITS)/8-1:0] Bidir DDR memory data strobe (inverted) High

DDR_AD[13:0] Output DDR memory address bus Low

DDR_BA[2 or 1:0]3) Output DDR memory bank address Low

DDR_DQ[DDRBITS+FTBITS-1:0] BiDir DDR memory data bus -

DDR_ODT[1:0] Output DDR memory odt Low

1) see GRLIB IP Library User’s Manual
2) Polarity selected with the oepol generic
3) DDR_BA[2:0] if the eightbanks generic is set to 1 else DDR_BA[1:0]
4) Only used on Virtex4/5
5) Only used on Spartan3
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23.9 Library dependencies

Table 222 shows libraries used when instantiating the core (VHDL libraries).

23.10 Component declaration

component ddr2spa
  generic (
    fabtech : integer := 0;
    memtech : integer := 0;
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#f00#;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#fff#;
    MHz     : integer := 100;
    clkmul  : integer := 2;
    clkdiv  : integer := 2;
    col     : integer := 9;
    Mbyte   : integer := 16;
    rstdel  : integer := 200;
    pwron   : integer := 0;
    oepol   : integer := 0;
    ddrbits : integer := 16;
    ahbfreq : integer := 50;

readdly : integer := 1;
ddelayb0: integer := 0;
ddelayb1: integer := 0;
ddelayb2: integer := 0;
ddelayb3: integer := 0;
ddelayb4: integer := 0;
ddelayb5: integer := 0;
ddelayb6: integer := 0;
ddelayb7: integer := 0

  );
  port (
    rst_ddr : in  std_ulogic;
    rst_ahb : in  std_ulogic;
    clk_ddr : in  std_ulogic;
    clk_ahb : in  std_ulogic;

clkref200 : in std_ulogic;
    lock : out std_ulogic;-- DCM locked
    clkddro : out std_ulogic;-- DCM locked
    clkddri : in  std_ulogic;
    ahbsi : in  ahb_slv_in_type;
    ahbso : out ahb_slv_out_type;
    ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb : out std_logic_vector(2 downto 0);
    ddr_cke : out std_logic_vector(1 downto 0);
    ddr_csb : out std_logic_vector(1 downto 0);
    ddr_web : out std_ulogic;                       -- ddr write enable
    ddr_rasb : out std_ulogic;                       -- ddr ras
    ddr_casb : out std_ulogic;                       -- ddr cas
    ddr_dm : out std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dm

ddr_dqs : inout std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dqs
ddr_dqsn : inout std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dqs

    ddr_ad : out std_logic_vector (13 downto 0);   -- ddr address
    ddr_ba : out std_logic_vector (1 downto 0);    -- ddr bank address
    ddr_dq : inout  std_logic_vector (ddrbits-1 downto 0); -- ddr data

ddr_odt : out std_logic_vector(1 downto 0) -- odt
  );
  end component;

Table 222.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component declaration
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23.11 Instantiation

This example shows how the core can be instantiated.

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The DDR2
SDRAM registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
  port (

ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb : out std_logic_vector(2 downto 0);

ddr_cke : out std_logic_vector(1 downto 0);
    ddr_csb : out std_logic_vector(1 downto 0);
    ddr_web : out std_ulogic;                       -- ddr write enable
    ddr_rasb : out std_ulogic;                       -- ddr ras
    ddr_casb : out std_ulogic;                       -- ddr cas
    ddr_dm : out std_logic_vector (7 downto 0);    -- ddr dm

ddr_dqs : inout std_logic_vector (7 downto 0);    -- ddr dqs
ddr_dqsn : inout std_logic_vector (7 downto 0);    -- ddr dqsn

    ddr_ad : out std_logic_vector (13 downto 0);   -- ddr address
    ddr_ba : out std_logic_vector (1 downto 0);    -- ddr bank address
    ddr_dq : inout std_logic_vector (63 downto 0); -- ddr data

ddr_odt : out std_logic_vector (1 downto 0) -- ddr odt
);
end;

architecture rtl of mctrl_ex is

  -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock, clk_200,
signal clk_200 : std_ulogic; -- 200 MHz reference clock
signal ddrclkin, ahbclk : std_ulogic; -- DDR input clock and AMBA sys clock
signal rstn : std_ulogic; -- Synchronous reset signal
signal reset : std_ulogic; -- Asynchronous reset signal

begin

-- DDR controller

ddrc : ddr2spa generic map ( fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64,
readdly => 1, ddelayb0 => 0, ddelayb1 => 0, ddelayb2 => 0, ddelayb3 => 0,
ddelayb4 => 0, ddelayb5 => 0, ddelayb6 => 0, ddelayb7 => 0)
port map (
reset, rstn, ddrclkin, ahbclk, clk_200, lock, clkml, clkml,  ahbsi, ahbso(4),
ddr_clk, ddr_clkb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq, ddr_odt);
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24 DIV32 - Signed/unsigned 64/32 divider module

24.1 Overview

The divider module performs signed/unsigned 64-bit by 32-bit division. It implements the radix-2
non-restoring iterative division algorithm. The division operation takes 36 clock cycles. The divider
leaves no remainder. The result is rounded towards zero. Negative result, zero result and overflow
(according to the overflow detection method B of SPARC V8 Architecture manual) are detected.

24.2 Operation

The division is started when ‘1’ is samples on DIVI.START on positive clock edge. Operands are
latched externally and provided on inputs DIVI.Y, DIVI.OP1 and DIVI.OP2 during the whole opera-
tion. The result appears on the outputs during the clock cycle following the clock cycle after the
DIVO.READY was asserted. Asserting the HOLD input at any time will freeze the operation, until
HOLDN is de-asserted.

24.3 Signal descriptions

Table 223 shows the interface signals of the core (VHDL ports).

Table 223.Signal declarations

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

DIVI Y[32:0] Input Dividend - MSB part

Y[32] - Sign bit

Y[31:0] - Dividend MSB part in 2’s complement
format

High

OP1[32:0] Dividend - LSB part

OP1[32] - Sign bit

OP1[31:0] - Dividend LSB part in 2’s comple-
ment format

High

FLUSH Flush current operation High

SIGNED Signed division High

START Start division High

DIVO READY Output The result is available one clock after the ready
signal is asserted.

High

NREADY The result is available three clock cycles, assum-
ing hold=HIGH, after the nready signal is
asserted.

High

ICC[3:0] Condition codes

ICC[3] - Negative result

ICC[2] - Zero result

ICC[1] - Overflow

ICC[0] - Not used. Always ‘0’.

High

RESULT[31:0] Result High
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24.4 Library dependencies

Table 224 shows libraries used when instantiating the core (VHDL libraries).

24.5 Component declaration

The core has the following component declaration.

component div32
port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    holdn   : in  std_ulogic;
    divi    : in  div32_in_type;
    divo    : out div32_out_type
);
end component;

24.6 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal divi  : div32_in_type;
signal divo  : div32_out_type;

begin

div0 : div32 port map (rst, clk, holdn, divi, divo);

end;

Table 224.Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Divider module signals, component declaration
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25 DSU3 - LEON3 Hardware Debug Support Unit

25.1 Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON3 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or ethernet. The DSU supports multi-processor systems and can handle up to 16 pro-
cessors.

25.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

• executing a breakpoint instruction (ta 1)

• integer unit hardware breakpoint/watchpoint hit (trap 0xb)

• rising edge of the external break signal (DSUBRE)

• setting the break-now (BN) bit in the DSU control register

• a trap that would cause the processor to enter error mode

• occurrence of any, or a selection of traps as defined in the DSU control register

• after a single-step operation

• one of the processors in a multiprocessor system has entered the debug mode

• DSU AHB breakpoint or watchpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 70. LEON3/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON3

JTAGPCIRS232 USB
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The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break (DSUBRE), and the break-now BN bit, to have effect the Break-on-IU-
watchpoint (BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active
after reset and should also be set by debug monitor software (like Aeroflex Gaisler’s GRMON) when
initializing the DSU. When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)

• an output signal (DSUACT) is asserted to indicate the debug state

• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

25.3 AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-
ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode. Note that neither the trace buffer memory nor the
breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.

Table 225.AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR
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25.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [63:32] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the loaded data.
Multiply and divide instructions are entered twice, but only the last entry contains the result. Bit 126
is set for the second entry. For FPU operation producing a double-precision result, the first entry puts
the MSB 32 bits of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed.

Table 226.Instruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle instruc-
tion (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode
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25.5 DSU memory map

The DSU memory map can be seen in table 227 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.

The addresses of the IU registers depends on how many register windows has been implemented:

• %on : 0x300000 + (((psr.cwp * 64) + 32 +n*4) mod (NWINDOWS*64))

• %ln : 0x300000 + (((psr.cwp * 64) + 64 +n*4) mod (NWINDOWS*64))

• %in : 0x300000 + (((psr.cwp * 64) + 96 +n*4) mod (NWINDOWS*64))

• %gn : 0x300000 + (NWINDOWS*64) + n*4

• %fn : 0x301000 +n*4

Table 227.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file

0x300800 - 0x300FFC IU register file check bits (LEON3FT only)

0x301000 - 0x30107C FPU register file

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Data cache data
ASI = 0x1E : Separate snoop tags
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25.6 DSU registers

25.6.1 DSU control register

The DSU is controlled by the DSU control register:

.

[0]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the trace buffer. Remains set
when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error
condition (trap in trap).

[2]: Break on IU watchpoint (BW)- if set, debug mode will be forced on a IU watchpoint (trap 0xb).
[3]: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed.
[4]: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
[5]: Break on error traps (BZ) - if set, will force the processor into debug mode on allexceptthe following traps:

priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.
[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
[7]: EE - value of the external DSUEN signal (read-only)
[8]: EB - value of the external DSUBRE signal (read-only)
[9]: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written with ‘1’, it will

clear the error and halt mode.
[10]: Processor halt (HL). Returns ‘1’ on read when processor is halted. If the processor is in debug mode, setting this bit

will put the processor in halt mode.
[11]: Power down (PW). Returns ‘1’ when processor in in power-down mode.

25.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the processors DSU
control register is set. If cleared, the processor x will resume execution.

[31:16] : Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The bit remains set
after the processor goes into the debug mode.

25.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

Figure 71. DSU control register
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Figure 72. DSU Break and Single Step register

031

BN0

1

BN1

2

BN2

15

BN15

16

SS0

17

SS1

18

SS2SS15 . . .. . .

Figure 73. DSU Debug Mode Mask register

031

ED0

1

ED1

2

ED2

15

ED15 . . .

1617

DM1

18

DM2 DM0. . .DM15



AEROFLEX GAISLER 205 GRIP

[15:0] : Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiprocessor system enters
the debug mode. If 0, the processor x will not enter the debug mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running processors into debug mode
even if it enters debug mode.

25.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

25.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is resumed.

The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

25.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

[7:0]: ASI to be used on diagnostic ASI access

25.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

[0]: Trace enable (EN). Enables the trace buffer.
[1]: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
[2]: Break (BR). If set, the processor will be put in debug mode when AHB trace buffer stops due to AHB breakpoint hit.
[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the

trace buffer.

Figure 74. DSU trap register
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25.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

25.6.9 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)
[1]: LD - break on data load address
[0]: ST - beak on data store address

25.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the size of the trace buffer.

25.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 78. AHB trace buffer index register
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25.8 Technology mapping

DSU3 has one technology mapping generic,tech. This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use
two identical SYNCRAM64 blocks to implement the buffer memory (SYNCRAM64 may then result
in two 32-bit wide memories on the target technology). The depth will depend on the KBYTES
generic, which indicates the total size of trace buffer in Kbytes. If KBYTES = 1 (1 Kbyte), then two
RAM blocks of 64x64 will be used. If KBYTES = 2, then the RAM blocks will be 128x64 and so on.

25.9 Configuration options

Table 228 shows the configuration options of the core (VHDL generics).

25.10 Signal descriptions

Table 229 shows the interface signals of the core (VHDL ports).

Table 228.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00#

ncpu Number of attached processors 1 - 16 1

tbits Number of bits in the time tag counter 2 - 30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in Kbytes. A value of 0
will disable the trace buffer function.

0 - 64 0 (disabled)

Table 229.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

DBGI - Input Debug signals from LEON3 -

DBGO - Output Debug signals to LEON3 -

DSUI ENABLE Input DSU enable High

BREAK Input DSU break High

DSUO ACTIVE Output Debug mode High

PWD[n-1 : 0] Output Clock gating enable for processor [n] High

* see GRLIB IP Library User’s Manual
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25.11 Library dependencies

Table 230 shows libraries used when instantiating the core (VHDL libraries).

25.12 Component declaration

The core has the following component declaration.

component dsu3
  generic (
    hindex : integer := 0;
    haddr : integer := 16#900#;
    hmask : integer := 16#f00#;
    ncpu    : integer := 1;
    tbits   : integer := 30;
    tech    : integer := 0;
    irq     : integer := 0;
    kbytes  : integer := 0
  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type;
    dbgi   : in l3_debug_out_vector(0 to NCPU-1);
    dbgo   : out l3_debug_in_vector(0 to NCPU-1);
    dsui   : in dsu_in_type;
    dsuo   : out dsu_out_type
  );
  end component;

25.13 Instantiation

This example shows how the core can be instantiated.

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

constant NCPU : integer := 1; -- select number of processors

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi   : irq_in_vector(0 to NCPU-1);
signal irqo   : irq_out_vector(0 to NCPU-1);

signal dbgi : l3_debug_in_vector(0 to NCPU-1);
signal dbgo : l3_debug_out_vector(0 to NCPU-1);

signal dsui   : dsu_in_type;

Table 230.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals Component declaration, signals declaration
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signal dsuo   : dsu_out_type;

.
begin

cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s-- LEON3 processor
    generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
    port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
    irqi(i) <= leon3o(i).irq; leon3i(i).irq <= irqo(i);
end generate;

dsu0 : dsu3-- LEON3 Debug Support Unit
    generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
    port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
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26 DSU4 - LEON4 Hardware Debug Support Unit

26.1 Overview

To simplify debugging on target hardware, the LEON4 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON4 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or ethernet. The DSU supports multi-processor systems and can handle up to 16 pro-
cessors.

26.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

• executing a breakpoint instruction (ta 1)

• integer unit hardware breakpoint/watchpoint hit (trap 0xb)

• rising edge of the external break signal (DSUBRE)

• setting the break-now (BN) bit in the DSU control register

• a trap that would cause the processor to enter error mode

• occurrence of any, or a selection of traps as defined in the DSU control register

• after a single-step operation

• one of the processors in a multiprocessor system has entered the debug mode

• DSU AHB breakpoint or watchpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 81. LEON4/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON4

JTAGPCIRS232 USB
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The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break, and the break-now BN bit, to have effect the Break-on-IU-watchpoint
(BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active after reset
and should also be set by debug monitor software (like Aerofle Gaisler’s GRMON) when initializing
the DSU. When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)

• an output signal (DSUACT) is asserted to indicate the debug state

• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

26.3 AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128, 160 or 224 bits wide, depending on the AHB bus width. The information stored is indi-
cated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-

Table 231.AHB Trace buffer data allocation

Bits Name Definition

223:160 Load/Store data AHB HRDATA/HWDATA(127:64)

159:129 Load/Store data AHB HRDATA/HWDATA(63:32)

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA/HWDATA(31:0)

31:0 Load/Store address AHB HADDR
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ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode, unless the trace force bit (TF) in the trace control
register is set. If the trace force bit is set, the trace buffer is activated as long as the enable bit is set.
The force bit is reset if an AHB breakpoint is hit and can also be cleared by software. Note that neither
the trace buffer memory nor the breakpoint registers (see below) can be read/written by software
when the trace buffer is enabled.

The DSU has an internal time tag counter and this counter is frozen when the processor enters debug
mode. When AHB tracing is performed in debug mode (using the trace force bit) it may be desirable
to also enable the time tag counter. This can be done using the timer enable bit (TE). Note that the
time tag is also used for the instruction trace buffer and the timer enable bit should only be set when
using the DSU as an AHB trace buffer only, and not when performing profiling or software debug-
ging. The timer enable bit is reset on the same events as the trace force bit.

26.3.1 AHB trace buffer filters

The DSU can be implemented with filters that can be applied to the AHB trace buffer, breakpoints and
watchpoints. If implemented, these filters are controlled via the AHB trace buffer filter control and
AHB trace buffer filter mask registers. The fields in these registers allows masking access characteris-
tics such as master, slave, read, write and address range so that accesses that correspond to the speci-
fied mask are not written into the trace buffer. Address range masking is done using the second AHB
breakpoint register set. The values of the LD and ST fields of this register has no effect on filtering.

26.3.2 AHB statistics

The DSU can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the DSU will assert outputs that are suitable to connect to a LEON4 statistics unit
(L4STAT). The statistical outputs can be filtered by the AHB trace buffer filters, this is controlled by
the Performance counter Filter bit (PF) in the AHB trace buffer filter control register. The DSU can
collect data for the events listed in table 232 below.

Table 232.AHB events

Event Description Note

idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and
slave has asserted HREADY.

busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and
slave has asserted HREADY.

nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs
and slave has asserted HREADY.

seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave
inputs and slave has asserted HREADY.

read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is low.

write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is high.

hsize[5:0] Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4WORD hsize[4], or 8WORD (hsize[5]).

ws Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response

split SPLIT response Active when master receives SPLIT response
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26.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of atomic load/
store instructions, which are entered twice (one for the load and one for the store operation). Bits
[63:32] in the buffer correspond to the store address and the loaded data for load instructions. Bit 126
is set for the second entry.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed. The traced instructions can optionally be filtered on instruction types. Which instructions
are traced is defined in the instruction trace register [31:28], as defined in the table below:

spdel SPLIT delay Active during the time a master waits to be granted access to the bus
after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT response is
detected, the core will save the master index. This event will then be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being granted
access to the bus before the SPLIT:ed master is granted again after
receiving SPLIT complete.

If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave
inputs.

Table 233.Instruction trace buffer data allocation

Bits Name Definition

126 Multi-cycle instruction Set to ‘1’ on the second instance of a multi-cycle instruction

125:96 Time tag The value of the DSU time tag counter

95:64 Result or Store address/data Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode

Table 234.Trace filter operation

Trace filter Instructions traced

0x0 All instructions

0x1 SPARC Format 2 instructions

0x2 Control-flow changes. All Call, branch and trap instructions including branch targets

0x4 SPARC Format 1 instructions (CALL)

0x8 SPARC Format 3 instructions except LOAD or STORE

0xC SPARC Format 3 LOAD or STORE instructions

Table 232.AHB events

Event Description Note
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26.5 DSU memory map

The DSU memory map can be seen in table 235 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.

Table 235.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000048 AHB trace buffer filter control register

0x00004c AHB trace buffer filter mask register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x000070 Instruction count register

0x000080 AHB watchpoint control register

0x000090 - 0x00009C AHB watchpoint 1 data registers

0x0000A0 - 0x0000AC AHB watchpoint 1 mask registers

0x0000B0 - 0x0000BC AHB watchpoint 2 data registers

0x0000C0 - 0x0000CC AHB watchpoint 2 mask registers

0x100000 - 0x10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file.

The addresses of the IU registers depends on how many register windows has been
implemented:

%on: 0x300000 + (((psr.cwp * 64) + 32 +n*4) mod (NWINDOWS*64))

%ln: 0x300000 + (((psr.cwp * 64) + 64 +n*4) mod (NWINDOWS*64))

%in: 0x300000 + (((psr.cwp * 64) + 96 +n*4) mod (NWINDOWS*64))

%gn: 0x300000 + (NWINDOWS*64) + n*4

%fn: 0x301000 +n*4

0x300800 - 0x300FFC IU register file check bits (LEON4FT only)

0x301000 - 0x30107C FPU register file

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register
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26.6 DSU registers

26.6.1 DSU control register

The DSU is controlled by the DSU control register:

26.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Data cache data
ASI = 0x1E : Separate snoop tags

Table 236.DSU control register
31 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PW HL PE EB EE DM BZ BX BS BW BE TE

31: 12 Reserved

11 Power down (PW) - Returns ‘1’ when processor is in power-down mode.

10 Processor halt (HL) - Returns ‘1’ on read when processor is halted. If the processor is in debug
mode, setting this bit will put the processor in halt mode.

9 Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written
with ‘1’, it will clear the error and halt mode.

8 External Break (EB) - Value of the external DSUBRE signal (read-only)

7 External Enable (EE) - Value of the external DSUEN signal (read-only)

6 Debug mode (DM) - Indicates when the processor has entered debug mode (read-only).

5 Break on error traps (BZ) - if set, will force the processor into debug mode on allexcept the follow-
ing traps: priviledged_instruction, fpu_disabled, window_overflow, window_underflow,
asynchronous_interrupt, ticc_trap.

4 Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.

3 Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta
1) is executed.

2 Break on IU watchpoint (BW) - if set, debug mode will be forced on a IU watchpoint (trap 0xb).

1 Break on error (BE) - if set, will force the processor to debug mode when the processor would have
entered error condition (trap in trap).

0 Trace enable (TE) - Enables instruction tracing. If set the instructions will be stored in the trace
buffer. Remains set when then processor enters debug or error mode

Table 237.DSU Break and Single Step register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0] BN[15:0]

31: 16 Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The
bit remains set after the processor goes into the debug mode.

15: 0 Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the
processors DSU control register is set. If cleared, the processor x will resume execution.

Table 235.DSU memory map

Address offset Register
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26.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON4 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

26.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

26.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode (unless the timer enable bit in the AHB
trace buffer control register is set), and restarted when execution is resumed.

The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

26.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

Table 238.DSU Debug Mode Mask register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM[15:0] ED[15:0]

31: 16 Debug mode mask (DMx) - If set, the corresponding processor will not be able to force running
processors into debug mode even if it enters debug mode.

15: 0 Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiproces-
sor system enters the debug mode. If 0, the processor x will not enter the debug mode.

Table 239.DSU Trap register
31 13 12 11 4 3 0

RESERVED EM TRAPTYPE 0000

31: 13 RESERVED

12 Error mode (EM) - Set if the trap would have cause the processor to enter error mode.

11: 4 Trap type (TRAPTYPE) - 8-bit SPARC trap type

3: 0 Read as 0x0

Table 240.Trace buffer time tag counter
31 30 29 0

0b00 TIMETAG

31: 30 Read as 0b00

29: 0 DSU Time Tag Value (TIMETAG)

Table 241.ASI diagnostic access register
31 8 7 0

RESERVED ASI
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26.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

26.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

26.6.9 AHB trace buffer filter control register

The trace buffer filter control register is only available if the core has been implemented with support
for AHB trace buffer filtering.

31: 8 RESERVED

7: 0 ASI (ASI) - ASI to be used on diagnostic ASI access

Table 242.AHB trace buffer control register
31 16 15 8 7 6 5 4 3 2 1 0

DCNT RESERVED SF TE TF BW BR DM EN

31: 16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15: 8 RESERVED

7 Sample Force (SF) - If this bit is written to ‘1’ it will have the same effect on the AHB trace buffer as
if HREADY was asserted on the bus at the same time as a sequential or non-sequential transfer is
made. This means that setting this bit to ‘1’ will cause the values in the trace buffer’s sample regis-
ters to be written into the trace buffer, and new values will be sampled into the registers. This bit will
automatically be cleared after one clock cycle.

Writing to the trace buffer still requires that the trace buffer is enabled (EN bit set to ‘1’) and that the
CPU is not in debug mode or that tracing is forced (TF bit set to ‘1’). This functionality is primarily
of interest when the trace buffer is tracing a separate bus and the traced bus appears to have frozen.

6 Timer enable (TE) - Activates time tag counter also in debug mode.

5 Trace force (TF) - Activates trace buffer also in debug mode. Note that the trace buffer must be disa-
bled when reading out trace buffer data via the core’s register interface.

4: 3 Bus width (BW) - This value corresponds to log2(Supported bus width / 32)

2 Break (BR) - If set, the processor will be put in debug mode when AHB trace buffer stops due to
AHB breakpoint hit.

1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.

0 Trace enable (EN) - Enables the trace buffer.

Table 243.AHB trace buffer index register
31 4 3 2 1 0

INDEX 0x0

31: 4 Trace buffer index counter (INDEX) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

3: 0 Read as 0x0

Table 244.AHB trace buffer filter control register
31 14 13 12 11 10 9 8 7 4 3 2 1 0

RESERVED WPF R BPF RESERVED PF AF FR FW

31: 14 RESERVED

Table 241.ASI diagnostic access register
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26.6.10 AHB trace buffer filter mask register

The trace buffer filter mask register is only available if the core has been implemented with support
for AHB trace buffer filtering.

26.6.11 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

13: 12 AHB watchpoint filtering (WPF) - Bit 13 of this field applies to AHB watchpoint 2 and bit 12
applies to AHB watchpoint 1. If the WPF bit for a watchpoint is set to ‘1’ then the watchpoint will
not trigger unless the access also passes through the filter. This functionality can be used to, for
instance, set a AHB watchpoint that only triggers if a specified master performs an access to a spec-
ified slave.

11: 10 RESERVED

9: 8 AHB breakpoint filtering (BPF) - Bit 9 of this field applies to AHB breakpoint 2 and bit 8 applies to
AHB breakpoint 1. If the BPF bit for a breakpoint is set to ‘1’ then the breakpoint will not trigger
unless the access also passes through the filter. This functionality can be used to, for instance, set a
AHB breakpoint that only triggers if a specified master performs an access to a specified slave. Note
that if a AHB breakpoint is coupled with an AHB watchpoint then the setting of the corresponding
bit in this field has no effect.

7: 4 RESERVED

3 Performance counter Filter (PF) - If this bit is set to ‘1’, the cores performance counter (statistical)
outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

2 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer.

1 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer.

0 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.

Table 245.AHB trace buffer filter mask register
31 16 15 0

SMASK[15:0] MMASK[15:0]

31: 16 Slave Mask (SMASK) - If SMASK[n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.

15: 0 Master Mask (MMASK) - If MMASK[n] is set to ‘1’, the trace buffer will not save accesses per-
formed by master n.

Table 246.AHB trace buffer break address register
31 2 1 0

BADDR[31:2] 0b00

31: 2 Break point address (BADDR) - Bits 31:2 of breakpoint address

1: 0 Read as 0b00

Table 247.AHB trace buffer break mask register
31 2 1 0

BMASK[31:2] LD ST

Table 244.AHB trace buffer filter control register
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26.6.12 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

26.6.13 Instruction count register

The DSU contains an instruction count register to allow profiling of application, or generation of
debug mode after a certain clocks or instructions. The instruction count register consists of a 29-bit
down-counter, which is decremented on either each clock (IC=0) or on each executed instruction
(IC=1). In profiling mode (PE=1), the counter will set to all ones after an underflow without generat-
ing a processor break. In this mode, the counter can be periodically polled and statistics can be formed
on CPI (clocks per instructions). In non-profiling mode (PE=0), the processor will be put in debug
mode when the counter underflows. This allows a debug tool such as GRMON to execute a defined
number of instructions, or for a defined number of clocks.

26.6.14 AHB watchpoint control register

The DSU has two AHB watchpoints that can be used to freeze the AHB tracebuffer, or put the proces-
sor in debug mode, when a specified data pattern occurs on the AMBA bus. These watchpoints can
also be coupled with the two AHB breakpoints so that a watchpoint will not trigger unless the AHB
breakpoint is triggered. This also means that when a watchpoint is coupled with an AHB breakpoint,
the breakpoint will not cause an AHB tracebuffer freeze, or put the processor(s), in debug mode
unless also the watchpoint is triggered.

31: 2 Breakpoint mask (BMASK) - (see text)

1 Load (LD) - Break on data load address

0 Store (ST) - Break on data store address

Table 248.Instruction trace control register
31 16 15 0

ITRACE CFG RESERVED ITPOINTER

31: 28 Trace filter configuration

27: 16 RESERVED

15: 0 Instruction trace pointer (ITPOINTER) - Note that the number of bits actually implemented depends
on the size of the trace buffer

Table 249.Instruction count register
31 30 29 28 0

CE IC PE ICOUNT[28:0]

31 Counter Enable (CE) - Counter enable

30 Instruction Count (IC) - Instruction (1) or clock (0) counting

29 Profiling Enable (PE) - Profiling enable

28: 0 Instruction count (ICOUNT) - Instruction count

Table 250.AHB watchpoint control register
31 7 6 5 4 3 2 1 0

RESERVED IN CP EN R IN CP EN

31: 7 RESERVED

Table 247.AHB trace buffer break mask register
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26.6.15 AHB watchpoint data and mask registers

The AHB watchpoint data and mask registers specify the data pattern for an AHB watchpoint. A
watchpoint hit is used to freeze the trace buffer by automatically clearing the enable bit. A watchpoint
hit can also be used to force the processor(s) to debug mode.

A mask register is associated with each data register. Only data bits with the corresponding mask bit
set to ‘1’ are compared during watchpoint detection.

In a system with 64-bit bus width only half of the data and mask registers must be written. For AHB
watchpoint 1, a data value with 64-bits would be written to the AHB watchpoint data registers at off-
sets 0x98 and 0x9C. The corresponding mask bits would be set in mask registers at offsets 0xA8 and
0xAC.

In most GRLIB systems with wide AMBA buses, the data for an access size that is less than the full
bus width will be replicated over the full bus. For instance, a 32-bit write access from a LEON proces-
sor on a 64-bit bus will place the same data on bus bits 64:32 and 31:0.

26.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

26.8 Technology mapping

DSU4 has one technology mapping generic,tech. This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use

6 Invert (IN) - Invert AHB watchpoint 2. If this bit is set the watchpoint will trigger if data on the AHB
bus does NOT match the specified data pattern (typically only usable if the watchpoint has been cou-
pled with an address by setting the CP field).

5 Couple (CP) - Couple AHB watchpoint 2 with AHB breakpoint 1

4 Enable (EN) - Enable AHB watchpoint 2

3 RESERVED

2 Invert (IN) - Invert AHB watchpoint 1. If this bit is set the watchpoint will trigger if data on the AHB
bus does NOT match the specified data pattern (typically only usable if the watchpoint has been cou-
pled with an address by setting the CP field).

1 Couple (CP) - Couple AHB watchpoint 1 with AHB breakpoint 1

0 Enable (EN) - Enable AHB watchpoint 1

Table 251.AHB watchpoint data register
31 0

DATA[127-n*32 : 96-n*32]

31: 0 AHB watchpoint data (DATA) - Specifies the data pattern of one word for an AHB watchpoint. The
lower part of the register address specifies with part of the bus that the register value will be com-
pared against: Offset 0x0 specifies the data value for AHB bus bits 127:96, 0x4 for bits 95:64, 0x8
for 63:32 and offset 0xC for bits 31:0.

Table 252.AHB watchpoint mask register
31 0

MASK[127-n*32 : 96-n*32]

31: 0 AHB watchpoint mask (MASK) - Specifies the mask to select bits for comparison out of one word
for an AHB watchpoint. The lower part of the register address specifies with part of the bus that the
register value will be compared against: Offset 0x0 specifies the data value for AHB bus bits 127:96,
0x4 for bits 95:64, 0x8 for 63:32 and offset 0xC for bits 31:0.

Table 250.AHB watchpoint control register
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two identical SYNCRAM64 blocks to implement the buffer memory (SYNCRAM64 may then result
in two 32-bit wide memories on the target technology, depending on the technology map), with one
additional 32-bit wide SYNCRAM if the system’s AMBA data bus width is 64-bits, and also one
additional 64-bit wide SYNCRAM if the system’s AMBA data bus width exceeds 64 bits.

The depth of the RAMs depends on the KBYTES generic, which indicates the total size of trace
buffer in Kbytes. If KBYTES = 1 (1 Kbyte), then the depth will be 64. If KBYTES = 2, then the RAM
depth will be 128 and so on.

26.9 Configuration options

Table 253 shows the configuration options of the core (VHDL generics).

Table 253.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00#

ncpu Number of attached processors 1 - 16 1

tbits Number of bits in the time tag counter 2 - 30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in KiB. A value of 0 will
disable the trace buffer function.

0 - 64 0 (disabled)

bwidth Traced AHB bus width 32, 64, 128 64

ahbpf AHB performance counters and filtering. Ifahbpf is
non-zero the core will support AHB trace buffer fil-
tering. Ifahbpf is larger than 1 then the core’s statis-
tical outputs will be enabled.

0 - 2 0

ahbwp AHB watchpoint enable. Ifahbwp is non-zero
(default) then the core will support AHB watch-
points (also referred to as AHB data breakpoints).
Pipeline registers will be added whenahbwpis set to
2 (default value), one register for each bit on the
AMBA data bus. This setting is recommended in
order to improve timing but has a cost in area. The
pipeline registers will also lead to the AHB watch-
point being triggered one cycle later.
It is recommended to leave this functionality
enabled. However, the added logic can create critical
timing paths from the AMBA data vectors and so
AHB watchpoints can be completely disabled by set-
ting this generic to 0.

0 - 2 2



AEROFLEX GAISLER 223 GRIP

26.10 Signal descriptions

Table 254 shows the interface signals of the core (VHDL ports).

26.11 Library dependencies

Table 255 shows libraries used when instantiating the core (VHDL libraries).

26.12 Component declaration

The core has the following component declaration.

component dsu4
  generic (
    hindex : integer := 0;
    haddr : integer := 16#900#;
    hmask : integer := 16#f00#;
    ncpu    : integer := 1;
    tbits   : integer := 30;
    tech    : integer := 0;
    irq     : integer := 0;
    kbytes  : integer := 0
  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type;
    dbgi   : in l4_debug_out_vector(0 to NCPU-1);
    dbgo   : out l4_debug_in_vector(0 to NCPU-1);
    dsui   : in dsu4_in_type;
    dsuo   : out dsu4_out_type
  );

Table 254.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

DBGI - Input Debug signals from LEON4 -

DBGO - Output Debug signals to LEON4 -

DSUI ENABLE Input DSU enable High

BREAK Input DSU break High

DSUO ACTIVE Output Debug mode High

PWD[n-1 : 0] Output Clock gating enable for processor [n] High

ASTAT (record) Output AHB statistic/performance counter events -

* see GRLIB IP Library User’s Manual

Table 255.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON4 Component, signals Component declaration, signals declaration
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  end component;

26.13 Instantiation

This example shows how the core can be instantiated.

The DSU is always instantiated with at least one LEON4 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon4.all;

constant NCPU : integer := 1; -- select number of processors

signal leon4i : l4_in_vector(0 to NCPU-1);
signal leon4o : l4_out_vector(0 to NCPU-1);
signal irqi   : irq_in_vector(0 to NCPU-1);
signal irqo   : irq_out_vector(0 to NCPU-1);

signal dbgi : l4_debug_in_vector(0 to NCPU-1);
signal dbgo : l4_debug_out_vector(0 to NCPU-1);

signal dsui   : dsu4_in_type;
signal dsuo   : dsu4_out_type;

.
begin

cpu : for i in 0 to NCPU-1 generate
    u0 : leon4s -- LEON4 processor
    generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
    port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
    irqi(i) <= leon4o(i).irq; leon4i(i).irq <= irqo(i);
end generate;

dsu0 : dsu4 -- LEON4 Debug Support Unit
    generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
    port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
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27 FTAHBRAM - On-chip SRAM with EDAC and AHB interface

27.1 Overview

The FTAHBRAM core is a version of the AHBRAM core with added Error Detection And Correction
(EDAC). The on-chip memory is accessed via an AMBA AHB slave interface. The memory imple-
ments 2 kbytes of data (configured via thekbytesVHDL generics). Registers are accessed via an
AMB APB interface.

The on-chip memory implements volatile memory that is protected by means of Error Detection And
Correction (EDAC). One error can be corrected and two errors can be detected, which is performed by
using a (32, 7) BCH code. Some of the optional features available are single error counter, diagnostic
reads and writes and autoscrubbing (automatic correction of single errors during reads). Configuration
is performed via a configuration register.

Figure 82 shows a block diagram of the internals of the memory.

27.2 Operation

The on-chip fault tolerant memory is accessed through an AMBA AHB slave interface.

The memory address range is configurable with VHDL generics. As for the standard AHB RAM, the
memory technology and size is configurable through the tech and kbytes VHDL generics. The mini-
mum size is 1 kb and the maximum is technology dependent but the values can only be increased in
binary steps.

Run-time configuration is done by writing to a configuration register accessed through an AMBA
APB interface.

The address of the interface and the available options are configured with VHDL generics. The EDAC
functionality can be completely removed by setting the edacen VHDL generic to zero during synthe-
sis. The APB interface is also removed since it is redundant without EDAC.

The following can be configured during run-time: EDAC can be enabled and disabled. When it is dis-
abled, reads and writes will behave as the standard memory. Read and write diagnostics can be con-
trolled through separate bits. The single error counter can be reset.

AHB/APB
Bridge

AHB Bus

APB Bus

FTAHBRAM

AHB Slave
Interface

Syncram

Encoding

cbdata

Decoding

data

error

Mux

Configuration Register

Config bits TCB

cb

Mux

Figure 82. Block diagram
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If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the mem-
ory area and read data will appear on the AHB bus immediately after it arrives from memory. If
EDAC is enabled write data is passed to an encoder which outputs a 7-bit checksum. The checksum is
stored together with the data in memory and the whole operation is performed without any added
waitstates. This applies to word stores (32-bit). If a byte or halfword store is performed, the whole
word to which the byte or halfword belongs must first be read from memory (read - modify - write). A
new checksum is calculated when the new data is placed in the word and both data and checksum are
stored in memory. This is done with 1 - 2 additional waitstates compared to the non EDAC case.

Reads with EDAC disabled are performed with 0 or 1 waitstates while there could also be 2 waitstates
when EDAC is enabled. There is no difference between word and subword reads. Table 256 shows a
summary of the number of waitstates for the different operations with and without EDAC.

If the ahbpipe VHDL generic is set to 1, pipeline registers are enabled for the AHB input signals. If
the pipeline registers are enabled, one extra waitstate should be added to the read and subword write
cases in Table 256.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and appears
on the bus the next cycle if no uncorrectable error is detected. The decoding is done by comparing the
stored checksum with a new one which is calculated from the stored data. This decoding is also done
during the read phase for a subword write. A so-called syndrome is generated from the comparison
between the checksum and it determines the number of errors that occured. One error is automatically
corrected and this situation is not visible on the bus. Two or more detected errors cannot be corrected
so the operation is aborted and the required two cycle error response is given on the AHB bus (see the
AMBA manual for more details). If no errors are detected data is passed through the decoder unal-
tered.

As mentioned earlier the memory provides read and write diagnostics when EDAC is enabled. When
write diagnostics are enabled, the calculated checksum is not stored in memory during the write
phase. Instead, the TCB field from the configuration register is used. In the same manner, if read diag-
nostics are enabled, the stored checksum from memory is stored in the TCB field during a read (and
also during a subword write). This way, the EDAC functionality can be tested during run-time. Note
that checkbits are stored in TCB during reads and subword writes even if a multiple error is detected.

An additional feature is the single error counter which can be enabled with theerrcnten VHDL
generic. A single error counter (SEC) field is present in the configuration register, and is incremented
each time a single databit error is encountered (reads or subword writes). The number of bits of this
counter is 8, set with thecntbitsVHDL generic. It is accessed through the configuration register. Each
counter bit can be reset to zero by writing a one to it. The counter saturates at the value 28 - 1 (2cntbits

- 1). Each time a single error is detected the aramo.ce signal will be driven high for one cycle. This
signal should be connected to an AHB status register which stores information and generates inter-
rupts (see the AHB Status register documentation for more information).

Autoscrubbing is an error handling feature which is enabled with theautoscrubVHDL generic and
cannot be controlled through the configuration register. If enabled, every single error encountered dur-
ing a read results in the word being written back with the error corrected and new checkbits generated.
It is not visible externally except for that it can generate an extra waitstate. This happens if the read is
followed by an odd numbered read in a burst sequence of reads or if a subword write follows. These
situations are very rare during normal operation so the total timing impact is negligible. The aramo.ce
signal is normally used to generate interrupts which starts an interrupt routine that corrects errors.

Table 256.Summary of the number of waitstates for the different operations for the memory.

Operation Waitstates with EDAC Disabled Waitstates with EDAC Enabled

Read 0 - 1 0 - 2

Word write 0 0

Subword write 0 1 - 2
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Since this is not necessary when autoscrubbing is enabled, aramo.ce should not be connected to an
AHB status register or the interrupt should be disabled in the interrupt controller.

27.3 Registers

The core is programmed through registers mapped into APB address space.

27.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x050. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 257.FTAHBRAM registers

APB Address offset Register

0x0 Configuration Register

Table 258. Configuration Register
31 13+8 12+8 13 12 10 9 8 7 6 0

SEC MEMSIZE WB RB EN TCB

12+8: 13 Single error counter (SEC): Incremented each time a single error is corrected (includes errors on
checkbits). Each bit can be set to zero by writing a one to it. This feature is only available if the errc-
nten VHDL generic is set.

12: 10 Log2 of the current memory size

9 Write Bypass (WB): When set, the TCB field is stored as check bits when a write is performed to the
memory.

8 Read Bypass (RB) : When set during a read or subword write, the check bits loaded from memory
are stored in the TCB field.

7 EDAC Enable (EN): When set, the EDAC is used otherwise it is bypassed during read and write
operations.

6: 0 Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded with the
check bits during a read operation when the RB bit is set.

Any unused most significant bits are reserved. Always read as ‘000...0’.

All fields except TCB are initialised at reset. The EDAC is initally disabled (EN = 0), which also applies to diagnos-
tics fiels (RB and WB are zero).

When available, the single error counter (SEC) field is cleared to zero.
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27.5 Configuration options

Table 259 shows the configuration options of the core (VHDL generics).

27.6 Signal descriptions

Table 260 shows the interface signals of the core (VHDL ports).

27.7 Library dependencies

Tabel 261 shows libraries used when instantiating the core (VHDL libraries).

Table 259.Configuration options

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used to
access the memory.

0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0

hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#

tech Memory technology 0 to NTECH 0

kbytes SRAM size in kbytes 1 to targetdep. 1

pindex Selects which APB select signal (PSEL) will be used to
access the memory configuration registers

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

edacen Enable (1)/Disable (0) on-chip EDAC 0 to 1 0

autoscrub Automatically store back corrected data with new check-
bits during a read when a single error is detected. Is
ignored when edacen is deasserted.

0 to 1 0

errcnten Enables a single error counter 0 to 1 0

cntbits number of bits in the single error counter 1 to 8 1

ahbpipe Enable pipeline register on AHB input signals 0 to 1 0

Table 260.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ARAMO CE Output Single error detected High

* see GRLIB IP Library User’s Manual

Table 261.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Signals and component declaration
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27.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
library gaisler;

use grlib.amba.all;
use gaisler.misc.all;

entity ftram_ex is
 port(

 rst : std_ulogic;
 clk : std_ulogic;

 .... --others signals
 );

end;

architecture rtl of ftram_ex is

--AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_type;
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector;

--other needed signals here
signal stati : ahbstat_in_type;
signal aramo  : ahbram_out_type;

begin

--other component instantiations here
...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbso, stati, apbi, apbo(13));

stati.cerror(1 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,

 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);

stati.cerror(0) <= aramo.ce;

end architecture;
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28 FTMCTRL - 8/16/32-bit Memory Controller with EDAC

28.1 Overview

The FTMCTRL combined 8/16/32-bit memory controller provides a bridge between external memory
and the AHB bus. The memory controller can handle four types of devices: PROM, asynchronous
static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped I/O devices (IO). The
PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The BCH code
provides single-error correction and double-error detection for each 32-bit memory word.

The SDRAM area can optionally also be protected using Reed-Solomon coding. In this case a 16-bit
checksum is used for each 32-bit word, and any two adjacent 4-bit (nibble) errors can be corrected.

The EDAC capability is determined through a VHDL generic.

The memory controller is configured through three configuration registers accessible via an APB bus
interface. The PROM, IO, and SRAM external data bus can be configured in 8-, 16-, or 32-bit mode,
depending on application requirements. The controller decodes three address spaces on the AHB bus
(PROM, IO, and SRAM/SDRAM). The addresses are determined through VHDL generics. The IO
area is marked as non-cacheable in the core’s AMBA plug’n’play information record.

External chip-selects are provided for up to four PROM banks, one IO bank, five SRAM banks and
two SDRAM banks. Figure 83 below shows how the connection to the different device types is made.

28.2 PROM access

Up to four PROM chip-select signals are provided for the PROM area, ROMSN[3:0]. There are two
modes: one with two chip-select signals and one with four. The size of the banks can be set in binary
steps from 16KiB to 256MiB. If the AHB memory area assigned to the memory controller for PROM
accesses is larger than the combined size of the memory banks then the PROM memory area will
wrap, starting with the first chip-select being asserted again when accessing addresses higher than the
last decoded bank.

A read access to PROM consists of two data cycles and between 0 and 30 waitstates (in the default
configuration, seewsshiftVHDL generic documentation for details). The read data (and optional

Figure 83. FTMCTRL connected to different types of memory devices
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EDAC check-bits) are latched on the rising edge of the clock on the last data cycle. On non-consecu-
tive accesses, a idle cycle is placed between the read cycles to prevent bus contention due to slow
turn-off time of PROM devices. Figure 84 shows the basic read cycle waveform (zero waitstate) for
non-consecutive PROM reads. Note that the address is undefined in the idle cycle. Figure 85 shows
the timing for consecutive cycles (zero waitstate). Waitstates are added by extending the data2 phase.
This is shown in figure 86 and applies to both consecutive and non-consecutive cycles. Only an even
number of waitstates can be assigned to the PROM area.

Figure 84. Prom non-consecutive read cyclecs.
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Figure 86. Prom read access with two waitstates.
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Figure 87. Prom write cycle (0-waitstates)
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Figure 88. Prom write cycle (2-waitstates)

data

address

romsn

data

rwen

cb

lead-out

clk

A1

D1

CB1

lead-in datadata



AEROFLEX GAISLER 233 GRIP

28.3 Memory mapped IO

Accesses to IO have similar timing as PROM accesses. The IO select (IOSN) and output enable
(OEN) signals are delayed one clock to provide stable address before IOSN is asserted. All accesses
are performed as non-consecutive accesses as shown in figure 89. The data2 phase is extended when
waitstates are added.

28.4 SRAM access

The SRAM area is divided on up to five RAM banks. The size of banks 1-4 (RAMSN[3:0]) is pro-
grammed in the RAM bank-size field (MCFG2[12:9]) and can be set in binary steps from 8KiB to
256MiB. The fifth bank (RAMSN[4]) decodes the upper 512MiB (controlled by means of thesdrasel
VHDL generic) and cannot be used simultaneously with SDRAM memory. A read access to SRAM
consists of two data cycles and between zero and three waitstates (in the default configuration, see
wsshiftVHDL generic documentation for details). The read data (and optional EDAC check-bits) are
latched on the rising edge of the clock on the last data cycle. Accesses to RAMSN[4] can further be
stretched by de-asserting BRDYN until the data is available. On non-consecutive accesses, a idle
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of memories. Fig-

Figure 89. I/O read cycle (0-waitstates)
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Figure 90. I/O write cycle (0-waitstates)
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ure 91 shows the basic read cycle waveform (zero waitstate). Waitstates are added in the same way as
for PROM in figure 86.

For read accesses to RAMSN[4:0], a separate output enable signal (RAMOEN[n]) is provided for
each RAM bank and only asserted when that bank is selected. A write access is similar to the read
access but takes a minimum of three cycles. Waitstates are added in the same way as for PROM.

Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the mem-
ory uses a common write strobe for the full 16- or 32-bit data, the read-modify-write bit MCFG2
should be set to enable read-modify-write cycles for sub-word writes.

Figure 91. Sram non-consecutive read cyclecs.

data1 data2

address

ramsn

data

oen,

cb

data1 data2

clk

D1 D2

CB2CB1

A1 A2

ramoen

Figure 92. Sram write cycle (0-waitstates)
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28.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, the SRAM and
PROM areas can be individually configured for 8- or 16-bit operation by programming the ROM and
RAM width fields in the memory configuration registers. Since reads to memory are always done on
32-bit word basis, read access to 8-bit memory will be transformed in a burst of four read cycles while
access to 16-bit memory will generate a burst of two 16-bit reads. During writes, only the necessary
bytes will be written. Figure 94 shows an interface example with 8-bit PROM and 8-bit SRAM. Fig-
ure 95 shows an example of a 16-bit memory interface.

All possible combinations of width, EDAC, and RMW are not supported. The supported combina-
tions are given in table 262, and the behavior of setting an unsupported combination is undefined. It is
not allowed to set the ROM or RAM width fields to 8-bit or 16-bit width if the core does not imple-
ment support for these widths.

8-bit width support is set withram8VHDL generic and 16-bit width support is set withram16VHDL
genericis.

Table 262.FTMCTRL supported SRAM and PROM configurations

PROM/SRAM
bus width

RWEN resolution
(SRAM) EDAC

RMW bit
(SRAM) Core configuration

8 Bus width None 0 8-bit support

8 Bus width BCH 1 8-bit support, EDAC

16 Byte None 0 16-bit support

16 Bus width None 1 16-bit support

32 Byte None 0

32 Bus width None 1

32+7 Bus width BCH 1 EDAC support

Figure 93. Sram read-modify-write cycle (0-waitstates)
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In 8-bit mode, the PROM/SRAM devices should be connected to the MSB byte of the data bus
(D[31:24]). The LSB address bus should be used for addressing (A[25:0]). In 16-bit mode, D[31:16]
should be used as data bus, and A[26:1] as address bus.

28.6 8- and 16-bit I/O access

Similar to the PROM/SRAM areas, the IO area can also be configured to 8- or 16-bits mode. How-
ever, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but
only with one single access just as in 32-bit mode. To access an IO device on an 8-bit bus, only byte
accesses should be used (LDUB/STB instructions for the CPU). To accesses an IO device on a 16-bit
bus, only halfword accesses should be used (LDUH/STH instructions for the CPU).

Figure 94. 8-bit memory interface example
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Figure 95. 16-bit memory interface example
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To access the I/O-area in 8- or 16-bit mode,ram8VHDL generic orram16VHDL generic must be set
respectively.

28.7 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the idle cycle will only occurs after the last transfer. Burst cycles will not be generated to the IO area.

Only word (HSIZE = “010”) bursts of incremental type (HBURST=INCR, INCR4, INCR8 or
INCR16) are supported.

28.8 SDRAM access

28.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Aeroflex Gaisler, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4MiB and 512MiB. The operation
of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and 64-bit
data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory controller
can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

28.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register, and cannot be used simultaneously with fifth SRAM bank
(RAMSN[4]). When the SDRAM enable bit is set in MCFG2, the controller is enabled and mapped
into upper half of the RAM area as long as the SRAM disable bit is not set. If the SRAM disable bit is
set, all access to SRAM is disabled and the SDRAM banks are mapped into the lower half of the
RAM area.

28.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use single location access on write. The controller
programs the SDRAM to use line burst of length 8 whenpageburstVHDL generic is 0. The controller
programs the SDRAM to use page burst whenpageburstVHDL generic is 1. The controller programs
the SDRAM to use page burst or line burst of length 8, selectable via the MCFG2 register, when
pageburst VHDL generic is 2.

28.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 263.
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If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

28.8.5 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

28.8.6 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in MCFG2 will be used. Line burst of length 8 will be set for
read whenpageburstVHDL generic is 0. Page burst will be set for read whenpageburstVHDL
generic is 1. Page burst or line burst of length 8, selectable via the MCFG2 register will be set, when
pageburstVHDL generic is 2. Remaining fields are fixed: single location write, sequential burst. The
command field will be cleared after a command has been executed. When changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time. NOTE:
when issuing SDRAM commands, the SDRAM refresh must be disabled.

28.8.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

Table 263.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 264.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52
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28.8.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

After the WRITE command has completed, if there is an immediately following read or write access
(not RMW) to the same 1KiB page on the AHB bus, this access is performed during the same access
cycle without closing and re-opening the row.

28.8.9 Read-modify-write cycles

If EDAC is enabled and a byte or half-word write is performed, the controller will perform a read-
modify-write cycle to update the checkbits correctly. This is done by performing an ACTIVATE
command, followed by READ, WRITE and PRE-CHARGE. The write command interrupts the read
burst and the data mask signals will be raised two cycles before this happens as required by the
SDRAM standard.

28.8.10 Address bus

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

28.8.11 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used.

28.8.12 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera device, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

28.8.13 Initialisation

Each time the SDRAM is enabled (bit 14 in MCFG2), an SDRAM initialisation sequence will be sent
to both SDRAM banks. The sequence consists of one PRECHARGE, eight AUTO-REFRESH and
one LOAD-COMMAND-REGISTER command.

28.9 Memory EDAC

28.9.1 BCH EDAC

The FTMCTRL is provided with an BCH EDAC that can correct one error and detect two errors in a
32-bit word. For each word, a 7-bit checksum is generated according to the equations below. A cor-
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rectable error will be handled transparently by the memory controller, but adding one waitstate to the
access. If an un-correctable error (double-error) is detected, the current AHB cycle will end with an
error response. The EDAC can be used during access to PROM, SRAM and SDRAM areas by setting
the corresponding EDAC enable bits in the MCFG3 register. The equations below show how the
EDAC checkbits are generated:

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

If the SRAM is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it is still
possible to use EDAC protection. Data is always accessed as words (4 bytes at a time) and the corre-
sponding checkbits are located at the address acquired by inverting the word address (bits 2 to 27) and
using it as a byte address. The same chip-select is kept active. A word written as four bytes to
addresses 0, 1, 2, 3 will have its checkbits at address 0xFFFFFFF, addresses 4, 5, 6, 7 at 0xFFFFFFE
and so on. All the bits up to the maximum bank size will be inverted while the same chip-select is
always asserted. This way all the bank sizes can be supported and no memory will be unused (except
for a maximum of 4 byte in the gap between the data and checkbit area). A read access will automati-
cally read the four data bytes individually from the nominal addresses and the EDAC checkbit byte
from the top part of the bank. A write cycle is performed the same way. Byte or half-word write
accesses will result in an automatic read-modify-write access where 4 data bytes and the checkbit byte
are firstly read, and then 4 data bytes and the newly calculated checkbit byte are writen back to the
memory. This 8-bit mode applies to SRAM while SDRAM always uses 32-bit accesses. The size of
the memory bank is determined from the settings in MCFG2. The EDAC cannot be used on memory
areas configured in 16-bit mode.

If the ROM is configured in 8-bit mode, EDAC protection is provided in a similar way as for the
SRAM memory described above. The difference is that write accesses are not being handled automat-
ically. Instead, write accesses must only be performed as individual byte accesses by the software,
writing one byte at a time, and the corresponding checkbit byte must be calculated and be written to
the correct location by the software.

NOTE: when the EDAC is enabled in 8-bit bus mode, only the first bank select (RAMSN[0],
PROMSN[0]) can be used.

The operation of the EDAC can be tested trough the MCFG3 register. If the WB (write bypass) bit is
set, the value in the TCB field will replace the normal checkbits during memory write cycles. If the
RB (read bypass) is set, the memory checkbits of the loaded data will be stored in the TCB field dur-
ing memory read cycles. NOTE: when the EDAC is enabled, the RMW bit in memory configuration
register 2 must be set.

Data access timing with EDAC enabled is identical to access without EDAC, if theedacVHDL
generic is set to 1. To improve timing of the HREADY output, a pipeline stage can be inserted in the
EDAC error detection by setting theedacVHDL generic to 2. One clock extra latency will then occur
on single word reads, or on the first data word in a burst.

EDAC is not supported for 64-bit wide SDRAM data buses.

28.9.2 Reed-Solomon EDAC

The Reed-Solomon EDAC provides block error correction, and is capable of correcting up to two 4-
bit nibble errors in a 32-bit data word or 16-bit checksum. The Reed-Solomon EDAC can be enabled
for the SDRAM area only, and uses a 16-bit checksum. Operation and timing is identical to the BCH
EDAC with the pipeline option enabled. The Reed-Solomon EDAC is enabled by setting the RSE and
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RE bits in MCFG3, and the RMW bit in MCFG2. The Reed-Solomon EDAC is not supported for 64-
bit wide SDRAM buses.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The basic Reed-Solomon
code is a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and
correct a single symbol error anywhere in the codeword. The EDAC implements an interleaved RS(6,
4, 2) code where the overall data is represented as 32 bits and the overall checksum is represented as
16 bits. The codewords are interleaved nibble-wise. The interleaved code can correct two 4-bit errors
when each error is located in a nibble and not in the same original RS(6, 4, 2) codeword.

The Reed-Solomon RS(15, 13, 2) code has the following definition:

• there are 4 bits per symbol;

• there are 15 symbols per codeword;

• the code is systematic;

• the code can correct one symbol error per codeword;

• the field polynomial is

• the code generator polynomial is

for which the highest power ofx is stored first;

• a codeword is defined as 15 symbols:

c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14

where c0 to c12 represent information symbols and c13 to c14 represent check symbols.

The shortened and interleaved RS(6, 4, 2) code has the following definition:

• the codeword length is shortened to 4 information symbols and 2 check symbols and as follows:

c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 0

where the above information symbols are suppressed or virtually filled with zeros;

• two codewords are interleaved (i.e. interleaved depthI=2) with the following mapping to the 32-
bit data and 16-bit checksum, were ci,j is a symbol with codeword indexi and symbol indexj:

c0,9 = sd[31:28]

c1,9 = sd[27:24]

c0,10 = sd[23:20]

c1,10 = sd[19:16]

c0,11 = sd[15:12]

c1,11 = sd[11:8]

c0,12 = sd[7:4]

c1,12 = sd[3:0]

c0,13 = scb[15:12]

c1,13 = scb[11:8]
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c0,14 = scb[7:4]

c1,14 = scb[3:0]

where SD[ ] is interchanable with DATA[] and SCB[ ] is interchangable with CB[ ]

Note that the FTMCTRL must have theedacVHDL generic set to 3 to enable the RS EDAC function-
ality. The Reed-Solomon EDAC is not supported for 64-bit wide SDRAM buses.

28.9.3 EDAC Error reporting

As mentioned above an un-correctable error results in an AHB error response which can be monitored
on the bus. Correctable errors however are handled transparently and are not visible on the AHB bus.
A sideband signal is provided which is asserted during one clock cycle for each access for which a
correctable error is detected. This can be used for providing an external scrubbing mechanism and/or
statistics. The correctable error signal is most commonly connected to the AHB status register which
monitors both this signal and error responses on the bus. Please see the AHB status register section for
more information.

28.10 Bus Ready signalling

The BRDYN signal can be used to stretch all types of access cycles to the PROM, I/O area and the
SRAM area decoded by RAMSN[4]. This covers read and write accesses in general, and additionally
read-modify-write accesses to the SRAM area. The accesses will always have at least the pre-pro-
grammed number of waitstates as defined in memory configuration registers 1 & 2, but will be further
stretched until BRDYN is asserted. BRDYN should be asserted in the cycle preceding the last one. If
bit 29 in MCFG1 is set, BRDYN can be asserted asynchronously with the system clock. In this case,
the read data must be kept stable until the de-assertion of OEN/RAMOEN and BRDYN must be
asserted for at least 1.5 clock cycle. The use of BRDYN can be enabled separately for the PROM, I/O
and RAMSN[4] areas. It is recommended that BRDYN is asserted until the corresponding chip select
signal is de-asserted, to ensure that the access has been properly completed and avoiding the system to
stall.

Figure 97 shows the use of BRDYN with asynchronous sampling. BRDYN is kept asserted for more
than 1.5 clock-cycle. Two synchronization registers are used so it will take at least one additional
cycle from when BRDYN is first asserted until it is visible internally. In figure 97 one cycle is added
to the data2 phase.

Figure 96. READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is only
applicable for I/O accesses.
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If burst accesses and BRDYN signaling are to be used together, special care needs to be taken to make
sure BRDYN is raised between the separate accesses of the burst. The controller does not raise the
select and OEN signal (in the read case) between accesses during the burst so if BRDYN is kept
asserted until the select signal is raised, all remaining accesses in the burst will finish with the config-
ured fixed number of wait states.

28.11 Access errors

An access error can be signalled by asserting the BEXCN signal for read and write accesses. For reads
it is sampled together with the read data. For writes it is sampled on the last rising edge before chip
select is de-asserted, which is controlled by means of waitstates or bus ready signalling. If the usage
of BEXCN is enabled in memory configuration register 1, an error response will be generated on the
internal AHB bus. BEXCN can be enabled or disabled through memory configuration register 1, and
is active for all areas (PROM, IO and RAM). BEXCN is only sampled in the last access for 8- and 16-
bit mode for RAM and PROM. That is, when four bytes are written for a word access to 8-bit wide
memory BEXCN is only sampled in the last access with the same timing as a single access in 32-bit
mode.

Figure 97. BRDYN (asynchronous) sampling and BEXCN timing. Lead-out cycle is only applicable for I/O-accesses.
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Figure 98. Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous sampling).
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28.12 Attaching an external DRAM controller

To attach an external DRAM controller, RAMSN[4] should be used since it allows the cycle time to
vary through the use of BRDYN. In this way, delays can be inserted as required for opening of banks
and refresh.

28.13 Output enable timing

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay. An additional vector is used for the
separate SDRAM bus.

28.14 Read strobe

The READ signal indicates the direction of the current PROM,SRAM,IO or SDRAM transfer, and it
can be used to drive external bi-directional buffers on the data bus. It always is valid at least one cycle
before and after the bus is driven, at other times it is held either constant high or low.

Figure 99. Read cycle with BEXCN.
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Figure 100. Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses.
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28.15 Registers

The core is programmed through registers mapped into APB address space.

28.15.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and IO accesses.

Table 265.FTMCTRL memory controller registers

APB Address offset Register

0x0 Memory configuration register 1 (MCFG1)

0x4 Memory configuration register 2 (MCFG2)

0x8 Memory configuration register 3 (MCFG3)

0xC Memory configuration register 4 (MCFG4)

Table 266.Memory configuration register 1
31 30 29 28 27 26 25 24 23 20 19 18 17

PBRDY ABRDY IOBUSW IBRDY BEXCN IO WAITSTATES IOEN ROMBANKSZ

14 13 12 11 10 9 8 7 4 3 0

RESERVED PWEN PROM WIDTH PROM WRITE WS PROM READ WS

31 RESERVED

30 PROM area bus ready enable (PBRDY) - Enables bus ready (BRDYN) signalling for the PROM
area. Reset to ‘0’.

29 Asynchronous bus ready (ABRDY) - Enables asynchronous bus ready.

28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).

26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to
‘0’.

25 Bus error enable (BEXCN) - Enables bus error signalling for all areas. Reset to ‘0’.

24 RESERVED

23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0,
“0001”=1, “0010”=2,..., “1111”=15).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (IO WAIT-

STATES)*2wsshift, wherewsshift can be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area.

18 RESERVED

17: 14 PROM bank size (ROMBANKSZ) - Returns current PROM bank size when read. “0000” is a spe-
cial case and corresponds to a bank size of 256MiB. All other values give the bank size in binary
steps: “0001”=16KiB, “0010”=32KiB, “0011”=64KiB,... , “1111”=256MiB (i.e. 8KiB * 2**ROM-
BANKSZ). For value “0000” or “1111” only two chip selects are available. For other values, two
chip select signals are available for fixed bank sizes. For other values, four chip select signals are
available for programmable bank sizes.

Programmable bank sizes can be changed by writing to this register field. The written values corre-
spond to the bank sizes and number of chip-selects as above. Reset to “0000” when programmable.

Programmable ROMBANKSZ is only available when romasel VHDL generic is 0. For other values
this is a read-only register field containing the fixed bank size value.

13:12 RESERVED

11 PROM write enable (PWEN) - Enables write cycles to the PROM area.

10 RESERVED

9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16,
“10”=32).
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During reset, the prom width (bits [9:8]) are set with value on BWIDTH inputs. The prom waitstates
fields are set to 15 (maximum). External bus error and bus ready are disabled. All other fields are
undefined.

28.15.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write cycles
(“0000”=0, “0001”=2, “0010”=4,..., “1111”=30).

The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM WRITE

WS)*2*2wsshift, wherewsshift can be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles
(“0000”=0, “0001”=2, “0010”=4,...,”1111”=30). Reset to “1111”.

The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM READ

WS)*2*2wsshift, wherewsshift can be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

Table 267.Memory configuration register 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 SDPB

15 14 13 12 9 8 7 6 5 4 3 2 1 0

SE SI RAM BANK SIZE RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.

30 SRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1).

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4MiB,
“001”=8MiB, “010”=16MiB,...,. “111”=512MiB).

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=4096 when bit
25:23=”111” 2048 otherwise.

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command.
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM
data bus width, ‘0’ otherwise. Read-only.

17 SDRAM Page Burst (SDPB) - SDRAM programmed for page bursts on read when set, else pro-
grammed for line burst lengths of 8 on read. Programmable when pageburst VHDL generic is 2, else
read-only.

16 : 15 RESERVED

14 SDRAM enable (SE) - Enables the SDRAM controller and disables fifth SRAM bank (RAMSN[4]).

13 SRAM disable (SI) - Disables accesses to SRAM bank if bit 14 (SE) is set to ‘1’.

12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8KiB,
“0001”=16KiB, “0010”=32KiB, “0011”= 64KiB,.., “1111”=256MiB)(i.e. 8KiB * 2**RAM BANK
SIZE).

8 RESERVED

7 RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit
32-bit areas with common write strobe (no byte write strobe).

Table 266.Memory configuration register 1
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28.15.3 Memory configuration register 3 (MCFG3)

MCFG3 contains the reload value for the SDRAM refresh counter and to control and monitor the
memory EDAC.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

28.15.4 Memory configuration register 4 (MCFG4)

MCFG4 is only present if the Reed-Solomon EDAC has been enabled with theedac VHDL generic.

MCFG4 provides means to insert Reed-Solomon EDAC errors into memory for diagnostic purposes.

5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).

3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles
(“00”=0, “01”=1, “10”=2, “11”=3).

The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM WRITE

WS)*2wsshift, wherewsshift can be read from the first user-defined register in the core’s plug&play
area (default is wsshift = 0).

1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles
(“00”=0, “01”=1, “10”=2, “11”=3).

The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM READ

WS)*2wsshift, wherewsshift can be read from the first user-defined register in the core’s plug&play
area (default is wsshift = 0).

Table 268.Memory configuration register 3
31 28 27 26

RESERVED RSE ME SDRAM REFRESH COUNTER

12 11 10 9 8 7 0

WB RB RE PE TCB

31 : 29 RESERVED

28 Reed-Solomon EDAC enable (RSE) - if set, will enable Reed-Solomon protection of SDRAM area
when implemented

27 Memory EDAC (ME) - Indicates if memory EDAC is present. (read-only)

26 : 12 SDRAM refresh counter reload value (SDRAM REFRESH COUNTER)

11 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass.

10 EDAC diagnostic read bypass (RB) - Enables EDAC read bypass.

9 RAM EDAC enable (RE) - Enable EDAC checking of the RAM area (including SDRAM).

8 PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. Ar reset, this bit is initial-
ized with the value of MEMI.EDAC.

7 : 0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.
It is also loaded with the memory checkbits during read cycles when RB is set.

Table 269.Memory configuration register 4
31 16

RESERVED WB

15 0

TCB[15:0]

31 : 17 RESERVED

Table 267.Memory configuration register 2
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28.16 Vendor and device identifiers

The core has vendor identifier 0x01 (GAISLER) and device identifier 0x054. For description of ven-
dor and device identifiers, see GRLIB IP Library User’s Manual.

28.17 Configuration options

Table 270 shows the configuration options of the core (VHDL generics).

16 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass. Identical to WB in MCFG3.

15 : 0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.
It is also loaded with the memory checkbits during read cycles when RB is set. Note that TCB[7:0]
are identical to TCB[7:0] in MCFG3

Table 270.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space.
Default PROM area is 0x0 - 0x1FFFFFFF.
Also see documentation of romasel VHDL generic below.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space..
Also see documentation of romasel VHDL generic below.

0 - 16#FFF# 16#E00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space.
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#

ramaddr ADDR field of the AHB BAR2 defining RAM address space.
Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR field of the APB BAR configuration registers address
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0

invclk unused N/A 0

fast Enable fast SDRAM address decoding. 0 - 1 0

Table 269.Memory configuration register 4
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romasel Sets the PROM bank size.
romasel 0: selects a programmable mode where the ROM-
BANKSZ field in the MCFG1 register sets the bank size. When
romasel is 0 and the bank size is configured (MCFG1 register,
ROMBANKSZ field, via the core’s register interface) to 0b000
or 0b1111 then address bit 28 is used to decode the banks. This
means that the core must be mapped at a 512 MiB address
boundary (0x0, 0x20000000, 0x40000000, .. see romaddr and
rommask VHDL generics) for address decoding to work cor-
rectly.

romasel 1 - 14: Values 1 - 14 sets the size in binary steps (1 =
16KiB, 2 = 32KiB, 3=64KiB, ...., 14=128MiB). Four chip-
selects are available for these values. 15 sets the bank size to
256MiB with two chip-selects.

romasel 1- 16:Values 16 - 28 sets the bank size in binary steps
(16 = 64 KiB, 17 = 128KiB, ... 28 = 256MiB). Two chip-selects
are available for this range. The selected bank size is readable
from the rombanksz field in the MCFG1 register for the non-pro-
grammable modes.

The PROM area will wrap back to the first bank after the end of
the last decoded bank. As an example, if romasel is set to 14 the
following banks will be decoded:
bank 0: 0x00000000 - 0x07FFFFFFF
bank 1: 0x08000000 - 0x0FFFFFFF
bank 2: 0x10000000 - 0x17FFFFFFF
bank 3: 0x18000000 - 0x1FFFFFFF
...bank 0 starting again at 0x20000000 (the same pattern applies
for other values less than 14, addresses will wrap after the last
decoded bank).

If romasel is 15 then the address decoding will result in the fol-
lowing:
bank 0: 0x00000000 - 0x0FFFFFFFF
bank 1: 0x10000000 - 0x1FFFFFFF
.. bank 0 starting again at offset 0x20000000

When instantiating the core care must be taken to see how many
chip-selects that will be used as a result of the setting of romasel.
This affects the base address at which the core can be placed
(setting of romaddr and rommask VHDL generics). As an exam-
ple, placing the PROM area at a 256 MiB address boundry, like
the base address 0x10000000 and using romasel = 0, 14, 15 or 28
will NOT result in ROM chip-select 0 getting asserted for an
access to the PROM base address as the address decoding
requires that the core has been placed on a 512 MiB address
boundary.

0 - 28 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM, SRAM and I/O access. 0 - 1 0

ram16 Enable 16-bit PROM, SRAM and I/O access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

Table 270.Configuration options

Generic Function Allowed range Default
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28.18 Scan support

Scan support is enabled by setting the SCANTEST generic to 1. When enabled, the asynchronous
reset of any flip-flop will be connected to AHBI.testrst during when AHBI.testen = ‘1’.

28.19 Signal descriptions

Table 271 shows the interface signals of the core (VHDL ports).

oepol Select polarity of drive signals for data pads. 0 = active low, 1 =
active high.

0 - 1 0

edac Enable EDAC. 0 = No EDAC; 1 = BCH EDAC; 2 = BCH EDAC
with pipelining; 3 = BCH + RS EDAC

0 - 3 0

sdlsb Select least significant bit of the address bus that is connected to
SDRAM.

- 2

syncrst Choose between synchronous and asynchronous reset for chip-
select, oen and drive signals.

0 - 1 0

pageburst Line burst read of length 8 when 0, page burst read when 1, pro-
grammable read burst type when 2.

0-2 0

scantest Enable scan test support 0 - 1 0

netlist Use technology specific netlist instead of RTL code 0 - 1 0

tech Technology to use for netlists 0 - NTECH 0

rahold Add additional lead-out cycles for holding the address bus after
PROM writes. This is used when a PROM device needs extra
hold time on the address bus during write cycles.

0 - 16 0

wsshift Wait state counter shift. This value defines the number of steps to
shift the wait state counter. The number of waitstates that the

core can generate is limited by 2wsshift. See the wait state fields
in the core’s APB register descriptions to see the effect of this
generic. The value of this generic can be read out in the first
user-defined register of the core’s plug&play area. This means
that if wsshift is non-zero then the AHB controller must have full

plug&play decoding enabled.

- 0

Table 271.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

CB[15:0] Input EDAC checkbits High

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width
field in the MCFG1 register

High

EDAC Input The reset value for the PROM EDAC enable bit High

SD[31:0] Input SDRAM separate data bus High

SCB[15:0] Input SDRAM separate checkbit bus High

Table 270.Configuration options

Generic Function Allowed range Default
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MEMO ADDRESS[31:0] Output Memory address High

CB[15:0] Output EDAC Checkbit

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[3:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Any WRN[ ] signal can be used for CB[ ].

Low

MBEN[3:0] Output Read/write byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Any MBEN[ ] signal can be used for CB[ ].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate
sdram bus.

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

CE Output Single error detected High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

Table 271.Signal descriptions

Signal name Field Type Function Active
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28.20 Library dependencies

Table 272 shows libraries used when instantiating the core (VHDL libraries).

28.21 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads

entity mctrl_ex is
  port (
    clk : in std_ulogic;

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask:

SDDQM[7] corresponds to SD[63:56],

SDDQM[6] corresponds to SD[55:48],

SDDQM[5] corresponds to SD[47:40],

SDDQM[4] corresponds to SD[39:32],

SDDQM[3] corresponds to SD[31:24],

SDDQM[2] corresponds to SD[23:16],

SDDQM[1] corresponds to SD[15:8],

SDDQM[0] corresponds to SD[7:0].

Any SDDQM[ ] signal can be used for CB[ ].

Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 272.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

FTMCTRL component

Table 271.Signal descriptions

Signal name Field Type Function Active
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    resetn : in std_ulogic;
    pllref : in  std_ulogic;

    -- memory bus
    address  : out   std_logic_vector(27 downto 0); -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(3 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdram_out_type;

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;

begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  -- Memory controller
  ftmctrl0 : ftmctrl generic map (srbanks => 1, sden => 1, edac => 1)
    port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

  -- memory controller inputs not used in this configuration
  memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
  memi.sd <= sd;
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  -- prom width at reset
  memi.bwidth <= "10";

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => memi.data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

  -- connect memory controller outputs to entity output signals
  address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
  sa <= memo.sa;
  writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
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29 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC

29.1 Overview

The fault tolerant SDRAM memory interface handles PC133 SDRAM compatible memory devices
attached to a 32- or 64-bit wide data bus. The interface acts as a slave on the AHB bus where it occu-
pies configurable amount of address space for SDRAM access. An optional Error Detection And
Correction Unit (EDAC) logic (only for the 32 - bit bus) corrects one bit error and detects two bit
errors.

The SDRAM controller function is programmed by means of register(s) mapped into AHB I/O
address space. Chip-select decoding is done for two SDRAM banks.

29.2 Operation

29.2.1 General

Synchronous Dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64, 256 and 512 Mbyte devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG. A second register, ECFG, is available for configuring the
EDAC functions. SDRAM banks data bus width is configurable between 32 and 64 bits.

29.2.2 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use page burst on read and single location access on
write.

Figure 101. FT SDRAM memory controller connected to AMBA bus and SDRAM
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29.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through SDRAM configuration register (SDCFG) The pro-
grammable SDRAM parameters can be seen in table below:

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

29.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

29.2.5 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in SDCFG will be used, remaining fields are fixed: page read
burst, single location write, sequential burst. The command field will be cleared after a command has
been executed. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER
command should be generated at the same time.

29.2.6 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses. Note that only word bursts are supported by the
SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and halfwords but
they cannot be used.

29.2.7 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

29.2.8 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

Table 273.SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks
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29.2.9 Data bus

Data bus width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit SDRAM devices to
be connected using the full data capacity of the devices. 64-bit SDRAM devices can be connected to
32-bit data bus if 64-bit data bus is not available but in this case only half the full data capacity will be
used.

29.2.10 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Virtex targets, GR
Clock Generator can be configured to produce a properly synchronised SDRAM clock. For other
FPGA targets, the GR Clock Generator can produce an inverted clock.

29.2.11 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(32, 7)
code. It is capable of correcting one bit error and detecting two bit errors. The EDAC logic does not
add any additional waitstates during normal operation. Detected errors will cause additional waitstates
for correction (single errors) or error reporting (multiple errors). Single errors are automatically cor-
rected and generally not visible externally unless explicitly checked.

This checking is done by monitoring the ce signal and single error counter. This counter holds the
number of detected single errors. The ce signal is asserted one clock cycle when a single error is
detected and should be connected to the AHB status register. This module stores the AHB status of
the instruction causing the single error and generates interrupts (see the AHB status register documen-
tation for more information).

The EDAC functionality can be enabled/disabled during run-time from the ECFG register (and the
logic can also be completely removed during synthesis with VHDL generics. The ECFG register also
contains control bits and checkbit fields for diagnostic reads. These diagnostic functions are used for
testing the EDAC functions on-chip and allows one to store arbitrary checkbits with each written
word. Checkbits read from memory can also be controlled.

64-bit bus support is not provided when EDAC is enabled. Thus, the sd64 and edacen VHDL generics
should never be set to one at the same time.

The equations below show how the EDAC checkbits are generated:

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

29.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1.

If EDAC is enabled through the use of the edacen VHDL generic, an EDAC configuration register
will be available.

Table 274.FT SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

0x4 EDAC Configuration register
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29.3.1 SDRAM configuration register (SDCFG)

SDRAM configuration register is used to control the timing of the SDRAM.

[14:0]: The period between each AUTO-REFRESH command - Calculated as follows:tREFRESH= ((reload value) + 1) /
SYSCLK

[15]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise ‘0’. Read-only.
[20:19]: SDRAM command. Writing a non-zero value will generate an SDRAM command: “01”=PRECHARGE,

“10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is reset after command has been
executed.

[22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048 otherwise.
[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte, “001”=8 Mbyte, “010”=16

Mbyte .... “111”=512 Mbyte.
[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER

command must be issued at the same time. Also sets RAS/CAS delay (tRCD).
[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

29.3.2 EDAC Configuration register (ECFG)

The EDAC configuration register controls the EDAC functions of the SDRAM controller during run
time.

[6:0] TCB : Test checkbits. These bits are written as checkbits into memory during a write operation when the WB bit in
the ECFG register is set. Checkbits read from memory during a read operation are written to this field when the RB
bit is set.

[7] EN : EDAC enable. Run time enable/disable of the EDAC functions. If EDAC is disabled no error detection will be
done during reads and subword writes. Checkbits will still be written to memory during write operations.

[8]  RB : Read bypass. Store the checkbits read from memory during a read operation into the TCB field.
[9] WB : Write bypass. Write the TCB field as checkbits into memory for all write operations.
[cntbits + 9:10] SEC : Single error counter. This field is available when the errcnt VHDL generic is set to one during synthesis.

It increments each time a single error is detected. It saturates when the maximum value is reached. The maximum
value is the largest number representable in the number of bits used, which in turn is determined by the cntbits
VHDL generic. Each bit in the counter can be reset by writing a one to it.

[30:cntbits + 10] Reserved.
[31] EAV : EDAC available. This bit is always one if the SDRAM controller contains EDAC.

031

Figure 102. SDRAM configuration register
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29.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x055. For a descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

29.5 Configuration options

Table 275 shows the configuration options of the core (VHDL generics).

Table 275.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area.
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address
space where SDCFG register is mapped.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space.

0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

pwron Enable SDRAM at power-on. 0 - 1 0

sdbits 32 or 64 -bit data bus width. 32, 64 32

edacen EDAC enable. If set to one, EDAC logic will be included
in the synthesized design. An EDAC configuration regis-
ter will also be available.

0 - 1 0

errcnt Include an single error counter which is accessible from
the EDAC configuration register.

0 - 1 0

cntbits Number of bits used in the single error counter 1 - 8 1
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29.6 Signal descriptions

Table 276 shows the interface signals of the core (VHDL ports).

29.7 Library dependencies

Table 5 shows libraries used when instantiating the core (VHDL libraries).

29.8 Instantiation

This example shows how the core can be instantiated.

Table 276.Signals declarations

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data -

CB[7:0] Input Checkbits -

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Any DQM[ ] signal can be used for CB[ ].

Low

BDRIVE Output Drive SDRAM data bus Low

ADDRESS[16:2] Output SDRAM address -

DATA[31:0] Output SDRAM data -

CB[7:0] Output Checkbits -

CE N/A Output Correctable Error High

* see GRLIB IP Library User’s Manual

Table 277.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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The example design contains an AMBA bus with a number of AHB components connected to it
including the FT SDRAM controller. The external SDRAM bus is defined in the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator. It is also shown how the correctable error (CE) signal is connected to
the ahb status register. It is not mandatory to connect this signal. In this example, 3 units can be con-
nected to the status register.

The SDRAM controller decodes SDRAM area: 0x60000000 - 0x6FFFFFFF. SDRAM Configuration
and EDAC configuration registers are mapped into AHB I/O space on address (AHB I/O base address
+ 0x100).

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;
    ... -- other signals

-- sdram memory bus
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0); -- optional sdram data

 cb  : inout std_logic_vector(7 downto 0) --EDAC checkbits
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect SDRAM controller and SDRAM memory bus
  signal sdi   : sdctrl_in_type;
  signal sdo   : sdctrl_out_type;

  signal clkm, rstn : std_ulogic; -- system clock and reset
signal ce : std_logic_vector(0 to 2); --correctable error signal vector

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;

begin

  -- AMBA Components are defined here ...
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  ...

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbsi, ce, apbi, apbo(13));

  -- SDRAM controller
  sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
    ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,

 cntbits => 4)
    port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo, ce(0));

  -- input signals
  sdi.data(31 downto 0) <= sd(31 downto 0);

  -- connect SDRAM controller outputs to entity output signals
  sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
  sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
  sddqm <= sdo.dqm;

  -- I/O pads driving data bus signals
  sd_pad : iopadv generic map (width => 32)
      port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));

 -- I/O pads driving checkbit signals
 cb_pad : iopadv generic map (width => 8)

      port map (cb, sdo.cb, sdo.bdrive, sdi.cb);

end;
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30 FTSDCTRL64 - 64-bit PC133 SDRAM Controller with EDAC

30.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to a 64 bit
wide data bus. The controller acts as a slave on the AHB bus where it occupies a configurable amount
of address space for SDRAM access. Error correction is optionally implemented using BCH or Reed-
Solomon codes. The SDRAM controller function is programmed by writing to configuration registers
mapped into AHB I/O address space. Chip-select decoding is provided for two SDRAM banks.

30.2 Operation

30.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two memory banks of PC100/PC133
compatible devices. The controller supports 64M, 256M and 512M devices with 8 - 12 column-
address bits, up to 13 row-address bits, and 4 internal banks. The size of each of the two memory
banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The operation of the
SDRAM controller is controlled through four configuration registers (see section 30.3). The
FTSDCTRL64 controller also supports mobile SDRAM if required.

30.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled, the initialization sequence is appended with
a LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
accesses and single location access on write accesses. If thepwronVHDL generic is 1, the initializa-
tion sequence is also sent automatically when reset is released. Note that some SDRAM devices
require a stable clock of 100 us before any commands might be sent. When using on-chip PLL, this
might not always be the case and thepwron VHDL generic should be set to 0 in such cases.

Figure 104. SDRAM Memory controller connected to AMBA bus and SDRAM
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30.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these fields affect the SDRAM timing as described in table 278.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled, the
remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

30.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

30.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile SDRAM
functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving
configuration register to “010” (Self Refresh). The controller will enter self refresh mode after every

Table 278.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 279.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

Table 280.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Self Refresh mode to first valid command (tXSR) tXSR
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memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-Sav-
ing configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available when
the VHDL genericmobile is >= 1.

30.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deactivated.
All data in the SDRAM is retained during this operation. To enable the power-down mode, set the
PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller will
enter power-down mode after every memory access (when the controller has been idle for 16 clock
cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the control-
ler in this mode. When exiting this mode a delay of one clock cycles are added before issue any com-
mand to the memory. This mode is only available when the VHDL genericmobile is >= 1.

30.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available when the VHDL genericmobileis >= 1 and mobile SDRAM func-
tionality is enabled.

30.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory ignore the TCSR bits. This
functionality is only available when the VHDL genericmobileis >= 1 and mobile SDRAM function-
ality is enabled.

30.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL genericmobileis >= 1 and mobile SDRAM function-
ality is enabled.

30.2.10 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in the
SDRAM Configuration register: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR)
and LOAD-EXTMODE-REG (EMR). If the LMR command is issued, the CAS delay as programmed
in SDCFG will be used, remaining fields are fixed: page read burst, single location write, sequential
burst. If the EMR command is issued, the DS, TCSR and PASR as programmed in Power-Saving con-
figuration register will be used. The command field will be cleared after a command has been exe-
cuted. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER command
should be generated at the same time.
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30.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command with data read after the programmed CAS delay. A read burst is performed if a
burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE
command, no banks are left open between two accesses. Note that only 64-bit AHB bursts are sup-
ported by the SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and
half-words but they cannot be used.

30.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only 64-bit bursts are supported.

30.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13].

30.2.14 Data bus

The external SDRAM data bus should be connected to SD[63:0]. The polarity of the output enable
signal to the data pads can be selected with the oepol generic. Sometimes it is difficult to fulfil the out-
put delay requirements of the output enable signal. In this case, the vbdrive signal can be used instead
of bdrive. Each bit in this vector is driven by a separate register.

30.2.15 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera devices, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

30.2.16 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(64, 8)
or a Reed-Solomon (64, 32) code. The BCH code It is capable of correcting one bit error and detect-
ing two bit errors, while the RS code can correct four nibble errors. Correctable errors are automati-
cally corrected and generally not visible externally unless explicitly checked. This checking is done
by monitoring the ce signal and single error counter. This counter holds the number of detected single
errors. The ce signal is asserted one clock cycle when a single error is detected and should be con-
nected to the AHB status register. This module stores the AHB status of the instruction causing the
single error and generates interrupts (see the AHB status register documentation for more informa-
tion).

The EDAC functionality can be enabled/disabled during run-time from the EDAC configuration regis-
ter (and the logic can also be completely removed during synthesis with VHDL generics). The EDAC
checkbits register also contains checkbit fields for diagnostic reads and writes. These diagnostic func-
tions are used for testing the EDAC functions on-chip and allows one to store arbitrary checkbits with
each written word. Checkbits read from memory can also be controlled.
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30.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1.

Table 281.SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

0x4 SDRAM Power-Saving configuration register

0x8 EDAC Configuration register

0xC EDAC checkbits registers

Table 282. SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

Page-
Burst

MS D64 SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile SDRAM support
is enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile SDRAM
support is enabled, this field is extended with the bit 30.

26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-
REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 4
Mbyte, “001”= 8 Mbyte, “010”= 16 Mbyte .... “111”= 512 Mbyte.

22: 21 SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048
otherwise.

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 = pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 64-bit data bus (D64) - Reads ‘1’ to indicate 64-bit data bus. Read-only.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / SYSCLK

Table 283.SDRAM Power-Saving configuration register
31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE Reserved tXSR res PMODE Reserved DS TCSR PASR

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29: 24 Reserved

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
SDR support is disabled).

19 Reserved
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30.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x058. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved

6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 284.EDAC Configuration register
31 30 29 25 24 23 22 21 20 19 18 17 16 15 7 6 5 4 3 2 0

Reserved SEC Reserved ED RS WB RB EN Reserved

25: 24 Single error counter. This field is increments each time a single error is detected. It saturates when
the maximum value is reached (3).

20 Disable EDAC checking. EDAC errors will be ignored if set to 1

19 Reed-Solomon enable. Set to 1 to enable RS coding instead of BCH.

18 Write bypass. Write the EDAC checkbits register as checkbits into memory for all write operations.

17 Read bypass. Store the checkbits read from memory during a read operation into the EDAC check-
bits register.

16 EDAC enable. Set to 1 to enable EDAC error detection and correction.

Table 285.EDAC checkbits register
31 0

EDAC Test Checkbits

31 0 Checkbits for diagnostic read/write

Table 283.SDRAM Power-Saving configuration register
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30.5 Configuration options

Table 286 shows the configuration options of the core (VHDL generics).

Table 286.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. Default
is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space where
SDCFG register is mapped.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

pwron Enable SDRAM at power-on initialization 0 - 1 0

sdbits 32 or 64-bit data bus width. 32, 64 32

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active
high

0 - 1 0

pageburst Enable SDRAM page burst operation.
0: Controller uses line burst of length 8 for read operations.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on PageBurst
bit in SDRAM configuration register.

0 - 2 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0

edac Enable EDAC
0: No EDAC
1: BCH EDAC
2: RS EDAC
3: BCH and RS EDAC

0 - 3 0
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30.6 Signal descriptions

Table 287 shows the interface signals of the core (VHDL ports).

30.7 Library dependencies

Table 288 shows libraries used when instantiating the core (VHDL libraries).

Table 287.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data High

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Low

BDRIVE Output Drive SDRAM data bus Low/High2

VBDRIVE[63:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.

Low/High2

VCBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
check bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

ADDRESS[14:0] Output SDRAM address -

DATA[63:0] Output SDRAM data -

CB[31:0] Outputs EDAC checkbits. BCH uses [7:0] only.

1) see GRLIB IP Library User’s Manual

2) Polarity selected with the oepol generic

Table 288.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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30.8 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the SDRAM controller. The external SDRAM bus is defined on the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator.

SDRAM controller decodes SDRAM area:0x60000000 - 0x6FFFFFFF. SDRAM Configuration regis-
ter is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;
sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal sdi   : sdctrl_in_type;
  signal sdo   : sdctrl_out_type;

  signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;
  signal gnd : std_ulogic;

begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);
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  -- SDRAM controller
  sdc : ftsdctrl64 generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
    ioaddr => 1, pwron => 0, invclk => 0)
    port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo);

  -- connect SDRAM controller outputs to entity output signals
  sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
  sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
  sddqm <= sdo.dqm;

--Data pad instantiation with scalar bdrive
sd_pad : iopadv generic map (width => 32)
port map (sd(63 downto 0), sdo.data(63 downto 0), sdo.bdrive, sdi.data(63 downto 0));
end;

--Alternative data pad instantiation with vectored bdrive
sd_pad : iopadvv generic map (width => 32)
port map (sd(63 downto 0), sdo.data(63 downto 0), sdo.vbdrive(63 downto 0), sdi.data(63
downto 0));
end;
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31 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller

31.1 Overview

The fault tolerant 32-bit PROM/SRAM memory interface uses a common 32-bit memory bus to inter-
face PROM, SRAM and I/O devices. Support for 8-bit PROM banks can also be separately enabled.
In addition it also provides an Error Detection And Correction Unit (EDAC), correcting one and
detecting two errors. Configuration of the memory controller functions is performed through the APB
bus interface.

31.2 Operation

The controller is configured through VHDL generics to decode three address ranges: PROM, SRAM
and I/O area. By default the PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM
area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to
0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to 8 chip select sig-
nals. The controller generates both a common write-enable signal (WRITEN) as well as four byte-
write enable signals (WREN). If the SRAM uses a common write enable signal the controller can be
configured to perform read-modify-write cycles for byte and half-word write accesses. Number of
waitstates is separately configurable for the three address ranges.

The EDAC function is optional, and can be enabled with theedacenVHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. Single errors are
corrected without generating any indication of this condition in the bus response. If a multiple error is
detected, a two cycle error response is given on the AHB bus.

Figure 105. 32-bit FT PROM/SRAM/IO controller
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Single errors can be monitored in two ways:

• by monitoring the CE signal which is asserted for one cycle each time a single error is detected.

• by checking the single error counter which is accessed from the MCFG3 configuration register.

The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information. When EDAC is enabled, one extra latency cycle is generated during reads and
subword writes.

The EDAC function can be enabled for SRAM and PROM area accesses, but not for I/O area
accesses. For the SRAM area, the EDAC functionality is only supported for accessing 32-bit wide
SRAM banks. For the PROM area, the EDAC functionality is supported for accessing 32-bit wide
PROM banks, as well as for read accesses to 8-bit wide PROM banks.

The equations below show how the EDAC checkbits are generated:

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

31.2.1 8-bit PROM access

The FTSRCTRL controller can be configured to access an 8-bit wide PROM. The data bus of the
external PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit
mode is enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area
will be done in four-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. The whole 32-bit
word is then output on the AHB data bus, allowing the master to chose the bytes needed (big-endian).

Writes should be done one byte at a time. For correct word aligned 32-bit word write accesses, the
byte should always be driven on bits 31 to 24 on the AHB data bus. For non-aligned 32-bit word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For correct half-word aligned 16-bit half-word write accesses, the byte should always be
driven on bits 31 to 24, or 15 to 8, on the AHB data bus. For non-aligned 16-bit half-word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For 8-bit word write accesses the byte should always be driven on the AHB data bus bits
that corresponds to the byte address (big-endian). To summarize, all legal AMBA AHB write accesses
are supported according to the AMBA standard, additional illegal accesses are supported as described
above, and it is always the addressed byte that is output.

It is possible to dynamically switch between 8- and 32-bit PROM mode by writing to the RBW field
of the MCFG1 register. The BWIDTH[1:0] input signal determines the reset value of this RBW regis-
ter field. When RBW is “00” then 8-bit mode is selected. If RBW is “10” then 32-bit mode is selected.
Other RBW values are reserved for future use. SRAM access is not affected by the 8-bit PROM mode.

It is also possible to use the EDAC in the 8-bit PROM mode, configured by the edacen VHDL
generic, and enabled via the MCFG3 register. Read accesses to the 8-bit PROM area will be done in
five-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. After a potential correction, the
whole 32-bit word is output on the AHB data bus, allowing the master to chose the bytes needed (big-
endian). EDAC support is not provided for write accesses, they are instead performed in the same way
as without the EDAC enabled. The checksum byte must be written by the user into the correct byte
address location.

The fifth byte corresponds to the EDAC checksum and is located in the upper part of the effective
memory area, as explained in detail in the definition of the MCFG1 memory configuration register.
The EDAC checksums are located in the upper quarter of what is defined as available EDAC area by
means of the EBSZ field and the ROMBSZ field or rombanksz VHDL generic. When set to 0, the size
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of the available EDAC area is defined as the PROM bank size. When set to 1, as twice the PROM
bank size. When set to 2, as four times the PROM bank size. And when set to 3, as eight times the
PROM bank size. For any other value than 0, the use of multiple PROM banks is required.

Example, if ROMBSZ=10 and EBSZ=1, the EDAC area is 8KiB*2^ROMBSZ*2^EBSZ=
16MiB=0x01000000. The checksum byte for the first word located at address 0x00000000 to
0x00000003 is located at 0x00C00000. The checksum byte for the second word located at address
0x00000004 to 0x00000007 is located at 0x00C00001, and so on. Since EBSZ=1, two PROM banks
are required for implementing the EDAC area, each bank with size 8MiB=0x00800000.

31.2.2 Access errors

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is active for all types of accesses to all areas (PROM, SRAM
and I/O). The BEXCN signal is sampled on the same cycle as read data is sampled. For writes it is
sampled on the last rising edge before writen/rwen is de-asserted (writen and rwen are clocked on the
falling edge). When a bus exception is detected an error response will be generated for the access.

31.2.3 Using bus ready signalling

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses, covering the com-
plete memory area and both read and write accesses. It is enabled by setting the Bus Ready Enable

Figure 106. Read cycle with BEXCN.
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(BRDYEN) bit in the MCFG1 register. An access will have at least the amount of waitstates set with
the VHDL generic or through the register, but will be further stretched until BRDYN is asserted.
Additional waitstates can thus be inserted after the pre-set number of waitstates by de-asserting the
BRDYN signal. BRDYN should be asserted in the cycle preceding the last one. It is recommended
that BRDYN remains asserted until the IOSN signal is de-asserted, to ensure that the access has been
properly completed and avoiding the system to stall. Read accesses will have the same timing as when
EDAC is enabled while write accesses will have the timing as for single accesses even if bursts are
performed.

31.3 PROM/SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures hereafter.

Figure 108. I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.
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Figure 110. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC disabled.
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Figure 112. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC enabled..
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Figure 113. 32-bit PROM/SRAM non-sequential write access with 0 wait-states and EDAC disabled.
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If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles. The timing for write accesses is not affected
when EDAC is enabled while one extra latency cycle is introduced for single access reads and at the
beginning of read bursts.

Figure 114. 32-bit PROM/SRAM sequential write access with 0 wait-states and EDAC disabled.

lead-in data1

haddr

romsn

data

writen

cb

data1 data2data2

clk

D1

A1 A3

address A1

10 00htrans

hwdata

hready

A2

11

A2

ramsn

D1 D3

D3

A3

D2

CB1 CB3CB2

A4

D2

data1 data2 lead-out



AEROFLEX GAISLER 281 GRIP

Read-Modify-Write (RMW) accesses will have an additional waitstate inserted to accommodate
decoding when EDAC is enabled.

I/O accesses are similar to PROM and SRAM accesses but a lead-in and lead-out cycle is always
present.

Figure 115. 32-bit PROM/SRAM rmw access with 0 wait-states and EDAC disabled.
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Figure 116. I/O write access with 0 wait-states.
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31.4 Registers

The core is programmed through registers mapped into APB address space.

Table 289.FT PROM/SRAM/IO controller registers

APB Address offset Register

0x0 Memory configuration register 1

0x4 Memory configuration register 2

0x8 Memory configuration register 3

Table 290.Memory configuration register 1.
31 27 26 25 24 23 20 19 18 17 14 13 12 11 10 9 8 7 4 3 0

RESERVED BR BE IOWS ROMBSZ EBSZ RW RBW RESERVED ROMWS

31: 27 RESERVED

26 Bus ready enable (BR) - Enables the bus ready signal (BRDYN) for I/O-area.

25 Bus exception enable (BE) - Enables the bus exception signal (BEXCEN) for PROM, SRAM and I/
O areas

24 RESERVED

23: 20 I/O wait states (IOWS) - Sets the number of waitstates for accesses to the I/O-area. Only available if
the wsreg VHDL generic is set to one.

19: 18 RESERVED

17: 14 ROM bank size (ROMBSZ) - Sets the PROM bank size. Only available if the rombanksz VHDL
generic is set to zero. Otherwise, the rombanksz VHDL generic sets the bank size and the value can
be read from this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB *
2**ROMBSZ).

Figure 117. I/O read access with 0 wait-states
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All the fields in MCFG3 register are available if the edacen VHDL generic is set to one except SEC
field which also requires that the errcnt VHDL generic is set to one. The exact breakpoint between the
SEC and RESERVED field depends on the cntbits generic. The breakpoint is 11+cntbits. The values
shown in the table is for maximum cntbits value 8.

31.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x051. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13: 12 EDAC bank size (EBSZ) - Sets the EDAC bank size for 8-bit PROM support. Only available if the
rombanksz VHDL generic is zero, and edacen and prom8en VHDL generics are one. Otherwise, the
value is fixed to 0. The resulting EDAC bank size is 2^EBSZ * 2^ROMBSZ * 8KiB. Note that only
the three lower quarters of the bank can be used for user data. The EDAC checksums are placed in
the upper quarter of the bank.

11 ROM write enable (RW) - Enables writes to the PROM memory area. When disabled, writes to the
PROM area will generate an ERROR response on the AHB bus.

10 RESERVED

9: 8 ROM data bus width (RBW) - Sets the PROM data bus width. “00” = 8-bit, “10” = 32-bit, others
reserved.

7: 4 RESERVED

3: 0 ROM waitstates (ROMWS) - Sets the number of waitstates for accesses to the PROM area. Reset to
all-ones. Only available if the wsreg generic is set to one.

Table 291.Memory configuration register 2.
31 13 12 9 8 7 6 5 4 3 2 1 0

RESERVED RAMBSZ RW RESERVED RAMW

31: 13 RESERVED

12: 9 RAM bank size (RAMBSZ) - Sets the RAM bank size. Only available if the banksz VHDL generic
is set to zero. Otherwise, the banksz VHDL generic sets the bank size and the value can be read from
this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB * 2**RAMBSZ)

8: 7 RESERVED

6 Read-modify-write enable (RW) - Enables read-modify-write cycles for write accesses. Only availa-
ble if the rmw VHDL generic is set to one.

5: 2 RESERVED

1: 0 RAM waitstates (RAMW) - Sets the number of waitstates for accesses to the RAM area. Only avail-
able if the wsreg VHDL generic is set to one.

Table 292.Memory configuration register 3.
31 20 19 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED SEC WB RB SE PE TCB

31: 20 RESERVED

19: 12 Single error counter.(SEC) - This field increments each time a single error is detected until the max-
imum value that can be stored in the field is reached. Each bit can be reset by writing a one to it.

11 Write bypass (WB) - Enables EDAC write bypass. When enabled the TCB field will be used as
checkbits in all write operations.

10 Read bypass (RB) - Enables EDAC read bypass. When enabled checkbits read from memory in all
read operations will be stored in the TCB field.

9 SRAM EDAC enable (SE) - Enables EDAC for the SRAM area.

8 PROM EDAC enable (PE) - Enables EDAC for the PROM area. Reset value is taken from the input
signal sri.edac.

7: 0 Test checkbits (TCB) - Used as checkbits in write operations when WB is activated and checkbits
from read operations are stored here when RB is activated.

Table 290.Memory configuration register 1.
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31.6 Configuration options

Table 289 shows the configuration options of the core (VHDL generics).

31.7 Signal descriptions

Table 294 shows the interface signals of the core (VHDL ports).

Table 293. Controller configuration options

Generic Function Allowed range Default

hindex AHB slave index. 1 - NAHBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space.
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining RAM address space.
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space.
Default RAM area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area. 0 - 15 0

romws Number of waitstates during access to PROM area. 0 - 15 2

iows Number of waitstates during access to IO area. 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

srbanks Set the number of RAM banks. 1 - 8 1

banksz Set the size of bank 1 - 4. 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ... ,
15 = 256 MiB (i.e. 8 KiB * 2**banksz). If set to zero, the bank
size is set with the rambsz field in the MCFG2 register.

0 - 15 15

rombanks Sets the number of PROM banks available. 1 - 8 1

rombanksz Sets the size of one PROM bank. 1 = 16KiB, 2 = 32KiB, 3 =
64KiB, ... , 15 = 256 MiB (i.e. 8 KiB * 2**rombanksz). If set to
zero, the bank size is set with the rombsz field in the MCFG1
register.

0 - 15 15

rombankszdef Sets the reset value of the rombsz register field in MCFG1 if
available.

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0

paddr APB address. 1 - 16#FFF# 0

pmask APB address mask. 1 - 16#FFF# 16#FFF#

edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0

errcnt If one, a single error counter is added. 0 - 1 0

cntbits Number of bits in the single error counter. 1 - 8 1

wsreg Enable programmable waitstate generation. 0 - 1 0

prom8en Enable 8-bit PROM mode. 0 - 1 0

oepol Select polarity of output enable signals. 0 = active low, 1 =
active high.

0 - 1 0

Table 294.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low
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SRI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input Not used -

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width
field in the MCFG1 register

-

SD[31:0] Input Not used -

CB[7:0] Input Checkbits -

PROMDATA[31:0] Input Not used -

EDAC Input The reset value for the PROM EDAC enable bit High

Table 294.Signal descriptions

Signal name Field Type Function Active
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SRO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[7:0] Output SRAM chip-select Low

RAMOEN[7:0] Output SRAM output enable Low

IOSN Output IO area chip select Low

ROMSN[7:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Any WRN[ ] signal can be used for CB[ ].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Any MBEN[ ] signal can be used for CB[ ].

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low

READ Output Read strobe High

RAMN Output Common SRAM Chip Select. Always asserted
when one of the 8 RAMSN signals is asserted.

Low

ROMN Output Common PROM Chip Select. Always asserted
when one of the 8 ROMSN signals is asserted.

Low

SA[14:0] Output Not used -

CB[7:0] Output Checkbits -

PSEL Output Not used -

CE Output Single error detected. High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are drive to inactive state. Low

* see GRLIB IP Library User’s Manual

Table 294.Signal descriptions

Signal name Field Type Function Active
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31.8 Library dependencies

Table 295 shows libraries used when instantiating the core (VHDL libraries).

31.9 Component declaration

The core has the following component declaration.

component ftsrctrl is
  generic (
    hindex       : integer := 0;
    romaddr      : integer := 0;
    rommask      : integer := 16#ff0#;
    ramaddr      : integer := 16#400#;
    rammask      : integer := 16#ff0#;
    ioaddr       : integer := 16#200#;
    iomask       : integer := 16#ff0#;
    ramws        : integer := 0;
    romws        : integer := 2;
    iows         : integer := 2;
    rmw          : integer := 0;
    srbanks      : integer range 1 to 8  := 1;
    banksz       : integer range 0 to 15 := 15;
    rombanks     : integer range 1 to 8  := 1;
    rombanksz    : integer range 0 to 15 := 15;
    rombankszdef : integer range 0 to 15 := 15;
    pindex       : integer := 0;
    paddr        : integer := 0;
    pmask        : integer := 16#fff#;
    edacen       : integer range 0 to 1 := 1;
    errcnt       : integer range 0 to 1 := 0;
    cntbits      : integer range 1 to 8 := 1;
    wsreg        : integer := 0;
    oepol        : integer := 0;
    prom8en      : integer := 0
  );
  port (
    rst          : in  std_ulogic;
    clk          : in  std_ulogic;
    ahbsi        : in  ahb_slv_in_type;
    ahbso        : out ahb_slv_out_type;
    apbi         : in  apb_slv_in_type;
    apbo         : out apb_slv_out_type;
    sri          : in  memory_in_type;
    sro          : out memory_out_type;
    sdo          : out sdctrl_out_type
  );
end component;

31.10 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. The CE signal of the memory controller is also connected to the AHB sta-
tus register.

Table 295.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and RAM area is
0x40000000 - 0x40FFFFF.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;

    -- memory bus
    address  : out   std_logic_vector(27 downto 0); -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0); -- optional sdram data

 cb  : inout std_logic_vector(7 downto 0); --checkbits
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdctrl_out_type;

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;
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  signal gnd : std_ulogic;

 signal stati : ahbstat_in_type; --correctable error vector

begin

  -- AMBA Components are defined here ...

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 1)
 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));

stati.cerror(0) <= memo.ce;

  -- Memory controller
  mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,

edacen => 1, errcnt => 1, cntbits => 4)
port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(10), memi, memo,

 sdo);

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

 --I/O pads driving checkbit signals
cb_pad : iopadv generic map (width => 8)

      port map (pad => cb,
                o => memi.cb,
                en => memo.bdrive(0),
                i => memo.cb;

  -- connect memory controller outputs to entity output signals
  address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
  writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
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32 FTSRCTRL8 - 8-bit SRAM/16-bit IO Memory Controller with EDAC

32.1 Overview

The fault tolerant 8-bit SRAM/16-bit I/O memory interface uses a common 16-bit data bus to inter-
face 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC),
correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits
are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller
functions is performed through the APB bus interface.

32.2 Operation

The controller is configured through VHDL generics to decode two address ranges: SRAM and I/O
area. By default the SRAM area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/
O area is mapped to 0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM can have up to 8 chip select signals. The
controller generates a common write-enable signal (WRITEN) for both SRAM and I/O. The number
of waitstates may be separately configured for the two address ranges.

The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. The 8-bit input to the
EDAC function is split into two 4-bit nibbles. A modified hamming(8,4,4) coding featuring a single
error correction and double error detection is applied to each 4-bit nibble. This makes the EDAC capa-
ble of correcting up to two errors and detecting up to four errors per 8-bit data. Single errors (correct-
able errors) are corrected without generating any indication of this condition in the bus response. If a
multiple error (uncorrectable errors) is detected, a two cycle error response is given on the AHB bus.

Single errors may be monitored in two ways:

• by monitoring the CE signal which is asserted for one cycle each time a correctable error is
detected.

• by checking the single error counter which is accessed from the MCFG3 configuration register.
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Figure 118. Block diagram
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The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information.

The EDAC function can only be enabled for SRAM area accesses. If a 16-bit or 32-bit bus access is
performed, the memory controller calculates the EDAC checksum for each byte read from the mem-
ory but the indication of single error is only signaled when the access is done. (I.e. if more than one
byte in a 32-bit access has a single error, only one error is indicated for the hole 32-bit access.)

The equations below show how the EDAC checkbits are generated:

CB7 = Data[15] ^ Data[14] ^ Data[13] // i.e. Data[7]
CB6 = Data[15] ^ Data[14] ^ Data[12] // i.e. Data[6]
CB5 = Data[15] ^ Data[13] ^ Data[12] // i.e. Data[5]
CB4 = Data[14] ^ Data[13] ^ Data[12] // i.e. Data[4]
CB3 = Data[11] ^ Data[10] ^ Data[ 9] // i.e. Data[3]
CB2 = Data[11] ^ Data[10] ^ Data[ 8] // i.e. Data[2]
CB1 = Data[11] ^ Data[ 9] ^ Data[ 8] // i.e. Data[1]
CB0 = Data[10] ^ Data[ 9] ^ Data[ 8] // i.e. Data[0]

32.2.1 Memory access

The memory controller supports 32/16/8-bit single accesses and 32-bit burst accesses to the SRAM. A
32-bit or a 16-bit access is performed as multiple 8-bit accesses on the 16-bit memory bus, where data
is transferred on data lines 8 to 15 (Data[15:8]). The eight checkbits generated/used by the EDAC are
transferred on the eight first data lines (Data[7:0]). For 32-bit and 16-bit accesses, the bytes read from
the memory are arranged according to the big-endian order (i.e. for a 32-bit read access, the bytes read
from memory address A, A+1, A+2, and A+3 correspond to the bit[31:24], bit[23:16], bit[15:8], and
bit[7:0] in the 32-bit word transferred to the AMBA bus. The table 303 shows the expected latency
from the memory controller.

One extra cycle is added for 16-bit burst accesses when Bus Exception is enabled.

32.2.2 I/O access

The memory controller accepts 32/16/8-bit single accesses to the I/O area, but the access generated
towards the I/O device is always 16-bit. The two least significant bits of the AMBA address (byte
address) determine which half word that should be transferred to the I/O device. (i.e. If the byte
address is 0 and it is a 32-bit access, bits 16 to 31 on the AHB bus is transferred on the 16-bit memory
bus. If the byte address is 2 and it is a 16-bit access, bit 0 to 15 on the AHB bus is transferred on the
16-bit memory bus.) If the access is an 8-bit access, the data is transferred on data lines 8 to 15
(Data[15:8]) on the memory bus. In case of a write, data lines 0 to 7 is also written to the I/O device
but these data lines do not transfer any valid data.

32.2.3 Using Bus Exception

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is only active for the I/O area. The BEXCN signal is sampled

Table 296.FTSCTRL8 access latency

Accesses Single data First data (burst) Middle data (burst) Last data (burst)

32-bit write 10 8 8 10

32-bit read 6 6 4 4

16-bit write 4 (+1) - - -

16-bit read 4 - - -

8-bit write 4 - - -

8-bit read 3 - - -
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on the same cycle as data is written to memory or read data is sampled. When a bus exception is
detected an error response will be generated for the access. One additional latency cycle is added to
the AMBA access when the Bus Exception is enable.

32.2.4 Using Bus Ready

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses. It is enabled by
setting the Bus Ready Enable (BRDYEN) bit in the MCFG1 register. An access will have at least the
amount of waitstates set with the VHDL generic or through the register, but will be further stretched
until BRDYN is asserted. Additional waitstates can thus be inserted after the pre-set number of wait-
states by deasserting the BRDYN signal. BRDYN should be asserted in the cycle preceding the last
one. It is recommended that BRDY remains asserted until the IOSN signal is de-asserted, to ensure
that the access has been properly completed and avoiding the system to stall.

32.3 SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures below.

Figure 119. I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.
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Figure 120. 32-bit SRAM sequential read accesses with 0
wait-states and EDAC enabled.
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Figure 121. 32-bit SRAM sequential writeaccess with 0
wait-states and EDAC enabled.
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On a read access, data is sampled one clock cycle before HREADY is asserted.

Figure 122.8-bit SRAM non-sequential write access with 0
wait-states and EDAC enabled.
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Figure 123. 8-bit SRAM non-sequential read access with 0
wait-states and EDAC enabled.
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I/O write accesses are extended with one extra latency cycle if the bus exception is enabled.

If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles.

Figure 124. 16-bit I/O non-sequential write access with 0
wait-states.
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Figure 125. 16-bit I/O non-sequential read access with 0
wait-states.
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32.4 Registers

The core is programmed through registers mapped into APB address space.

Table 297.FT SRAM/IO controller registers

APB Address offset Register

0x0 Memory configuration register 1

0x4 Memory configuration register 2

0x8 Memory configuration register 3

Table 298.MCFG1 register
31 27 26 25 24 23 20 19 0

RESERVED BRDY BEXC IOWS RESERVED

31 : 27 RESERVED

26 BRDYEN: Enables the BRDYN signal.

25 BEXCEN: Enables the BEXCN signal.

24 RESERVED

23 : 20 IOWS: Sets the number of waitstates for accesses to the IO area. Only available if the wsreg VHDL
generic is set to one.

19 : 0 RESERVED

Table 299.MCFG2 register
31 13 12 9 8 2 1 0

RESERVED RAMBSZ RESERVED RAMWS

31 : 12 RESERVED

12 : 9 RAMBSZ: Sets the SRAM bank size. Only available if the banksz VHDL generic is set to zero. Oth-
erwise the banksz VHDL generic sets the bank size. 0 = 8 kB, 15 = 256 MB.

8 : 2 RESERVED

1 : 0 RAMWS: Sets the number of waitstates for accesses to the RAM area. Only available if the wsreg
VHDL generic is set to one.

Table 300.MCFG3 register
31 cnt + 13 cnt + 12 12 11 10 9 8 7 0

RESERVED SEC WB RB SEN TCB

31 :
cnt+13

RESERVED

cnt+12
: 12

SEC. Single error counter. This field increments each time a single error is detected. It saturates at
the maximum value that can be stored in this field. Each bit can be reset by writing a one to it. cnt =
the number of counter bits.

11 WB: Write bypass. If set, the TCB field will be used as checkbits in all write operations.

10 RB: Read bypass. If set, checkbits read from memory in all read operations will be stored in the TCB
field.

9 SEN: SRAM EDAC enable. If set, EDAC will be active for the SRAM area.
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All the fields in the MCFG3 register are available if the edacen VHDL generic is set to one except for
the SEC field which also requires that the errcnt VHDL generic is set to one.

32.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x056. For description of
vendor and device identifiers see the GRLIB IP Library User’s Manual.

32.6 Configuration options

Table 297 shows the configuration options of the core (VHDL generics).

32.7 Signal descriptions

Table 302 shows the interface signals of the core (VHDL ports).

8 RESERVED

7 : 0 TCB: Used as checkbits in write operations when WB is one and checkbits from read operations are
stored here when RB is one.

Table 301. Controller configuration options

Generic Function Allowed range Default

hindex AHB slave index. 1 - NAHBSLV-1 0

ramaddr ADDR field of the AHB BAR1 defining RAM address space.
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space.
Default RAM area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area. 0 - 15 0

iows Number of waitstates during access to IO area. 0 - 15 2

srbanks Set the number of RAM banks. 1 - 8 1

banksz Set the size of bank 1 - 4. 1 = 16 kB, ... , 15 = 256 MB. If set to
zero, the bank size is set with the rambsz field in the MCFG2
register.

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0

paddr APB address. 1 - 16#FFF# 0

pmask APB address mask. 1 - 16#FFF# 16#FFF#

edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0

errcnt If one, a single error counter is added. 0 - 1 0

cntbits Number of bits in the single error counter. 1 - 8 1

wsreg Enable programmable waitstate generation. 0 - 1 0

Table 302.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

Table 300.MCFG3 register
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SRI DATA[31:0] Input Memory data:

[15:0] used for IO accesses

[7:0] used for checkbits for SRAM accesses

[15:8] use for data for SRAM accesses

High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input Not used -

BWIDTH[1:0] Input Not used -

SD[31:0] Input Not used -

CB[7:0] Input Not used -

PROMDATA[31:0] Input Not used -

EDAC Input Not used -

SRO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data:

[15:0] used for IO accesses

[7:0] used for checkbits for SRAM accesses

[15:8] use for data for SRAM accesses

High

RAMSN[7:0] Output SRAM chip-select Low

RAMOEN[7:0] Output SRAM output enable Low

IOSN Output IO area chip select Low

ROMSN[7:0] Output Not used Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[15:8],

WRN[1] corresponds to DATA[7:0],

WRN[3:2] Not used

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[15:8],

BDRIVE[1] corresponds to DATA[7:0],

BDRIVE[3:2] Not used

Low

VBDRIVE[31:0] Output Vectored I/O-pad drive signal. Low

READ Output Read strobe High

RAMN Output Common SRAM Chip Select. Always asserted
when one of the 8 RAMSN signals is asserted.

Low

ROMN Output Not used -

SA[14:0] Output Not used -

CB[7:0] Output Not used -

PSEL Output Not used -

CE Output Single error detected. High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 302.Signal descriptions

Signal name Field Type Function Active
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32.8 Library dependencies

Table 303 shows libraries used when instantiating the core (VHDL libraries).

32.9 Component declaration

The core has the following component declaration.
component ftsrctrl8 is
  generic (
    hindex       : integer := 0;
    ramaddr      : integer := 16#400#;
    rammask      : integer := 16#ff0#;
    ioaddr       : integer := 16#200#;
    iomask       : integer := 16#ff0#;
    ramws        : integer := 0;
    iows         : integer := 2;
    srbanks      : integer range 1 to 8  := 1;
    banksz       : integer range 0 to 15 := 15;
    pindex       : integer := 0;
    paddr        : integer := 0;
    pmask        : integer := 16#fff#;
    edacen       : integer range 0 to 1 := 1;
    errcnt       : integer range 0 to 1 := 0;
    cntbits      : integer range 1 to 8 := 1;
    wsreg        : integer := 0;
    oepol        : integer := 0
  );
  port (
    rst          : in  std_ulogic;
    clk          : in  std_ulogic;
    ahbsi        : in  ahb_slv_in_type;
    ahbso        : out ahb_slv_out_type;
    apbi         : in  apb_slv_in_type;
    apbo         : out apb_slv_out_type;
    sri          : in  memory_in_type;
    sro          : out memory_out_type
  );
end component;

32.10 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. The system clock and reset are generated by GR Clock
Generator and Reset Generator. The CE signal of the memory controller is also connected to the AHB
status register.

The memory controller decodes default memory areas: I/O area is 0x20000000 - 0x20FFFFFF and
RAM area is 0x40000000 - 0x40FFFFF.

library ieee;
use ieee.std_logic_1164.all;

Table 303.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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library grlib;
use grlib.amba.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity ftsrctrl8_ex is
  port (
    resetn     : in  std_ulogic;
    clk        : in  std_ulogic;

    address    : out std_logic_vector(27 downto 0);
    data       : inout std_logic_vector(31 downto 0);
    ramsn      : out std_logic_vector (3 downto 0);
    ramoen     : out std_logic_vector (3 downto 0);
    rwen       : out std_logic_vector (3 downto 0);
    oen        : out std_ulogic;
    writen     : out std_ulogic;
    read       : out std_ulogic;
    iosn       : out std_ulogic;
    brdyn      : in  std_ulogic; -- Bus ready
    bexcn      : in  std_ulogic  -- Bus exception
   );
end;

architecture rtl of ftsrctrl8_ex is
signal memi  : memory_in_type;
signal memo  : memory_out_type;

signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal clkm, rstn, rstraw : std_ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

signal stati : ahbstat_in_type;

begin

  -- clock and reset
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw; cgi.pllref  <= ’0’;
  clk_pad : clkpad port map (clk, clkm);
  rst0 : rstgen               -- reset generator
  port map (resetn, clkm, ’1’, rstn, rstraw);

  -- AHB controller
  ahb0 : ahbctrl              -- AHB arbiter/multiplexer
  generic map (rrobin => 1, ioaddr => 16#fff#, devid => 16#201#)
  port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

  -- Memory controller
  sr0 : ftsrctrl8 generic map (hindex => 0, pindex => 0, edacen => 1)
    port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(0), memi, memo);

  brdyn_pad : inpad port map (brdyn, memi.brdyn);
  bexcn_pad : inpad port map (bexcn, memi.bexcn);

  addr_pad : outpadv generic map (width => 28 )
    port map (address, memo.address(27 downto 0));
  rams_pad : outpadv generic map (width => 4)
    port map (ramsn, memo.ramsn(3 downto 0));
  oen_pad  : outpad
    port map (oen, memo.oen);
  rwen_pad : outpadv generic map (width => 4)
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    port map (rwen, memo.wrn);
  roen_pad : outpadv generic map (width => 4)
    port map (ramoen, memo.ramoen(3 downto 0));
  wri_pad  : outpad
    port map (writen, memo.writen);
  read_pad : outpad
    port map (read, memo.read);
  iosn_pad : outpad
    port map (iosn, memo.iosn);
  data_pad : iopadvv generic map (width => 8) -- SRAM and I/O Data
    port map (data(15 downto 8), memo.data(15 downto 8),
       memo.vbdrive(15 downto 8), memi.data(15 downto 8));
  cbdata_pad : iopadvv generic map (width => 8) -- SRAM checkbits and I/O Data
    port map (data(7 downto 0), memo.data(7 downto 0),
       memo.vbdrive(7 downto 0), memi.data(7 downto 0));

  -- APB bridge and AHB stat
  apb0 : apbctrl              -- AHB/APB bridge
  generic map (hindex => 1, haddr => 16#800#)
    port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo );

  stati.cerror(0) <= memo.ce;
  ahbstat0 : ahbstat generic map (pindex => 15, paddr => 15, pirq => 1)
    port map (rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(15));
end;
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33 GR1553B - MIL-STD-1553B / AS15531 Interface

33.1 Overview

This interface core connects the AMBA AHB/APB bus to a single- or dual redundant MIL-STD-
1553B bus, and can act as either Bus Controller, Remote Terminal or Bus Monitor.

MIL-STD-1553B (and derived standard SAE AS15531) is a bus standard for transferring data
between up to 32 devices over a shared (typically dual-redundant) differential wire. The bus is
designed for predictable real-time behavior and fault-tolerance. The raw bus data rate is fixed at 1
Mbit/s, giving a maximum of around 770 kbit/s payload data rate.

One of the terminals on the bus is the Bus Controller (BC), which controls all traffic on the bus. The
other terminals are Remote Terminals (RTs), which act on commands issued by the bus controller.
Each RT is assigned a unique address between 0-30. In addition, the bus may have passive Bus Moni-
tors (BM:s) connected.

There are 5 possible data transfer types on the MIL-STD-1553 bus:

• BC-to-RT transfer (“receive”)

• RT-to-BC transfer (“transmit”)

• RT-to-RT transfer

• Broadcast BC-to-RTs

• Broadcast RT-to-RTs

Each transfer can contain 1-32 data words of 16 bits each.

The bus controller can also send “mode codes” to the RTs to perform administrative tasks such as
time synchronization, and reading out terminal status.

33.2 Electrical interface

The core is connected to the MIL-STD-1553B bus wire through single or dual transceivers, isolation
transformers and transformer or stub couplers as shown in figure 126. If single-redundancy is used,
the unused bus receive P/N signals should be tied both-high or both-low. The transmitter enables are
typically inverted and therefore called transmitter inibit (txinh). See the standard and the respective
component’s data sheets for more information on the electrical connection.

rxenA

txA_N

rxA_P

rxA_N

txA_P

txinhA
Bus A

rxenB

txB_N

rxB_P

rxB_N

txB_P

txinhB
Bus BGR1553B

Terminal boundary

Figure 126. Interface between core and MIL-STD-1553B bus (dual-redundant, transformer coupled)
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33.3 Operation

33.3.1 Operating modes

The core contains three separate control units for the Bus Controller, Remote Terminal and Bus Mon-
itor handling, with a shared 1553 codec. All parts may not be present in the hardware, which parts are
available can be checked from software by looking at the BCSUP/RTSUP/BMSUP register bits.

The operating mode of the core is controlled by starting and stopping of the BC/RT/BM units via reg-
ister writes. At start-up, none of the parts are enabled, and the core is completely passive on both the
1553 and AMBA bus.

The BC and RT parts of the core can not be active on the 1553 bus at the same time. While the BC is
running or suspended, only the BC (and possibly BM) has access to the 1553 bus, and the RT can only
receive and respond to commands when both the BC schedules are completely stopped (not running
or even suspended).

The Bus Monitor, however, is only listening on the codec receivers and can therefore operate regard-
less of the enabled/disabled state of the other two parts.

33.3.2 Register interface

The core is configured and controlled through control registers accessed over the APB bus. Each of
the BC,RT,BM parts has a separate set of registers, plus there is a small set of shared registers.

Some of the control register fields for the BC and RT are protected using a ‘key’, a field in the same
register that has to be written with a certain value for the write to take effect. The purpose of the keys
are to give RT/BM designers a way to ensure that the software can not interfere with the bus traffic by
enabling the BC or changing the RT address. If the software is built without knowledge of the key to a
certain register, it is very unlikely that it will accidentally perform a write with the correct key to that
control register.

33.3.3 Interrupting

The core has one interrupt output, which can be generated from several different source events. Which
events should cause an interrupt can be controlled through the IRQ Enable Mask register.

33.3.4 MIL-STD-1553 Codec

The core’s internal codec receives and transmits data words on the 1553 bus, and generates and
checks sync patterns and parity.

Loop-back checking logic checks that each transmitted word is also seen on the receive inputs. If the
transmitted word is not echoed back, the transmitter stops and signals an error condition, which is
then reported back to the user.
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33.4 Bus Controller Operation

33.4.1 Overview

When operating as Bus Controller, the core acts as master on the MIL-STD-1553 bus, initiates and
performs transfers.

This mode works based on a scheduled transfer list concept. The software sets up in memory a
sequence of transfer descriptors and branches, data buffers for sent and received data, and an IRQ
pointer ring buffer. When the schedule is started (through a BC action register write), the core pro-
cesses the list, performs the transfers one after another and writes resulting status into the transfer list
and incoming data into the corresponding buffers.

33.4.2 Timing control

In each transfer descriptor in the schedule is a “slot time” field. If the scheduled transfer finishes
sooner than its slot time, the core will pause the remaining time before scheduling the next command.
This allows the user to accurately control the message timing during a communication frame.

If the transfer uses more than its slot time, the overshooting time will be subtracted from the following
command’s time slot. The following command may in turn borrow time from the following command
and so on. The core can keep track of up to one second of borrowed time, and will not insert pauses
again until the balance is positive, except for intermessage gaps and pauses that the standard requires.

If you wish to execute the schedule as fast as possible you can set all slot times in the schedule to zero.
If you want to group a number of transfers you can move all the slot time to the last transfer.

The schedule can be stopped or suspended by writing into the BC action register. When suspended,
the schedule’s time will still be accounted, so that the schedule timing will still be correct when the
schedule is resumed. When stopped, on the other hand, the schedule’s timers will be reset.

When the extsync bit is set in the schedule’s next transfer descriptor, the core will wait for a positive
edge on the external sync input before starting the command. The schedule timer and the time slot
balance will then be reset and the command is started. If the sync pulse arrives before the transfer is
reached, it is stored so the command will begin immediately. The trigger memory is cleared when
stopping (but not when suspending) the schedule. Also, the trigger can be set/cleared by software
through the BC action register.

33.4.3 Bus selection

Each transfer descriptor has a bus selection bit that allows you to control on which one of the two
redundant buses (‘0’ for bus A, ‘1’ for bus B) the transfer will occur.

Another way to control the bus usage is through the per-RT bus swap register, which has one register
bit for each RT address. The bus swap register is an optional feature, software can check the BCFEAT
read-only register field to see if it is available.

Writing a ‘1’ to a bit in the per-RT Bus Swap register inverts the meaning of the bus selection bit for
all transfers to the corresponding RT, so ‘0’ now means bus ‘B’ and ‘1’ means bus ‘A’. This allows
you to switch all transfers to one or a set of RT:s over to the other bus with a single register write and
without having to modify any descriptors.

The hardware determines which bus to use by taking the exclusive-or of the bus swap register bit and
the bus selection bit. Normally it only makes sense to use one of these two methods for each RT,
either the bus selection bit is always zero and the swap register is used, or the swap register bit is
always zero and the bus selection bit is used.

If the bus swap register is used for bus selection, the store-bus descriptor bit can be enabled to auto-
matically update the register depending on transfer outcome. If the transfer succeeded on bus A, the
bus swap register bit is set to ‘0’, if it succeeds on bus B, the swap register bit is set to ‘1’. If the trans-
fer fails, the bus swap register is set to the opposite value.
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33.4.4 Secondary transfer list

The core can be set up with a secondary “asynchronous” transfer list with the same format as the ordi-
nary schedule. This transfer list can be commanded to start at any time during the ordinary schedule.
While the core is waiting for a scheduled command’s slot time to finish, it will check if the next asyn-
chronous transfer’s slot time is lower than the remaining sleep time. In that case, the asynchronous
command will be scheduled.

If the asynchronous command doesn’t finish in time, time will be borrowed from the next command in
the ordinary schedule. In order to not disturb the ordinary schedule, the slot time for the asynchronous
messages must therefore be set to pessimistic values.

The exclusive bit in the transfer descriptor can be set if one does not want an asynchronous command
scheduled during the sleep time following the transfer.

Asynchronous messages will not be scheduled while the schedule is waiting for a sync pulse or the
schedule is suspended and the current slot time has expired, since it is then not known when the next
scheduled command will start.

33.4.5 Interrupt generation

Each command in the transfer schedule can be set to generate an interrupt after certain transfers have
completed, with or without error. Invalid command descriptors always generate interrupts and stop the
schedule. Before a transfer-triggered interrupt is generated, the address to the corresponding descrip-
tor is written into the BC transfer-triggered IRQ ring buffer and the BC Transfer-triggered IRQ Ring
Position Register is incremented.

A separate error interrupt signals DMA errors. If a DMA error occurs when reading/writing descrip-
tors, the executing schedule will be suspended. DMA errors in data buffers will cause the correspond-
ing transfer to fail with an error code (see table 307).

Whether any of these interrupt events actually cause an interrupt request on the AMBA bus is con-
trolled by the IRQ Mask Register setting.

33.4.6 Transfer list format

The BC:s transfer list is an array of transfer descriptors mixed with branches as shown in table 304.
Each entry has to be aligned to start on a 128-bit (16-byte) boundary. The two unused words in the
branch case are free to be used by software to store arbitrary data.

Table 304.GR1553B transfer descriptor format

Offset Value for transfer descriptor DMA R/W Value for branch DMA R/W

0x00 Transfer descriptor word 0 (see table 305) R Condition word (see table 309) R

0x04 Transfer descriptor word 1 (see table 306) R Jump address, 128-bit aligned R

0x08 Data buffer pointer, 16-bit aligned.

For write buffers, if bit 0 is set the received
data is discarded and the pointer is ignored.
This can be used for RT-to-RT transfers where
the BC is not interested in the data transferred.

R Unused -

0x0C Result word, written by core (see table 307) W Unused -
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The transfer descriptor words are structured as shown in tables 305-307 below.

Table 305.GR1553B BC transfer descriptor word 0 (offset 0x00)
31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 15 0

0 WTRIG EXCL IRQE IRQN SUSE SUSN RETMD NRET STBUS GAP RESERVED STIME

31 Must be 0 to identify as descriptor

30 Wait for external trigger (WTRIG)

29 Exclusive time slot (EXCL) - Do not schedule asynchronous messages

28 IRQ after transfer on Error (IRQE)

27 IRQ normally (IRQN) - Always interrupts after transfer

26 Suspend on Error (SUSE) - Suspends the schedule (or stops the async transfer list) on error

25 Suspend normally (SUSN) - Always suspends after transfer

24 : 23 Retry mode (RETMD). 00 - Retry on same bus only. 01 - Retry alternating on both buses
10: Retry first on same bus, then on alternating bus. 11 - Reserved, do not use

22 : 20 Number of retries (NRET) - Number of automatic retries per bus
The total number of tries (including the first attempt) is NRET+1 for RETMD=00, 2 x (NRET+1) for RETMD=01/
10

19 Store bus (STBUS) - If the transfer succeeds and this bit is set, store the bus on which the transfer succeeded (0
for bus A, 1 for bus B) into the per-RT bus swap register. If the transfer fails and this bit is set, store the opposite
bus instead. (only if the per-RT bus mask is supported in the core)
See section 33.4.3 for more information.

18 Extended intermessage gap (GAP) - If set, adds an additional amount of gap time, corresponding to the RTTO
field, after the transfer

17 : 16 Reserved - Set to 0 for forward compatibility

15 : 0 Slot time (STIME) - Allocated time in 4 microsecond units, remaining time after transfer will insert delay

Table 306.GR1553B BC transfer descriptor word 1 (offset 0x04)
31 30 29 26 25 21 20 16 15 11 10 9 5 4 0

DUM BUS RTTO RTAD2 RTSA2 RTAD1 TR RTSA1 WCMC

31 Dummy transfer (DUM) - If set to ‘1’ no bus traffic is generated and transfer “succeeds” immediately
For dummy transfers, the EXCL,IRQN,SUSN,STBUS,GAP,STIME settings are still in effect, other bits and
the data buffer pointer are ignored.

30 Bus selection (BUS) - Bus to use for transfer, 0 - Bus A, 1 - Bus B

29:26 RT Timeout (RTTO) - Extra RT status word timeout above nominal in units of 4 us (0000 -14 us, 1111 -74
us). Note: This extra time is also used as extra intermessage gap time if the GAP bit is set.

25:21 Second RT Address for RT-to-RT transfer (RTAD2) See table 308 for details on how to setup
RTAD1,RTSA1,RTAD2,RTSA2,WCMC,TR

for different transfer types.

Note that bits 15:0 correspond to the (first)
command word on the 1553 bus

20:16 Second RT Subaddress for RT-to-RT transfer (RTSA2)

15:11 RT Address (RTAD1)

10 Transmit/receive (TR)

9:5 RT Subaddress (RTSA1)

4:0 Word count/Mode code (WCMC)
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Table 307.GR1553B transfer descriptor result word (offset 0x0C)
31 30 24 23 16 15 8 7 4 3 2 0

0 Reserved RT2ST RTST RETCNT RES TFRST

31 Always written as 0

30:24 Reserved - Mask away on read for forward compatibility

23:16 RT 2 Status Bits (RT2ST) - Status bits from receiving RT in RT-to-RT transfer, otherwise 0
Same bit pattern as for RTST below

15:8 RT Status Bits (RTST) - Status bits from RT (transmitting RT in RT-to-RT transfer)
15 - Message error, 14 - Instrumentation bit or reserved bit set, 13 - Service request,
12 - Broadcast command received, 11 - Busy bit, 10 - Subsystem flag, 9 - Dynamic bus control acceptance, 8 - Termi-
nal flag

7:4 Retry count (RETCNT) - Number of retries performed

3 Reserved - Mask away on read for forward compatibility

2:0 Transfer status (TFRST) - Outcome of last try
000 - Success (or dummy bit was set)
001 - RT did not respond (transmitting RT in RT-to-RT transfer)
010 - Receiving RT of RT-to-RT transfer did not respond
011 - A responding RT:s status word had message error, busy, instrumentation or reserved bit set (*)
100 - Protocol error (improperly timed data words, decoder error, wrong number of data words)
101 - The transfer descriptor was invalid
110 - Data buffer DMA timeout or error response
111 - Transfer aborted due to loop back check failure

* Error code 011 is issued only when the number of data words match the success case, otherwise code 100 is used. Error code 011 can be
issued for a correctly executed “transmit last command” or “transmit last status word” mode code since these commands do not reset the status
word.

Table 308.GR1553B BC Transfer configuration bits for different transfer types

Transfer type
RTAD1
(15:11)

RTSA1
(9:5)

RTAD2
(25:21)

RTSA2
(20:16)

WCMC
(4:0)

TR
(10)

Data buffer
direction

Data, BC-to-RT RT address
(0-30)

RT subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

0 Read
(2-64 bytes)

Data, RT-to-BC RT address
(0-30)

RT subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

1 Write
(2-64 bytes)

Data, RT-to-RT Recv-RT
addr (0-30)

Recv-RT
subad. (1-30)

Xmit-RT
addr (0-30)

Xmit-RT
subad. (1-30)

Word count
(0 for 32)

0 Write
(2-64 bytes)

Mode, no data RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(0-8)

1 Unused

Mode, RT-to-BC RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(16/18/19)

1 Write
(2 bytes)

Mode, BC-to-RT RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(17/20/21)

0 Read
(2 bytes)

Broadcast
Data, BC-to-RTs

31 RTs subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

0 Read
(2-64 bytes)

Broadcast
Data, RT-to-RTs

31 Recv-RTs
subad. (1-30)

Xmit-RT
addr (0-30)

Xmit-RT
subad. (1-30)

Word count
(0 for 32)

0 Write
(2-64 bytes)

Broadcast
Mode, no data

31 0 or 31 (*) Don’t care Don’t care Mode code
(1, 3-8)

1 Unused

Broadcast
Mode, BC-to-RT

31 0 or 31 (*) Don’t care Don’t care Mode code
(17/20/21)

0 Read
(2 bytes)

(*) The standard allows using either of subaddress 0 or 31 for mode commands.
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The branch condition word is formed as shown in table 309.

Note that you can get a constant true condition by setting MODE=0 and STCC=0xFF, and a constant
false condition by setting STCC=0x00. 0x800000FF can thus be used as an end-of-list marker.

Table 309.GR1553B branch condition word (offset 0x00)
31 30 27 26 25 24 23 16 15 8 7 0

1 Reserved (0) IRQC ACT MODE RT2CC RTCC STCC

31 Must be 1 to identify as branch

30 : 27 Reserved - Set to 0

26 Interrupt if condition met (IRQC)

25 Action (ACT) - What to do if condition is met, 0 - Suspend schedule, 1 - Jump

24 Logic mode (MODE):
0 = Or mode (any bit set in RT2CC, RTCC is set in RT2ST,RTST, or result is in STCC mask)
1 - And mode (all bits set in RT2CC,RTCC are set in RT2ST,RTST and result is in STCC mask)

23:16 RT 2 Condition Code (RT2CC) - Mask with bits corresponding to RT2ST in result word of last transfer

15:8 RT Condition Code (RTCC) - Mask with bits corresponding to RTST in result word of last transfer

7:0 Status Condition Code (STCC) - Mask with bits corresponding to status value of last transfer
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33.5 Remote Terminal Operation

33.5.1 Overview

When operating as Remote Terminal, the core acts as a slave on the MIL-STD-1553B bus. It listens
for requests to its own RT address (or broadcast transfers), checks whether they are configured as
legal and, if legal, performs the corresponding transfer or, if illegal, sets the message error flag in the
status word. Legality is controlled by the subaddress control word for data transfers and by the mode
code control register for mode codes.

To start the RT, set up the subaddress table and log ring buffer, and then write the address and RT
enable bit is into the RT Config Register.

33.5.2 Data transfer handling

The Remote Terminal mode uses a three-level structure to handle data transfer DMA. The top level is
a subaddress table, where each subaddress has a subaddress control word, and pointers to a transmit
descriptor and a receive descriptor. Each descriptor in turn contains a descriptor control/status word,
pointer to a data buffer, and a pointer to a next descriptor, forming a linked list or ring of descriptors.
Data buffers can reside anywhere in memory with 16-bit alignment.

When the RT receives a data transfer request, it checks in the subaddress table that the request is legal.
If it is legal, the transfer is then performed with DMA to or from the corresponding data buffer. After
a data transfer, the descriptor’s control/status word is updated with success or failure status and the
subaddress table pointer is changed to point to the next descriptor.

If logging is enabled, a log entry will be written into a log ring buffer area. A transfer-triggered IRQ
may also be enabled. To identify which transfer caused the interrupt, the RT Event Log IRQ Position
points to the corresponding log entry. For that reason, logging must be enabled in order to enable
interrupts.

If a request is legal but can not be fulfilled, either because there is no valid descriptor ready or because
the data can not be accessed within the required response time, the core will signal a RT table access
error interrupt and not respond to the request. Optionally, the terminal flag status bit can be automati-
cally set on these error conditions.

SA ctrl word

Transmit descr. ptr

Receive descr. ptr

SA N

SA N-1

SA N+1

Descriptor ctrl/stat

Data buffer ptr.

Next pointer

Descriptor ctrl/stat

Data buffer ptr.

Next pointer

Descriptor ctrl/stat

Data buffer ptr.

Next pointer 0x3

Transmit data

Receive buffer

Receive buffer

Subaddress table

Figure 127. RT subaddress data structure example diagram
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33.5.3 Mode Codes

Which of the MIL-STD-1553B mode codes that are legal and should be logged and interrupted are
controlled by the RT Mode Code Control register. As for data transfers, to enable interrupts you must
also enable logging. Inhibit mode codes are controlled by the same fields as their non-inhibit counter-
part and mode codes that can be broadcast have two separate fields to control the broadcast and non-
broadcast variants.

The different mode codes and the corresponding action taken by the RT are tabulated below. Some
mode codes do not have a built-in action, so they will need to be implemented in software if desired.
The relation between each mode code to the fields in the RT Mode Code control register is also
shown.

Table 310.RT Mode Codes

Mode code Description Built-in action, if mode code is enabled

Can
log/
IRQ

Enabled
after
reset

Ctrl.
reg
bits

0 00000 Dynamic bus control If the DBCA bit is set in the RT Bus Status regis-
ter, a Dynamic Bus Control Acceptance response
is sent.

Yes No 17:16

1 00001 Synchronize The time field in the RT sync register is updated.

The output rtsync is pulsed high one AMBA cycle.

Yes Yes 3:0

2 00010 Transmit status word Transmits the RT:s status word

Enabled always, can not be logged or disabled.

No Yes -

3 00011 Initiate self test No built-in action Yes No 21:18

4 00100 Transmitter shutdown The RT will stop responding to commands on the
other bus (not the bus on which this command was
given).

Yes Yes 11:8

5 00101 Override transmitter
shutdown

Removes the effect of an earlier transmitter shut-
down mode code received on the same bus

Yes Yes 11:8

6 00110 Inhibit terminal flag Masks the terminal flag of the sent RT status words Yes No 25:22

7 00111 Override inhibit termi-
nal flag

Removes the effect of an earlier inhibit terminal
flag mode code.

Yes No 25:22

8 01000 Reset remote terminal The fail-safe timers, transmitter shutdown and
inhibit terminal flag inhibit status are reset.

The Terminal Flag and Service Request bits in the
RT Bus Status register are cleared.

The extreset output is pulsed high one AMBA
cycle.

Yes No 29:26

16 10000 Transmit vector word Responds with vector word from RT Status Words
Register

Yes No 13:12

17 10001 Synchronize with data
word

The time and data fields in the RT sync register are
updated. The rtsync output is pulsed high one
AMBA cycle

Yes Yes 7:4

18 10010 Transmit last com-
mand

Transmits the last command sent to the RT.

Enabled always, can not be logged or disabled.

No Yes -

19 10011 Transmit BIT word Responds with BIT word from RT Status Words
Register

Yes No 15:14

20 10100 Selected transmitter
shutdown

No built-in action No No -

21 10101 Override selected
transmitter shutdown

No built-in action No No -
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33.5.4 Event Log

The event log is a ring of 32-bit entries, each entry having the format given in table 311. Note that for
data transfers, bits 23-0 in the event log are identical to bits 23-0 in the descriptor status word.

33.5.5 Subaddress table format

Table 311.GR1553B RT Event Log entry format
31 30 29 28 24 23 10 9 8 3 2 0

IRQSR TYPE SAMC TIMEL BC SZ TRES

31 IRQ Source (IRQSRC) - Set to ‘1’ if this transfer caused an interrupt

30 : 29 Transfer type (TYPE) - 00 - Transmit data, 01 - Receive data, 10 - Mode code

28 : 24 Subaddress / Mode code (SAMC) - If TYPE=00/01 this is the transfer subaddress, If TYPE=10, this is the
mode code

23 : 10 TIMEL - Low 14 bits of time tag counter.

9 Broadcast (BC) - Set to 1 if request was to the broadcast address

8 : 3 Transfer size (SZ) - Count in 16-bit words (0-32)

2 : 0 Transfer result (TRES)
000 = Success
001 = Superseded (canceled because a new command was given on the other bus)
010 = DMA error or memory timeout occurred
011 = Protocol error (improperly timed data words or decoder error)
100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error

Table 312.GR1553B RT Subaddress table entry for subaddress number N, 0<N<31

Offset Value DMA R/W

0x10*N + 0x00 Subaddress N control word (table 313) R

0x10*N + 0x04 Transmit descriptor pointer, 16-byte aligned (0x3 to indicate invalid pointer) R/W

0x10*N + 0x08 Receive descriptor pointer, 16-byte aligned (0x3 to indicate invalid pointer) R/W

0x10*N + 0x0C Unused -

Note: The table entries for mode code subaddresses 0 and 31 are never accessed by the core.

Table 313.GR1553B RT Subaddress table control word (offset 0x00)
31 19 18 17 16 15 14 13 12 8 7 6 5 4 0

0 (reserved) WRAP IGNDV BCRXE RXEN RXLOG RXIRQ RXSZ TXEN TXLOG TXIRQ TXSZ

31 : 19 Reserved - set to 0 for forward compatibility

18 Auto-wraparound enable (WRAP) - Enables a test mode for this subaddress, where transmit transfers send back the
last received data. This is done by copying the finished transfer’s descriptor pointer to the transmit descriptor pointer
address after each successful transfer.
Note: If WRAP=1, you should not set TXSZ > RXSZ as this might cause reading beyond buffer end

17 Ignore data valid bit (IGNDV) - If this is ‘1’ then receive transfers will proceed (and overwrite the buffer) if the receive
descriptor has the data valid bit set, instead of not responding to the request.
This can be used for descriptor rings where you don’t care if the oldest data is overwritten.

16 Broadcast receive enable (BCRXEN) - Allow broadcast receive transfers to this subaddress

15 Receive enable (RXEN) - Allow receive transfers to this subaddress

14 Log receive transfers (RXLOG) - Log all receive transfers in event log ring (only used if RXEN=1)

13 Interrupt on receive transfers (RXIRQ) - Each receive transfer will cause an interrupt (only if also RXEN,RXLOG=1)

12 : 8 Maximum legal receive size (RXSZ) to this subaddress - in16-bit words, 0 means 32

7 Transmit enable (TXEN) - Allow transmit transfers from this subaddress

6 Log transmit transfers (TXLOG) - Log all transmit transfers in event log ring (only if also TXEN=1)

5 Interrupt on transmit transfers (TXIRQ) - Each transmit transfer will cause an interrupt (only if TXEN,TXLOG=1)

4 : 0 Maximum legal transmit size (TXSZ) from this subaddress - in 16-bit words, 0 means 32
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Table 314.GR1553B RT Descriptor format

Offset Value DMA R/W

0x00 Control and status word, see table 315 R/W

0x04 Data buffer pointer, 16-bit aligned R

0x08 Pointer to next descriptor, 16-byte aligned

or 0x0000003 to indicate end of list

R

Table 315.GR1553B RT Descriptor control/status word (offset 0x00)
31 30 29 26 25 10 9 8 3 2 0

DV IRQEN Reserved (0) TIME BC SZ TRES

31 Data valid (DV) - Should be set to 0 by software before and set to 1 by hardware after transfer.
If DV=1 in the current receive descriptor before the receive transfer begins then a descriptor table error will
be triggered. You can override this by setting the IGNDV bit in the subaddress table.

30 IRQ Enable override (IRQEN) - Log and IRQ after transfer regardless of SA control word settings
Can be used for getting an interrupt when nearing the end of a descriptor list.

29 : 26 Reserved - Write 0 and mask out on read for forward compatibility

25 : 10 Transmission time tag (TTIME) - Set by the core to the value of the RT timer when the transfer finished.

9 Broadcast (BC) - Set by the core if the transfer was a broadcast transfer

8 : 3 Transfer size (SZ) - Count in 16-bit words (0-32)

2 : 0 Transfer result (TRES)
000 = Success
001 = Superseded (canceled because a new command was given on the other bus)
010 = DMA error or memory timeout occurred
011 = Protocol error (improperly timed data words or decoder error)
100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error



AEROFLEX GAISLER 314 GRIP

33.6 Bus Monitor Operation

33.6.1 Overview

The Bus Monitor (BM) can be enabled by itself, or in parallel to the BC or RT. The BM acts as a pas-
sive logging device, writing received data with time stamps to a ring buffer.

33.6.2 Filtering

The Bus Monitor can also support filtering. This is an optional feature, software can check for this by
testing whether the BM filter registers are writable.

Transfers can be filtered per RT address and per subaddress or mode code, and the filter conditions are
logically AND:ed. If all bits of the three filter registers and bits 2-3 of the control register are set to
’1’, the BM core will log all words that are received on the bus.

In order to filter on subaddress/mode code, the BM has logic to track 1553 words belonging to the
same message. All 10 message types are supported. If an unexpected word appears, the filter logic
will restart. Data words not appearing to belong to any message can be logged by setting a bit in the
control register.

The filter logic can be manually restarted by setting the BM enable bit low and then back to high. This
feature is mainly to improve testability of the BM itself.

The filtering capability can be configured out of the BM to save area. If this is done, all words seen are
logged and the filter control registers become read-only and always read out as all-ones. You can,
however, still control whether Manchester/parity errors are logged.

33.6.3 No-response handling

In the MIL-STD-1553B protocol, a command word for a mode code using indicator 0 or a regular
transfer to subaddress 8 has the same structure as a legal status word. Therefore ambiguity can arise
when the subaddress or mode code filters are used, an RT is not responding on a subaddress, and the
BC then commands the same RT again on subaddress 8 or mode code indicator 0 on the same bus.
This can lead to the second command word being interpreted as a status word and filtered out.

The BM can use the instrumentation bit and reserved bits to disambiguate, which means that this case
will never occur when subaddresses 1-7, 9-30 and mode code indicator 31 are used. Also, this case
does not occur when the subaddress/mode code filters are unused and only the RT address filter is
used.

33.6.4 Log entry format

Each log entry is two 32-bit words.

Table 316.GR1553B BM Log entry word 0 (offset 0x00)
31 30 24 23 0

1 Reserved TIME

31 Always written as 1

30 : 24 Reserved - Mask out on read for forward compatibility

23 : 0 Time tag (TIME)

Table 317.GR1553B BM Log entry word 1 (offset 0x04)
31 30 20 19 18 17 16 15 0

0 Reserved BUS WST WTP WD

31 Always written as 0

30 : 20 Reserved - Mask out on read for forward compatibility
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33.7 Clocking

The core operates in two clock domains, the AMBA clock domain and the 1553 codec clock domain,
with synchronization and handshaking between the domains. The AMBA clock can be at any fre-
quency but must be at a minimum of 10 MHz. A propagation delay of up to one codec clock cycle (50
ns) can be tolerated in each clock-domain crossing signal.

The core has two separate reset inputs for the two clock domains. They should be reset simulta-
neously, for instance by using two Reset generator cores connected to the same reset input but clocked
by the respective clocks.

33.8 Registers

The core is programmed through registers mapped into APB address space. If the RT, BC or BM parts
of the core have been configured out, the corresponding registers will become unimplemented and
return zero when read. Reserved register fields should be written as zeroes and masked out on read.

19 Receive data bus (BUS) - 0:A, 1:B

18 : 17 Word status (WST) - 00=word OK, 01=Manchester error, 10=Parity error

16 Word type (WTP) - 0:Data, 1:Command/status

15 : 0 Word data (WD)

Table 318.MIL-STD-1553B interface registers

APB address offset Register R/W Reset value

0x00 IRQ Register RW (write ‘1’ to clear) 0x00000000

0x04 IRQ Enable RW 0x00000000

0x08...0x0F (Reserved)

0x10 Hardware config register R (constant) 0x00000000*

0x14...0x3F (Reserved)

0x40...0x7F BC Register area (see table 319)

0x80...0xBF RT Register area (see table 320)

0xC0...0xFF BM Register area (see table 321)

(*) May differ depending on core configuration

Table 319.MIL-STD-1553B interface BC-specific registers

APB address offset Register R/W Reset value

0x40 BC Status and Config register RW 0xf0000000*

0x44 BC Action register W

0x48 BC Transfer list next pointer RW 0x00000000

0x4C BC Asynchronous list next pointer RW 0x00000000

0x50 BC Timer register R 0x00000000

0x54 BC Timer wake-up register RW 0x00000000

0x58 BC Transfer-triggered IRQ ring position RW 0x00000000

0x5C BC Per-RT bus swap register RW 0x00000000

0x60...0x67 (Reserved)

0x68 BC Transfer list current slot pointer R 0x00000000

0x6C BC Asynchronous list current slot pointer R 0x00000000

0x70...0x7F (Reserved)

(*) May differ depending on core configuration

Table 317.GR1553B BM Log entry word 1 (offset 0x04)
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Table 320.MIL-STD-1553B interface RT-specific registers

APB address offset Register R/W Reset value

0x80 RT Status register R 0x80000000*

0x84 RT Config register RW 0x0000e03e***

0x88 RT Bus status bits register RW 0x00000000

0x8C RT Status words register RW 0x00000000

0x90 RT Sync register R 0x00000000

0x94 RT Subaddress table base address RW 0x00000000

0x98 RT Mode code control register RW 0x00000555

0x9C...0xA3 (Reserved)

0xA4 RT Time tag control register RW 0x00000000

0xA8 (Reserved)

0xAC RT Event log size mask RW 0xfffffffc

0xB0 RT Event log position RW 0x00000000

0xB4 RT Event log interrupt position R 0x00000000

0xB8.. 0xBF (Reserved)

(*) May differ depending on core configuration

(***) Reset value is affected by the external RTADDR/RTPAR input signals

Table 321.MIL-STD-1553B interface BM-specific registers

APB address offset Register R/W Reset value

0xC0 BM Status register R 0x80000000*

0xC4 BM Control register RW 0x00000000

0xC8 BM RT Address filter register RW 0xffffffff

0xCC BM RT Subaddress filter register RW 0xffffffff

0xD0 BM RT Mode code filter register RW 0xffffffff

0xD4 BM Log buffer start RW 0x00000000

0xD8 BM Log buffer end RW 0x00000007

0xDC BM Log buffer position RW 0x00000000

0xE0 BM Time tag control register RW 0x00000000

0xE4...0xFF (Reserved)

(*) May differ depending on core configuration

Table 322.GR1553B IRQ Register
31 18 17 16 15 11 10 9 8 7 3 2 1 0

RESERVED BMTOF BMD RESERVED RTTE RTD RTEV RESERVED BCWK BCD BCEV

Bits read ‘1’ if interrupt occurred, write back ‘1’ to acknowledge

17 BM Timer overflow (BMTOF)

16 BM DMA Error (BMD)

10 RT Table access error (RTTE)

9 RT DMA Error (RTD)

8 RT transfer-triggered event interrupt (RTEV)

2 BC Wake-up timer interrupt (BCWK)

1 BC DMA Error (BCD)

0 BC Transfer-triggered event interrupt (BCEV)
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Table 323.GR1553B IRQ Enable Register
31 18 17 16 15 11 10 9 8 7 3 2 1 0

RESERVED BMTOE BMDE RESERVED RTTEE RTDE RTEVE RESERVED BCWKE BCDE BCEVE

17 BM Timer overflow interrupt enable (BMTOE)

16 BM DMA error interrupt enable (BMDE)

10 RT Table access error interrupt enable (RTTEE)

9 RT DMA error interrupt enable (RTDE)

8 RT Transfer-triggered event interrupt enable (RTEVE)

2 BC Wake up timer interrupt (BCWKE)

1 BC DMA Error Enable (BCDE)

0 BC Transfer-triggered event interrupt (BCEVE)

Table 324.GR1553B Hardware Configuration Register
31 30 12 11 10 9 8 7 0

MOD RESERVED XKEYS ENDIAN SCLK CCFREQ

Note: This register reads 0x0000 for the standard configuration of the core

31 Modified (MOD) - Reserved to indicate that the core has been modified / customized in an unspecified man-
ner

11 Set if safety keys are enabled for the BM Control Register and for all RT Control Register fields.

10 : 9 AHB Endianness - 00=Big-endian, 01=Little-endian, 10/11=Reserved

8 Same clock (SCLK) - Reserved for future versions to indicate that the core has been modified to run with a
single clock

7 : 0 Codec clock frequency (CCFREQ) - Reserved for future versions of the core to indicate that the core runs at
a different codec clock frequency. Frequency value in MHz, a value of 0 means 20 MHz.

Table 325.GR1553B BC Status and Config Register
31 30 28 27 17 16 15 11 10 9 8 7 3 2 0

BCSUP BCFEAT RESERVED BCCHK ASADL 0 ASST SCADL SCST

31 BC Supported (BCSUP) - Reads ‘1’ if core supports BC mode

30 : 28 BC Features (BCFEAT) - Bit field describing supported optional features (‘1’=supported):

30
29
28

BC Schedule timer supported
BC Schedule time wake-up interrupt supported
BC per-RT bus swap register and STBUS descriptor bit supported

16 Check broadcasts (BCCHK) - Writable bit, if set to ‘1’ enables waiting and checking for (unexpected)
responses to all broadcasts.

15 : 11 Asynchronous list address low bits (ASADL) - Bit 8-4 of currently executing (if ASST=01) or next asynchro-
nous command descriptor address

9 : 8 Asynchronous list state (ASST) - 00=Stopped, 01=Executing command, 10=Waiting for time slot

7 : 3 Schedule address low bits (SCADL) - Bit 8-4 of currently executing (if SCST=001) or next schedule descrip-
tor address

2 : 0 Schedule state (SCST) - 000=Stopped, 001=Executing command, 010=Waiting for time slot, 011=Sus-
pended, 100=Waiting for external trigger

Table 326.GR1553B BC Action Register
31 16 15 10 9 8 7 5 4 3 2 1 0

BCKEY RESERVED ASSTP ASSRT RESERVED CLRT SETT SCSTP SCSUS SCSRT

31 : 16 Safety code (BCKEY) - Must be 0x1552 when writing, otherwise register write is ignored

9 Asynchronous list stop (ASSTP) - Write ‘1’ to stop asynchronous list (after current transfer, if executing)

8 Asynchronous list start (ASSRT) - Write ‘1’ to start asynchronous list

4 Clear external trigger (CLRT) - Write ‘1’ to clear trigger memory

3 Set external trigger (SETT) - Write ‘1’ to force the trigger memory to set

2 Schedule stop (SCSTP) - Write ‘1’ to stop schedule (after current transfer, if executing)

1 Schedule suspend (SCSUS) - Write ‘1’ to suspend schedule (after current transfer, if executing)

0 Schedule start (SCSRT) - Write ‘1’ to start schedule
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Table 327.GR1553B BC Transfer list next pointer register
31 0

SCHEDULE TRANSFER LIST POINTER

31 : 0 Read: Currently executing (if SCST=001) or next transfer to be executed in regular schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.

Table 328.GR1553B BC Asynchronous list next pointer register
31 0

ASYNCHRONOUS LIST POINTER

31 :0 Read: Currently executing (if ASST=01) or next transfer to be executed in asynchronous schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.

Table 329.GR1553B BC Timer register
31 24 23 0

RESERVED SCHEDULE TIME (SCTM)

23 : 0 Elapsed “transfer list” time in microseconds (read-only)
Set to zero when schedule is stopped or on external sync.

Note: This register is an optional feature, see BC Status and Config Register, bit 30

Table 330.GR1553B BC Timer Wake-up register
31 30 24 23 0

WKEN RESERVED WAKE-UP TIME (WKTM)

31 Wake-up timer enable (WKEN) - If set, an interrupt will be triggered when WKTM=SCTM

23 : 0 Wake-up time (WKTM).

Note: This register is an optional feature, see BC Status and Config Register, bit 29

Table 331.GR1553B BC Transfer-triggered IRQ ring position register
31 0

BC IRQ SOURCE POINTER RING POSITION

31 : 0 The current write pointer into the transfer-tirggered IRQ descriptor pointer ring.
Bits 1:0 are constant zero (4-byte aligned)
The ring wraps at the 64-byte boundary, so bits 31:6 are only changed by user

Table 332.GR1553B BC per-RT Bus swap register
31 0

BC PER-RT BUS SWAP

31 : 0 The bus selection value will be logically exclusive-or:ed with the bit in this mask corresponding to the
addressed RT (the receiving RT for RT-to-RT transfers). This register gets updated by the core if the STBUS
descriptor bit is used.
For more information on how to use this feature, see section 33.4.3.

Note: This register is an optional feature, see BC Status and Config Register, bit 28

Table 333.GR1553B BC Transfer list current slot pointer
31 0

BC TRANSFER SLOT POINTER

31 : 0 Points to the transfer descriptor corresponding to the current time slot (read-only, only valid while transfer list
is running).
Bits 3:0 are constant zero (128-bit/16-byte aligned)
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Table 334.GR1553B BC Asynchronous list current slot pointer
31 0

BC TRANSFER SLOT POINTER

31 : 0 Points to the transfer descriptor corresponding to the current asynchronous schedule time slot (read-only,
only valid while asynchronous list is running).
Bits 3:0 are constant zero (128-bit/16-byte aligned)

Table 335.GR1553B RT Status register (read-only)
31 30 4 3 2 1 0

RTSUP RESERVED ACT SHDA SHDB RUN

31 RT Supported (RTSUP) - Reads ‘1’ if core supports RT mode

3 RT Active (ACT) - ‘1’ if RT is currently processing a transfer

2 Bus A shutdown (SHDA) - Reads ‘1’ if bus A has been shut down by the BC (using the transmitter shutdown
mode command on bus B)

1 Bus B shutdown (SHDB) - Reads ‘1’ if bus B has been shut down by the BC (using the transmitter shutdown
mode command on bus A)

0 RT Running (RUN) - ‘1’ if the RT is listening to commands.

Table 336.GR1553B RT Config register
31 16 15 14 13 12 7 6 5 1 0

RTKEY SYS SYDS BRS RESERVED RTEIS RTADDR RTEN

31 : 16 Safety code (RTKEY) - Must be written as 0x1553 when changing the RT address, otherwise the address
field is unaffected by the write. When reading the register, this field reads 0x0000.
If extra safety keys are enabled (see Hardware Config Register), the lower half of the key is used to also pro-
tect the other fields in this register.

15 Sync signal enable (SYS) - Set to ‘1’ to pulse the rtsync output when a synchronize mode code (without
data) has been received

14 Sync with data signal enable (SYDS) - Set to ‘1’ to pulse the rtsync output when a synchronize with data
word mode code has been received

13 Bus reset signal enable (BRS) - Set to ‘1’ to pulse the busreset output when a reset remote terminal mode
code has been received.

6 Reads ‘1’ if current address was set through external inputs.
After setting the address from software this field is set to ‘0’

5 : 1 RT Address (RTADDR) - This RT:s address (0-30)

0 RT Enable (RTEN) - Set to ‘1’ to enable listening for requests

Table 337.GR1553B RT Bus status register
31 9 8 7 5 4 3 2 1 0

RESERVED TFDE RESERVED SREQ BUSY SSF DBCA TFLG

8 Set Terminal flag automatically on DMA and descriptor table errors (TFDE)

4 : 0 These bits will be sent in the RT:s status responses over the 1553 bus.

4 Service request (SREQ)

3 Busy bit (BUSY)
Note: If the busy bit is set, the RT will respond with only the status word and the transfer “fails”

2 Subsystem Flag (SSF)

1 Dynamic Bus Control Acceptance (DBCA)
Note: This bit is only sent in response to the Dynamic Bus Control mode code

0 Terminal Flag (TFLG)
The BC can mask this flag using the “inhibit terminal flag” mode command, if legal

Table 338.GR1553B RT Status words register
31 16 15 0

BIT WORD (BITW) VECTOR WORD (VECW)

31 : 16 BIT Word - Transmitted in response to the “Transmit BIT Word” mode command, if legal

15 : 0 Vector word - Transmitted in response to the “Transmit vector word” mode command, if legal.
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Table 339.GR1553B RT Sync register
31 16 15 0

SYNC TIME (SYTM) SYNC DATA (SYD)

31 : 16 The value of the RT timer at the last sync or sync with data word mode command, if legal.

15 : 0 The data received with the last synchronize with data word mode command, if legal

Table 340.GR1553B RT Subaddress table base address register
31 9 8 0

SUBADDRESS TABLE BASE (SATB) 0

31 : 9 Base address, bits 31-9 for subaddress table

8 : 0 Always read ‘0’, writing has no effect

Table 341.GR1553B RT Mode code control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED RRTB RRT ITFB ITF ISTB IST DBC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBW TVW TSB TS SDB SD SB S

For each mode code: “00” - Illegal, “01” - Legal, “10” - Legal, log enabled, “11” - Legal, log and interrupt

29 : 28 Reset remote terminal broadcast (RRTB)

27 : 26 Reset remote terminal (RRT)

25 : 24 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

23 : 22 Inhibit & override inhibit terminal flag (ITF)

21 : 20 Initiate self test broadcast (ISTB)

19 : 18 Initiate self test (IST)

17 : 16 Dynamic bus control (DBC)

15 : 14 Transmit BIT word (TBW)

13 : 12 Transmit vector word (TVW)

11 : 10 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

9 : 8 Transmitter shutdown & override transmitter shutdown (TS)

7 : 6 Synchronize with data word broadcast (SDB)

5 : 4 Synchronize with data word (SD)

3 : 2 Synchronize broadcast (SB)

1 : 0 Synchronize (S)

Table 342.GR1553B RT Time tag control register
31 16 15 0

TIME RESOLUTION (TRES) TIME TAG VALUE (TVAL)

31 : 16 Time tag resolution (TRES) - Time unit of RT:s time tag counter in microseconds, minus 1

15 : 0 Time tag value (TVAL) - Current value of running time tag counter

Table 343.GR1553B RT Event Log mask register
31 21 20 2 1 0

1 EVENT LOG SIZE MASK 0

31 : 0 Mask determining size and alignment of the RT event log ring buffer. All bits “above” the size should be set to
‘1’, all bits below should be set to ‘0’

Table 344.GR1553B RT Event Log position register
31 0

EVENT LOG WRITE POINTER

31 : 0 Address to first unused/oldest entry of event log buffer, 32-bit aligned
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Table 345.GR1553B RT Event Log interrupt position register
31 0

EVENT LOG IRQ POINTER

31 : 0 Address to event log entry corresponding to interrupt, 32-bit aligned
The register is set for the first interrupt and not set again until the interrupt has been acknowledged.

Table 346.GR1553B BM Status register
31 30 29 0

BMSUP KEYEN RESERVED

31 BM Supported (BMSUP) - Reads ‘1’ if BM support is in the core.

30 Key Enabled (KEYEN) - Reads ‘1’ if the BM validates the BMKEY field when the control register is written.

Table 347.GR1553B BM Control register
31 16 15 6 5 4 3 2 1 0

BMKEY RESERVED WRSTP EXST IMCL UDWL MANL BMEN

31 : 16 Safety key - If extra safety keys are enabled (see KEYEN), this field must be 0x1543 for a write to be
accepted. Is 0x0000 when read.

5 Wrap stop (WRSTP) - If set to ‘1’, BMEN will be set to ‘0’ and stop the BM when the BM log position wraps
around from buffer end to buffer start

4 External sync start (EXST) - If set to ‘1’,BMEN will be set to ‘1’ and the BM is started when an external BC
sync pulse is received

3 Invalid mode code log (IMCL) - Set to ‘1’ to log invalid or reserved mode codes.

2 Unexpected data word logging (UDWL) - Set to ‘1’ to log data words not seeming to be part of any command

1 Manchester/parity error logging (MANL) - Set to ‘1’ to log bit decoding errors

0 BM Enable (BMEN) - Must be set to ‘1’ to enable any BM logging

Table 348.GR1553B BM RT Address filter register
31 0

ADDRESS FILTER MASK

31 Enables logging of broadcast transfers

30 : 0 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT address

Table 349.GR1553B BM RT Subaddress filter register
31 0

SUBADDRESS FILTER MASK

31 Enables logging of mode commands on subaddress 31

30 : 1 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT subaddress

0 Enables logging of mode commands on subaddress 0
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Table 350.GR1553B BM RT Mode code filter register
31 19 18 17 16

RESERVED STSB STS TLC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSW RRTB RRT ITFB ITF ISTB IST DBC TBW TVW TSB TS SDB SD SB S

Each bit set to ‘1’ enables logging of a mode code:

18 Selected transmitter shutdown broadcast & override selected transmitter shutdown broadcast (STSB)

17 Selected transmitter shutdown & override selected transmitter shutdown (STS)

16 Transmit last command (TLC)

15 Transmit status word (TSW)

14 Reset remote terminal broadcast (RRTB)

13 Reset remote terminal (RRT)

12 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

11 Inhibit & override inhibit terminal flag (ITF)

10 Initiate self test broadcast (ISTB)

9 Initiate self test (IST)

8 Dynamic bus control (DBC)

7 Transmit BIT word (TBW)

6 Transmit vector word (TVW)

5 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

4 Transmitter shutdown & override transmitter shutdown (TS)

3 Synchronize with data word broadcast (SDB)

2 Synchronize with data word (SD)

1 Synchronize broadcast (SB)

0 Synchronize (S)

Table 351.GR1553B BM Log buffer start
31 0

BM LOG BUFFER START

31 : 0 Pointer to the lowest address of the BM log buffer (8-byte aligned)
Due to alignment, bits 2:0 are always 0.

Table 352.GR1553B BM Log buffer end
31 22 21 0

BM LOG BUFFER END

31 : 0 Pointer to the highest address of the BM log buffer
Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 1

Table 353.GR1553B BM Log buffer position
31 22 21 0

BM LOG BUFFER POSITION

31 : 0 Pointer to the next position that will be written to in the BM log buffer
Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 0

Table 354.GR1553B BM Time tag control register
31 24 23 0

TIME TAG RESOLUTION TIME TAG VALUE

31 : 24 Time tag resolution (TRES) - Time unit of BM:s time tag counter in microseconds, minus 1

23 : 0 Time tag value (TVAL) - Current value of running time tag counter
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33.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x04D. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

33.10 Configuration options

Table 355 shows the configuration options of the core (VHDL generics).

Table 355.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

bc_enable Selects whether BC support is built into the core 0 - 1 1

rt_enable Selects whether RT support is built into the core 0 - 1 1

bm_enable Selects whether BM support is built into the core 0 - 1 1

bc_timer Selects whether the BC timer and wake-up interrupt fea-
tures are built into the core.

0=None, 1=Timer, 2=Timer and wake-up

0-2 1

bc_rtbusmask Selects whether the BC per-RT bus swap register is built
into the core.

0-1 1

extra_regkeys Enables extra safety keys for the BM control register and
for all fields in the RT control registers

0-1 0

syncrst Selects reset configuration:

0: Asynchronous reset, all registers in core are reset

1: Synchronous, minimal set of registers are reset

2: Synchronous, most registers reset (increases area
slightly to simplify netlist simulation)

0-2 1

ahbendian Selects AHB bus endianness (for use in non-GRLIB sys-
tems), 0=Big endian, 1=Little endian

0 - 1 0

bm_filters Enable BM filtering capability 0 - 1 1

codecfreq Codec clock domain frequency in MHz 20 or 24 20

sameclk AMBA clock and reset is same as codec (removes inter-
nal synchronization)

0 - 1 0
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33.11 Signal descriptions

Tables356-357 shows the interface signals of the core (VHDL ports).

Table 356.Signal descriptions on AMBA side

Signal name Field Type Function Active

CLK N/A Input Clock, AMBA clock domain -

RST N/A Input Reset for registers in CLK clock domain Low

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

APBSI * Input APB slave input signals -

APBSO * Output APB slave output signals -

AUXIN EXTSYNC Input External sync input for Bus Controller

Re-synchronized to AMBA clk internally.

Edge-detection checks for the sampled pattern
“01”, i.e. pulses should be at least one
CLK cycle to always get detected.

Pos. edge

RTADDR Input Reset value for RT address, if parity matches. -

RTPAR Input RT address odd parity -

AUXOUT RTSYNC Output Pulsed for one CLK cycle after receiving a syn-
chronize mode command in RT mode

High

BUSRESET Output Pulsed for one CLK cycle after receiving a reset
remote terminal mode command in RT mode

High

VALIDCMDA Output Pulsed for one CLK cycle after receiving a valid
command word on bus A/B in RT mode

High

VALIDCMDB Output High

TIMEDOUTA Output Asserted when the terminal fail-safe timer has
triggered on bus A/B.

High

TIMEDOUTB Output High

BADREG Output Pulsed for one CLK cycle when an invalid regis-
ter access is performed, either:

- an access to an undefined register,

- read/write from a write-only/read-only register,

- a read/write to a non-implemented part of the
core

- an incorrect BCKEY/BMKEY

High

IRQVEC Output Auxiliary IRQ vector. Pulsed at the same time as
the ordinary PIRQ line, but with a separate line
for each interrupt:

7: BM Timer overflow, 6: BM DMA Error,
5: RT Table error, 4: RT DMA Error, 3: RT Event
2: BC Wake-up, 1: BC DMA Error, 0: BC Event

High

* see GRLIB IP Library User’s Manual
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33.12 Library dependencies

Table 358 shows libraries used when instantiating the core (VHDL libraries).

33.13 Instantiation

This example shows how the core can be instantiated in a GRLIB design.

library ieee;
use ieee.std_logic_1164.all;

library grlib, gaisler;
use grlib.amba.all;
use gaisler.gr1553b_pkg.all;
use gaisler.misc.rstgen;

entity gr1553b_ex is
  generic (
    padtech     : integer
    );
  port (

Table 357.Signal descriptions on 1553 side

Signal name Field Type Function Active

CODEC_CLK N/A Input Codec clock -

CODEC_RST N/A Input Reset for registers in CODEC_CLK domain Low

TXOUT BUSA_TXP Output Bus A transmitter, positive output High **

BUSA_TXN Output Bus A transmitter, negative output High **

BUSA_TXEN Output Bus A transmitter enable High

BUSA_RXEN Output Bus A receiver enable High

BUSB_TXP Output Bus B transmitter, positive output High **

BUSB_TXN Output Bus B transmitter, negative output High **

BUSB_TXEN Output Bus B transmitter enable High

BUSB_RXEN Output Bus B receiver enable High

BUSA_TXIN Output Inverted version of BUSA_TXEN

(for VHDL coding convenience)

High

BUSB_TXIN Output Inverted version of BUSB_TXEN High

TXOUT_FB See TXOUT Input Feedback input to the terminal fail-safe timers.

Should be tied directly to TXOUT, but are
exposed to allow testing the fail-safe timer func-
tion.

This input is re synchronized to CODEC_CLK
so it can be asynchronous.

See TXOUT

RXIN BUSA_RXP Input Bus A receiver, positive input High **

BUSA_RXN Input Bus A receiver, negative input High **

BUSB_RXP Input Bus B receiver, positive input High **

BUSB_RXN Input Bus B receiver, negative input High **

** The core will put both P/N outputs low when not transmitting. For input, it accepts either both-low or both-high idle.

Table 358.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB/APB signal definitions

GAISLER GR1553B_PKG Signals, component  signal and component declaration
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    rstn        : in std_ulogic;
    clk         : in std_ulogic;
    codec_clk   : in std_ulogic;

    -- MIL-STD-1553 signals
    txAen       : out std_ulogic;
    txAP        : out std_ulogic;
    txAN        : out std_ulogic;
    rxAen       : out std_ulogic;
    rxAP        : in std_ulogic;
    rxAN        : in std_ulogic;
    txAen       : out std_ulogic;
    txAP        : out std_ulogic;
    txAN        : out std_ulogic;
    rxAen       : out std_ulogic;
    rxAP        : in std_ulogic;
    rxAN        : in std_ulogic
    );
end;

architecture rtl of gr1553b_ex is

  -- System-wide synchronous reset
  signal rst       : std_logic;

  -- AMBA signals
  signal apbi      : apb_slv_in_type;
  signal apbo      : apb_slv_out_vector := (others => apb_none);
  signal ahbi      : ahb_mst_in_type;
  signal ahbo      : ahb_mst_out_vector := (others => apb_none);

  -- GR1553B signals
  signal codec_rst : std_ulogic;
  signal txout     : gr1553b_txout_type;
  signal rxin      : gr1553b_rxin_type;
  signal auxin     : gr1553b_auxin_type;
  signal auxout    : gr1553b_auxout_type;

begin

  rg0: rstgen port map (rstn, clk, ’1’, rst, open);

  -- AMBA Components are instantiated here
  ...

  -- Reset generation for 1553 codec
  rgc: rstgen port map (rstn, codec_clk, ’1’, codec_rst, open);

  -- GR1553B

  gr1553b0: gr1553b
  generic map (hindex => 4, pindex => 7, paddr => 7, pirq => 13, syncrst => 1,
               bc_enable => 1, rt_enable => 1, bm_enable => 1)
  port map (clk, rst, ahbi, ahbo(4), apbi, apbo(7), auxin, auxout,
            codec_clk, codec_rst, txout, txout, rxin);

  p: gr1553b_pads
  generic map (padtech => padtech, outen_pol => 0)
  port map (txout,rxin,
            rxAen,rxAP,rxAN,txAen,txAP,txAN,
            rxBen,rxBP,rxBN,txBen,txBP,txBN);

  auxin         <= gr1553b_auxin_zero;

end;
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34 GPTIMER - General Purpose Timer Unit

34.1 Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). The num-
ber of timers is configurable through thentimersVHDL generic in the range 1 to 7. The prescaler
width is configured through thesbits VHDL generic. Timer width is configured through thetbits
VHDL generic. The timer unit acts a slave on AMBA APB bus. The unit is capable of asserting inter-
rupts on timer underflow. The interrupt to use is configurable to be common for the whole unit or sep-
arate for each timer.

34.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated.

The operation of each timers is controlled through its control register. A timer is enabled by setting
the enable bit in the control register. The timer value is then decremented on each prescaler tick.
When a timer underflows, it will automatically be reloaded with the value of the corresponding timer
reload register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the
enable bit.

The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. The timer unit
will signal an interrupt on appropriate line when a timer underflows (if the interrupt enable bit for the
current timer is set), when configured to signal interrupt for each timer. The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘1’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor isntimers+1 (reload register =ntimers) wherentimers is the number of
implemented timers. By setting the chain bit in the control register timern can be chained with pre-
ceding timern-1. Timern will be decremented each time when timern-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer acts as a watchdog, driving a watchdog output signal
when expired, when thewdog VHDL generic is set to a time-out value larger than 0.

At reset, all timer are disabled except the watchdog timer (if enabled by the generics). The prescaler
value and reload registers are set to all ones, while the watchdog timer is set to thewdog VHDL
generic. All other registers are uninitialized

timer n reload

Figure 128. General Purpose Timer Unit block diagram

prescaler reload
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prescaler value timer 1 value

timer 2 value

timer n value

timer 1 reload

timer 2 reload

-1

tick

pirq

pirq+1

pirqn+(n-1)
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34.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on the number of implemented timers.

Table 359.General Purpose Timer Unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Unused

0x10 Timer 1 counter value register

0x14 Timer 1 reload value register

0x18 Timer 1 control register

0x1C Unused

0xn0 Timer n counter value register

0xn4 Timer n reload value register

0xn8 Timer n control register

Table 360.Scaler value
31 16 16-1 0

“000..0” SCALER VALUE

16-1: 0 Scaler value

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 361.Scaler reload value
31 16 16-1 0

“000..0” SCALER RELOAD VALUE

16-1: 0 Scaler reload value

Any unused most significant bits are reserved. Always read as ‘000...0’.

Table 362.Configuration Register
31 10 9 8 7 3 2 0

“000..0” DF SI IRQ TIMERS

31: 10 Reserved. Always reads as ‘000...0’.

9 Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT
freezes the timer unit.

8 Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, oth-
erwise ‘0’. Read-only.

7: 3 APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ,
otherwise timernwill drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-only.

2: 0 Number of implemented timers. Read-only.

Table 363.Timer counter value register
32-1 0

TIMER COUNTER VALUE
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34.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x011. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

32-1: 0 Timer Counter value. Decremented by 1 for each prescaler tick.

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 364.Timer reload value register
32-1 0

TIMER RELOAD VALUE

32-1: 0 Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to
load bit in the timers control register or when the RS bit is set in the control register and the timer
underflows.

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 365.Timer control register
31 7 6 5 4 3 2 1 0

“000..0” DH CH IP IE LD RS EN

31: 7 Reserved. Always reads as ‘000...0’.

6 Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a sys-
tem is in debug mode). Read-only.

5 Chain (CH): Chain with preceding timer. If set for timern, timern will be decremented each time
when timer (n-1) underflows.

4 Interrupt Pending (IP): The core sets this bit to ‘1’ when an interrupt is signalled. This bit remains ‘1’
until cleared by writing ‘1’ to this bit, writes of ‘0’ have no effect.

3 Interrupt Enable (IE): If set the timer signals interrupt when it underflows.

2 Load (LD): Load value from the timer reload register to the timer counter value register.

1 Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register
when the timer underflows

0 Enable (EN): Enable the timer.

Table 363.Timer counter value register
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34.5 Configuration options

Table 366 shows the configuration options of the core (VHDL generics).

34.6 Signal descriptions

Table 367 shows the interface signals of the core (VHDL ports).

Table 366.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to
access the timer unit

0 to NAPBSLV-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1 to 32 32

ntimers Defines the number of timers in the unit 1 to 7 1

pirq Defines which APB interrupt the timers will generate 0 to NAHBIRQ-1 0

sepirq If set to 1, each timer will drive an individual interrupt
line, starting with interruptpirq. If set to 0, all timers will
drive the same interrupt line (pirq).

0 to 1

(note:ntimers + pirq
must be less than or
equal to NAHBIRQ if
sepirq is set to 1)

0

sbits Defines the number of bits in the scaler 1 to 32 16

wdog Watchdog reset value. When set to a non-zero value, the
last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.

0 to 2nbits - 1 0

ewdogen External watchdog enable. When set to a non-zero value,
the enable bit of the watchdog timer will be set during
core reset via the signal gpti.wdogen.Otherwise the
enable bit will be set to ‘1’ during core reset.

0 - 1 0

Table 367.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -

WDOGEN Input Sets enable bit of the watchdog timer if VHDL
generics wdog and ewdogen are set to non-zero
values.

-

GPTO TICK[0:7] Output Timer ticks. TICK[0] is high for one clock each
time the scaler underflows. TICK[1-n] are high
for one clock each time the corresponding timer
underflows.

High

WDOG Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

High

WDOGN Output Watchdog output Equivalent to interrupt pending
bit of last timer.

Low

* see GRLIB IP Library User’s Manual
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34.7 Library dependencies

Table 368 shows libraries used when instantiating the core (VHDL libraries).

34.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity gptimer_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

architecture rtl of gptimer_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- GP Timer Unit input signals
  signal gpti : gptimer_in_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- General Purpose Timer Unit
  timer0 : gptimer
  generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
  port map (rstn, clk, apbi, apbo(3), gpti, open);

  gpti.dhalt <= ’0’; gpti.extclk <= ’0’; -- unused inputs

end;

Table 368.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration
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35 GRTIMER - General Purpose Timer Unit

35.1 Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). Number of
timers is configurable through thentimersVHDL generic in the range 1 to 7. Prescaler width is con-
figured through the sbits VHDL generic. Timer width is configured through thetbits VHDL generic.
The timer unit acts a slave on AMBA APB bus. The unit implements one 16 bit prescaler and 3 decre-
menting 32 bit timer(s). The unit is capable of asserting interrupt on timer(s) underflow. Interrupt is
configurable to be common for the whole unit or separate for each timer.

35.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated. Timers
share the decrementer to save area.

The operation of each timers is controlled through its control register. A timer is enabled by setting
the enable bit in the control register. The timer value is then decremented on each prescaler tick.
When a timer underflows, it will automatically be reloaded with the value of the corresponding timer
reload register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the
enable bit.

The timer unit can be configured to generate common interrupt through a VHDL generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. If configured
to signal interrupt for each timer the timer unit will signal an interrupt on appropriate line when a
timer underflows (if the interrupt enable bit for the current timer is set). The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘1’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor isntimers+1 (reload register =ntimers) wherentimers is the number of
implemented timers.

By setting the chain bit in the control register timern can be chained with preceding timern-1. Timer
n will be decremented each time when timern-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register.

Each timers can to latch its value to dedicated registers on an event detected on the AMBA APB side-
band interrupt bus signal. A dedicated mask register is provided to filter the interrupts. (In revision 1
of the core there was a possibility that the timers were in the middle of a decrement when the latching

timer n reload

Figure 129. General Purpose Timer Unit block diagram
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interrupt arrived, resulting in inconsistent timer values when used in chained configuration. This has
been improved in revision 2.)

All timers can be forced to reload an event detected on the AMBA APB sideband interrupt bus signal.

The above mask register is provided to filter the interrupts.

35.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on number of implemented timers.

Figures 130 to 135 shows the layout of the timer unit registers.

[31:13] - Reserved.
[12] Enable set (ES). If set, on the next matching interrupt, the timers will be loaded with the corresponding timer reload

values. The bit is then automatically cleared, not to reload the timer values until set again. (Added to revision 2).
[11] Enable latching (EL). If set, on the next matching interrupt, the latches will be loaded with the corresponding timer

values. The bit is then automatically cleared, not to load a timer value until set again.

Table 369.GRTIMER unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Timer latch configuration register

0x10 Timer 1 counter value register

0x14 Timer 1 reload value register

0x18 Timer 1 control register

0x1C Timer 1 latch register

0xn0 Timer n counter value register

0xn4 Timer n reload value register

0xn8 Timer n control register

0xnC Timer n latch register

Figure 130. Scaler value

0sbits-1sbits31

“000...0” SCALER Value

Figure 131. Scaler reload value

0sbits-1sbits31

“000...0” SCALER Reload Value

Figure 132. GRTIMER Configuration register
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[10] Enable external clock source (EE). If set the prescaler is clocked from the external clock source.
[9] Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT freezes the timer

unit.
[8] Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, otherwise ‘0’. Read-

only.
[7:3] APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ, otherwise timer

nwill drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-only.
[2:0] Number of implemented timers. Read-only.

[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Timer Counter value. Decremented by 1 for each prescaler tick.

[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to load bit in the

timers control register.

[31:7] Reserved. Always reads as ‘000...0’
[6] Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a system is in debug

mode). Read-only.
[5] Chain (CH): Chain with preceding timer. If set for timern, timern will be decremented each time when timer (n-1)

underflows.
[4] Interrupt Pending (IP): The core sets this bit to ‘1’ when an interrupt is signalled. This bit remains ‘1’ until cleared

by writing ‘1’ to this bit, writes of ‘0’ have no effect.
[3] Interrupt Enable (IE): If set the timer signals interrupt when it underflows.
[2] Load (LD): Load value from the timer reload register to the timer counter value register.
[1] Restart (RS): If set the value from the timer reload register is loaded to the timer counter value register and

decrementing the timer is restarted.
[0] Enable (EN): Enable the timer.

[31:0] Specifies what bits of the AMBA APB interrupt bus shall cause the Timer Latch Register to latch the timer values.

Figure 133. Timer counter value registers

0nbits-1nbits31

“000...0” TIMER COUNTER VALUE

Figure 134. Timer reload value registers
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Figure 135. Timer control registers
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[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Latched Timer Counter Value (LTCV). Value latch from corresponding timer.

35.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x038. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

35.5 Configuration options

Table 370 shows the configuration options of the core (VHDL generics).

Table 370.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to
access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1 to 32 32

ntimers Defines the number of timers in the unit 1 to 7 1

pirq Defines which APB interrupt the timers will generate 0 to NAHBIRQ-1 0

sepirq If set to 1, each timer will drive an individual interrupt
line, starting with interruptirq. If set to 0, all timers will
drive the same interrupt line (irq).

0 to NAHBIRQ-1

(Note:ntimers+ irq must
be less than or equal to
NAHBIRQ)

0

sbits Defines the number of bits in the scaler 1 to 32 16

wdog Watchdog reset value. When set to a non-zero value, the
last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.

0 to 2nbits - 1 0

glatch Enable external timer latch (via interrupt) 0 to 1 0

gextclk Enable external timer clock input 0 to 1 0

gset Enable external timer reload (via interrupt) 0 to 1 0

Figure 137. Timer latch register

0nbits-1nbits31

“000...0” LTCV
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35.6 Signal descriptions

Table 371 shows the interface signals of the core (VHDL ports).

35.7 Signal definitions and reset values

The signals and their reset values are described in table 372.

35.8 Timing

The timing waveforms and timing parameters are shown in figure 138 and are defined in table 373.

Table 371.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -

GPTO TICK[1:7] Output Timer ticks High

WDOG Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

High

WDOGN Output Watchdog output Equivalent to interrupt pending
bit of last timer.

Low

* see GRLIB IP Library User’s Manual

Table 372.Signal definitions and reset values

Signal name Type Function Active Reset value

wdogn Tri-state output Watchdog output. Equivalent to interrupt
pending bit of last timer.

Low Tri-state

extclk Input External clock - -

tick[] Output Output tick High Logical 0
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35.9 Library dependencies

Table 374 shows the libraries used when instantiating the core (VHDL libraries)

35.10 Instantiation

This example shows how the core can be instantiated.

TBD

Table 373.Timing parameters

Name Parameter Reference edge Min Max Unit

tGRTIMER0 clock to output delay risingclk edge - TBD ns

tGRTIMER1 clock to output tri-state risingclk edge - TBD ns

tGRTIMER2 clock to tick output delay risingclk edge - TBD ns

tGRTIMER3 tick output period - 8 8 clk periods

tGRTIMER4 external clock period - 2 clk periods

Table 374.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, Component Signal and component definitions

Figure 138. Timing waveforms
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36 GRACECTRL - AMBA System ACE Interface Controller

36.1 Overview

The core provides an AMBA AHB interface to the microprocessor interface of a Xilinx System ACE
Compact Flash Solution. Accesses to the core’s memory space are directly translated to accesses on
the System ACE microprocessor interface (MPU).

36.2 Operation

36.2.1 Operational model

The core has one AHB I/O area, accesses to this area are directly translated to accesses on the Xilinx
System ACE’s Microprocessor Interface (MPU). When an access is made to the I/O area, the core first
checks if there already is an ongoing access on the MPU. If an access is currently active, the core will
respond with an AMBA SPLIT response. If the MPU bus is available, the core will start an access on
the MPU bus and issue a SPLIT response to the AMBA master. If the core has been configured for a
system that does not support SPLIT responses, it will insert wait states instead.

36.2.2 Bus widths

The AMBA access is directly translated to an MPU access where bits 6:0 of the AMBA address bus
are connected to the MPU address bus. The core can be configured to connect to a 16-bit MPU inter-
face or a 8-bit MPU interface. When the core is connected to a 8-bit MPU interface it can emulate 16-
bit mode by translating 16-bit (half-word) AMBA accesses into two 8-bit MPU accesses. The mode to
use is decided at implementation time via the VHDL genericmode.

The core does not perform any checks on the size of the AMBA access and software should only
make half-word (16-bit), or byte (8-bit) depending on the setting of VHDL genericmode, accesses to
the core’s memory area. Any other access size will be accepted by the core but the operation may not
have the desired result. On AMBA writes the core uses address bit 1 (or address bits 1:0 for 8-bit
mode) to select if it should propagate the high or the low part of the AMBA data bus to the MPU data
bus. On read operations the core will propagate the read MPU data to all parts of the AMBA data bus.

It is recommended to set themodeVHDL generic to 2 for 8-bit MPU interfaces, and to 0 for 16-bit
MPU interfaces. This way software can always assume that it communicates via a 16-bit MPU inter-
face (accesses to the System ACE BUSMODEREG register are overriden by the core with suitable
values whenmode is set to 2).

36.2.3 Clocking and synchronization

The core has two clock inputs; the AMBA clock and the System ACE clock. The AMBA clock drives
the AHB slave interface and the System ACE clock drives the System ACE interface state machine.

Figure 139. Block diagram
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All signals crossing between the two clock domains are synchronized to prevent meta-stability. The
system clock should have a higher frequency than the System ACE clock.

36.3 Registers

The core does implement any registers accessible via AMBA.

36.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x067. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

36.5 Implementation

36.5.1 Technology mapping

The core does not instantiate any technology specific primitives.

36.5.2 RAM usage

The core does not use any RAM components.

36.6 Configuration options

Table 375 shows the configuration options of the core (VHDL generics).

Table 375.Configuration options

Generic name Function Allowed range Default

hindex AHB slave index 0 - (NAHBSLV-1) 0

hirq Interrupt line 0 - (NAHBIRQ-1) 0

haddr ADDR field of the AHB BAR0 0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 0 - 16#FFF# 16#FFF#

split If this generic is set to 1 the core will issue AMBA
SPLIT responses when it is busy performing an access to
the System ACE. Otherwise the core will insert wait
states until the operation completes.

Note that SPLIT support on the AHBCTRL core MUST
be enabled if this generic is set to 1.

0 - 1 0

swap If this generic is set to 0 the core will connect the System
ACE data(15:0) to AMBA data(15:0). If this generic is
set to 1, the core will swap the System ACE data line and
connect:
System ACE data(15:8) <-> AMBA data(7:0)
System ACE data(7 :0) <-> AMBA data(15:8).
This generic only has effect formode = 0.

0 - 1 0

oepol Polarity of pad output enable signal 0 - 1 0

mode Bus width mode

0: Core is connected to 16-bit MPU. Only half-word
AMBA accesses should be made to the core.

1: Core is connected to 8-bit MPU. Only byte AMBA
accesses should be made to the core.

2: Core is connected to 8-bit MPU but will emulate a 16-
bit MPU interface. Only half-word AMBA accesses
should be made to the core (recommended setting for 8-
bit MPU interfaces).

0 - 2 0
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36.7 Signal descriptions

Table 376 shows the interface signals of the core (VHDL ports).

36.8 Library dependencies

Table 377 shows the libraries used when instantiating the core (VHDL libraries).

36.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity gracectrl_ex is
  port (
    clk  : in  std_ulogic;

 clkace  : in  std_ulogic;
    rstn  : in  std_ulogic;

 sace_a  : out std_logic_vector(6 downto 0);
 sace_mpce  : out std_ulogic;

sace_d  : inout std_logic_vector(15 downto 0);
 sace_oen  : out std_ulogic;
 sace_wen  : out std_ulogic;
 sace_mpirq : in  std_ulogic;

    );
end;

Table 376.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

CLKACE N/A Input System ACE clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

ACEI DI(15:0) Input Data line -

IRQ Input System ACE interrupt request High

ACEO ADDR(6:0) Output System ACE address -

DO(15:0) Output Data line -

CEN Output System ACE chip enable Low

WEN Output System ACE write enable Low

OEN Output System ACE output enable Low

DOEN Output Data line output enable -

* see GRLIB IP Library User’s Manual

Table 377.Library dependencies

Library Package Imported unit(s) Description

GAISLER MISC Component, signals Component and signal definitions

GRLIB AMBA Signals AMBA signal definitions
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architecture rtl of gracectrl_ex is
  -- AMBA signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => ahbs_none);

...
  -- GRACECTRL signals

 signal acei : gracectrl_in_type;
 signal aceo : gracectrl_out_type;

begin

  -- AMBA Components are instantiated here
  ...

-- GRACECTRL core is instantiated below
 grace0 : gracectrl generic map (hindex => 4, hirq => 4, haddr => 16#002#,

 hmask => 16#fff#, split => 1)
 port map (rstn, clk, ahbsi, ahbso(4), acei, acoo);

sace_a_pads : outpadv generic map (width => 7, tech => padtech)
 port map (sace_a, aceo.addr);

sace_mpce_pad : outpad generic map(tech => padtech)
 port map (sace_mpce, aceo.cen);

sace_d_pads : iopadv generic map (tech => padtech, width => 16)
 port map (sace_d, aceo.do, aceo.doen, aceo.di);

sace_oen_pad : outpad generic map (tech => padtech)
 port map (sace_oen, aceo.oen);

sace_wen_pad : outpad generic map (tech => padtech)
 port map (sace_wen, aceo.wen);

sace_mpirq_pad : inpad generic map (tech => padtech)
 port map (sace_mpirq, acei.irq);

end;
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37 GRAES - Advanced Encryption Standard

37.1 Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
application (like audio or video streams). The GRAES core implements the AES-128 algorithm, sup-
porting the Electronic Codebook (ECB) method. The AES-128 algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST).

The core provides the following internal AMBA AHB slave interface, with sideband signals as per
[GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

The core can be partition in the following hierarchical elements:

• Advanced Encryption Standard (AES) core

• AMBA AHB slave

• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

37.2 Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES-128 algorithm is a sequence of 128
bits (can also be 192 or 256 bits for other algorithms).

To transfer a 128 bit key or data block four write operations are necessary since the bus interface is 32
bit wide. After supplying a “key will be input” command to the control register, the key is input via
four registers. After supplying a “data will be input” command to the control register, the input data is
written via four registers. After the last input data register is written, the encryption or decryption is
started. The progress can be observed via the debug register. When the operation is completed, an
interrupt is generated. The output data is then read out via four registers. Note that the above sequence
must be respected. It is not required to write a new key between each data input. There is no command
needed for reading out the result.

The implementation requires around 89 clock cycles for a 128 bit data block in encryption direction
and around 90 clock cycles for decryption direction. For decryption an initial key calculation is
required. This takes around 10 additional clock cycles per every new key. Typically large amounts of
data are decrypted (and also encrypted) with the same key. The key initialization for the decryption
round does not influence the throughput.

37.3 Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.
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The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric
block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

37.4 AES-128 parameters

The GRAES core implements AES-128. An AES algorithm is defined by the following parameters
according to FIPS-197:

• Nk number of 32-bit words comprising the cipher key

• Nr number of rounds

The AES-128 algorithm is specified asNk=4 andNr=10.

The GRAES core has been verified against the complete set of Known Answer Test vectors included
in the AES Algorithm Validation Suite (AESAVS) from National Institute of Standards and Technol-
ogy (NIST), Information Technology Laboratory, Computer Security Division.

37.5 Throughput

The data throughput for the GRAES core is around 128/90 bits per clock cycle, i.e. approximately 1.4
Mbits per MHz.

The underlaying AES core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 42 Mbit/s, the
power consumption was 9,6 mW, and the size was 14,5 kgates.

Figure 140. Dual Crypto Chip

37.6 Characteristics

The GRAES core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

• LUTs: 5040 (7%)

• 256x1 ROMs (ROM256X1): 128
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• Frequency:125 MHz

37.7 Registers

The core is programmed through registers mapped into AHB I/O address space.

37.7.1 Control Register (W)

31-2: - Unused
1: DEC 0 = “encrypt”, 1 = “decrypt” (only relevant when KEY=1)
0: KEY 0 = “data will be input”, 1 = “key will be input”

Note that the Data Input Registers cannot be written before a command is given to the Control Regis-
ter. Note that the Data Input Registers must then be written in sequence, and all four registers must be
written else the core ends up in an undefined state.

The KEY bit determines whether a key will be input (KEY=1), or data will be input (KEY=0). When
a “key will be input” command is written, the DEC bit determines whether decryption (DEC=1) or
encryption (DEC=0) should be applied to the subsequent data input.

Note that the register cannot be written after a command has been given, until the specific operation
completes. A write access will be terminated with an AMBA AHB error response till the Data Input
Register 3 has been written, and the with an AMBA AHB retry response till the operation completes.
Any read access to this register results in an AMBA AHB error response.

37.7.2 Debug Register (R)

31-0: FSM Finite State Machine
Any write access to this register results in an AMBA AHB error response.

Table 378.GRAES registers

AHB I/O address offset Register

16#000# Control Register

16#010# Data Input 0 Register

16#014# Data Input 1 Register

16#018# Data Input 2 Register

16#01C# Data Input 3 Register

16#020# Data Output 0 Register

16#024# Data Output 1 Register

16#028# Data Output 2 Register

16#02C# Data Output 3 Register

16#03C# Debug Register

Table 379.Control Register

31 2 1 0

- DE
C

KE
Y

Table 380.Debug Register

31 0

FSM
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37.7.3 Data Input Registers (W)

Note that these registers can only be written with a key after a “key will be input” command has been
written to the control register. Note that the registers must then be written in sequence, and all four
registers must be written else the core ends up in an undefined state.

Note that these registers can only be written with data after a “data will be input” command has been
written to the control register, else an AMBA AHB error response is given. Note that the registers
must then be written in sequence and all four registers must be written else the core ends up in an
undefined state. The encryption or decryption operation is started when the Data Input 3 Register is
written to with data.

37.7.4 Data Output Registers (R)

Note that these registers can only be read after encryption or decryption has been completed. An
AMBA AHB retry response is given to read accesses that occur while the encryption or decryption is
in progress. If a read access is attempted before an encryption or decryption has even been initiated,

Table 381.Data Input 0 Register

31 0

Data/Key(127 downto 96)

Table 382.Data Input 1 Register

31 0

Data/Key(95 downto 64)

Table 383.Data Input 2 Register

31 0

Data/Key(63 downto 32)

Table 384.Data Input 3 Register

31 0

Data/Key(31 downto 0)

Table 385.Data Output 0 Register

31 0

Data(127 downto 96)

Table 386.Data Output 1 Register

31 0

Data(95 downto 64)

Table 387.Data Output 2 Register

31 0

Data(63 downto 32)

Table 388.Data Output 3 Register

31 0

Data(31 downto 0)
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then an AMBA AHB erro response is given. Write accesses to these registers result in an AMBA
AHB error response.

37.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x073. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

37.9 Configuration options

Table 389 shows the configuration options of the core (VHDL generics).

37.10 Signal descriptions

Table 390 shows the interface signals of the core (VHDL ports).

Note that the AES core can also be used without the GRLIB plug&play information. The AMBA
AHB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

37.11 Library dependencies

Table 391 shows libraries used when instantiatingthe core (VHDL libraries).

37.12 Instantiation

This example shows how the core can be instantiated.

library  ieee;
use      ieee.std_logic_1164.all;

Table 389.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

ioaddr Addr field of the AHB I/O BAR 0 - 16#FFF# 0

iomask Mask field of the AHB I/O BAR 0 - 16#FFF# 16#FFC#

hirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0

Table 390.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBI * Input AHB slave input signals -

AHBO * Output AHB slave output signals -

DEBUG[0:4] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Table 391.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CRYPTO Component GRAES component declarations
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library  grlib;
use      grlib.amba.all;

library  gaisler;
use      gaisler.crypto.all;
...
...
   signal debug: std_logic_vector(0 to 4);
..
..
   GRAES0: graes
      generic map (
         hindex         => hindex,
         ioaddr         => ioaddr,
         iomask         => iomask,
         hirq           => hirq)
      port map (
         rstn           => rstn,
         clk            => clk,
         ahbi           => ahbsi,
         ahbo           => ahbso(hindex),
         debug          => debug);
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38 GRAES_DMA - Advanced Encryption Standard with DMA

38.1 Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
applications (like audio or video streams). The GRAES_DMA core implements the AES algorithm
with 256-bit key length using CTR mode of operation. The AES algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST). DMA is used for efficiently transferring plaintext and ciphertext to the cryptographic core
with minimum CPU involvement.

The core provides an AMBA AHB master interface, with sideband signals as per [GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

The core can be partition in the following hierarchical elements:

• Advanced Encryption Standard (AES) core

• AMBA AHB master

38.2 Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES algorithm supported in this core is
a sequence of 256 bits.

To encrypt a message a descriptor must be setup. It contains pointers to memory locations where the
key, initialization vector and plaintext are located. The memory addresses for the key and initializa-
tion vector must be word aligned while the plaintext can start at any address. If the previous key and/
or init vector are to be reused there are control bits in the descriptor which can be used to make the
core skip the fetching of the respective pointers and also subsequently skip the fetching of the actual
key and initvector. Currently the initvector and key always have to be loaded for the core to operate
correctly.

When one or more descriptors have been enabled the core can be enabled and it will automatically
start fetching the necessary values from memory, split the data into the required blocks, encrypt/
decrypt and finally write back the result to memory. When each descriptor is finished the core will set
the enable bit to 0. An interrupt can also optionally be generated. The result of the encryption or
decryption can be either written back to the same memory address from where the plain or ciphertext
was read or to a different location specified in an additional pointer. The layout of the descriptor is
shown in the tables below.

Table 392.GRAES_DMA descriptor word 0 (address offset 0x0)
31 21 20 9 8 7 6 5 4 3 2 1 0

LEN RESERVED SP KE IV DO ED MD IE EN

31: 21 Length (LEN) - Length in bytes of message to process

20: 9 RESERVED

8 Stop (SP) - When asserted descriptor processing is stopped when the current descriptor is fin-
ished i.e. the descriptor processing is stopped even if the next descriptor is enabled.
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7 Key (KE) - When set a new key will be fetched and used from the memory address set in the key
address descriptor word. If not set the currently stored key is used and the key adddress word should
not be included in the descriptor.

6 Initialization vector (IV) - When set a new initialization vectir will be fetched and used from the
memory address set in the initialization vector address descriptor word. If not set the currently stored
initialization vector is used and the initialization vector adddress word should not be included in the
descriptor.

5 Dataout (DO) - When set the encrypted/decrypted output will be written to the memory address
specified in the dataout descriptor word. Otherwise data is written to the same memory address from
where the original plaintext/ciphertext was fetched and the dataout address word should not be
included in the descriptor.

4 Encrypt-decrypt (ED) - If set to one encryption will be performed otherwise decryption

3 Mode (MD) - If set to 1 CTR mode is selected otherwise the core will use CBC. Currently this bit is
unused and the core always uses CTR mode.

2 RESERVED

1 Interrupt enable (IE) - When set an interrupt will be generated when the orocessing of the current
descriptor is finished and the interrupt enable bit in the control register is set.

0 Enable (EN) -

Table 393.GRAES_DMA descriptor word 1 (address offset 0x4)
31 0

Data input address

31: 0 Data input address - Memory address pointer where plaintext/ciphertext for encryption/descryption
is located.

Table 394.GRAES_DMA descriptor word 2 (address offset 0x10)
31 2 1 0

Dataout address

31: 2 Dataout address - Memory address where encrypted/decrypted data shall be stored. If the data should
be stored at the same location as the input data (DO bit in word 0 is 0) then this word shall not be
included in the descriptor.

1: 0 Reserved

Table 395.GRAES_DMA descriptor word 3(address offset 0xC)
31 2 1 0

IV address

31: 2 Initialization vector address - Memory address where initialization vector is located. If a new
initvector is not ueeded (IV bit in word 0 is 0) then this word shall not be included in the descriptor.

1: 0 Reserved

Table 396.GRAES_DMA descriptor word 4 (address offset 0x8)
31 2 1 0

Key address

Table 392.GRAES_DMA descriptor word 0 (address offset 0x0)
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The words in the descriptor should always be written in the order listed above. If one or more words
are not included the offsets of the following words should be adjusted accordingly.

38.3 Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.

The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric
block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

38.4 Characteristics

The GRAES_DMA core has been synthesized for a Actel AX2000-std device with the following
results:

• Combinational Cells:    9364 of 21504 (44%)

• Sequential Cells:    2374 of 10752 (22%)

• Total Cells: 11738 of 32256 (37%)

• Block Rams : 0 of 64 (0%)

• Frequency:60 MHz

38.5 Registers

The core is programmed through registers mapped into APB address space.

31: 2 Key address - Memory address where key is located. If a new key is not ueeded (KE bit in word 0 is
0) then this word shall not be included in the descriptor.

1: 0 Reserved

Table 397.GRAES_DMA descriptor word 5 (address offset 0x14)
31 2 1 0

Next descriptor

31: 2 Next descriptor address - Memory address to the next descriptor.

1: 0 Reserved

Table 398.GRSPW registers

APB address offset Register

0x0 Control

0x4 Status

0x8 Descriptor address

Table 396.GRAES_DMA descriptor word 4 (address offset 0x8)
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38.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x07B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

38.7 Configuration options

Table 402 shows the configuration options of the core (VHDL generics).

Table 399.GRAES_DMA control register
31 2 1 0

RESERVED IE EN

31: 2 RESERVED

1 Interrupt Enable (IE) - If set, an interrupt is generated each time a message has been decrypted .
Reset value: ‘0’.

0 Enable (EN) - Write a one to this bit each time new descriptors are activated in the list. Writing a one
will cause the core to read a new descriptor and perform the requested operation. This bit is automat-
ically cleared when the core encounters a descriptor which is disabled. Reset value: ‘0’

Table 400.GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

31: 0 RESERVED

Table 401.GRSPW Descriptor address
31 2 1 0

Descriptor address

31: 2 Current descriptor address - Points to current descriptor. Can be initialized with a new pointer when
the core is disabled. Is updated by the core while it is progressing through the list of descriptors.

1: 0 RESERVED

Table 402.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB BAR 0 - 16#FFF# 0

pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0
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38.8 Signal descriptions

Table 403 shows the interface signals of the core (VHDL ports).

38.9 Library dependencies

Table 404 shows libraries used when instantiatingthe core (VHDL libraries).

38.10 Instantiation

This example shows how the core can be instantiated.

entity graes_dma_tb is
   generic(
      hindex:        in    Integer := 0;
      pindex:        in    Integer := 0;
      paddr:         in    Integer := 0;
      pmask:         in    Integer := 16#fff#;
      pirq:          in    Integer := 1);

end entity graes_dma_tb;

signal   rstn:  std_ulogic := ’0’;
signal   clk:  std_ulogic := ’0’;
signal   apbi:         apb_slv_in_type;
signal   apbo:         apb_slv_out_vector := (others => apb_none);
signal   ahbmi:        ahb_mst_in_type;
signal   ahbmo:        ahb_mst_out_vector := (others => ahbm_none);

graes0: graes_dma
     generic map(
       hindex         => hindex,
       pindex         => pindex,
       paddr          => paddr,
       pmask          => pmask,
       pirq           => pirq)
     port map(
       rstn           => rstn,
       clk            => clk,
       ahbi           => ahbmi,
       ahbo           => ahbmo(hindex),
       apbi           => apbi,
       apbo           => apbo(pindex));

Table 403.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

Table 404.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CRYPTO Component GRAES component declarations
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39 GRCAN - CAN 2.0 Controller with DMA

39.1 Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external
to the chip.

The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.

After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the CAN core. When a
programmable number of messages have been transmitted, the DMA controller issues an interrupt.

After the reception has been set up via the AMBA APB interface, messages are received by the CAN
core. To store messages to memory, the DMA controller initiates a burst of write accesses on the
AMBA AHB bus, which are performed by the AHB master. When a programmable number of mes-
sages have been received, the DMA controller issues an interrupt.

The CAN controller can detect a SYNC message and generate an interrupt, which is also available as
an output signal from the core. The SYNC message identifier is programmable via the AMBA APB
interface. Separate synchronisation message interrupts are provided.

The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface.

Note that it is not possible to receive a CAN message while transmitting one.

39.1.1 Function

The core implements the following functions:

• CAN protocol

• Message transmission

• Message filtering and reception

Figure 141. Block diagram
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• SYNC message reception

• Status and monitoring

• Interrupt generation

• Redundancy selection

39.1.2 Interfaces

The core provides the following external and internal interfaces:

• CAN interface

• AMBA AHB master interface, with sideband signals as per [GRLIB] including:

• cacheability information

• interrupt bus

• configuration information

• diagnostic information

• AMBA APB slave interface, with sideband signals as per [GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

39.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:

• CAN 2.0 Core

• Redundancy Multiplexer / De-multiplexer

• Direct Memory Access controller

• AMBA APB slave

• AMBA AHB master

39.2 Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).

The active pair (i.e. 0 or 1) is selectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.

For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can
be enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface
drivers differs, thus the meaning of the enable output is undefined.

Redundancy is implemented by means of Selective Bus Access. Note that the active pair selection
above provides means to meet this requirement.

39.3 Protocol

The CAN protocol is based on a CAN 2.0 controller VHDL core. The CAN controller complies with
CAN Specification Version 2.0 Part B, except for the overload frame generation.

Note that there are three different CAN types generally defined:

• 2.0A, which considers 29 bit ID messages as an error
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• 2.0B Passive, which ignores 29 bit ID messages

• 2.0B Active, which handles 11 and 29 bit ID messages

Only 2.0B Active is implemented.

39.4 Status and monitoring

The CAN interface incorporates status and monitoring functionalities. This includes:

• Transmitter active indicator

• Bus-Off condition indicator

• Error-Passive condition indicator

• Over-run indicator

• 8-bit Transmission error counter

• 8-bit Reception error counter

The status is available via a register and is also stored in a circular buffer for each received message.

39.5 Transmission

The transmit channel is defined by the following parameters:

• base address

• buffer size

• write pointer

• read pointer

The transmit channel can be enabled or disabled.

39.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

39.5.2 Write and read pointers

The write pointer (CanTxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
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The difference between the write and the read pointers is the number of CAN messages available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,
CanTxWR.WRITE=2 and CanTxRD.READ=0.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=0 and CanTxRD.READ =6.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=1 and CanTxRD.READ =7.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=5 and CanTxRD.READ =3.

When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

39.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

39.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.

A message transmission will begin with a fetch of the complete CAN message from the circular
buffer to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission
request will be forwarded to the CAN core. If there is at least an additional CAN message available in
the circular buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer
in the CAN controller will be performed. The CAN controller can thus hold two CAN messages for
transmission: one in the fetch buffer, which is fed to the CAN core, and one in the prefetch buffer.

After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message
for which the arbitration is lost, or failed for some other reason, will lead to the disabling of the chan-
nel (CanTxCTRL.ENABLE=0), and the message will not be put up for re-arbitration.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued on the successful transmission
of a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Reg-
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ister.MASK registers is successfully transmitted. Additional interrupts are provided to signal error
conditions on the CAN bus and AMBA bus.

39.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.

While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary
value pointing to the first message to be transmitted, and the write pointer (CanTxWR.WRITE) can be
changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

39.5.6 AMBA AHB error

Definition:

• a message fetch occurs when no other messages is being transmitted

• a message prefetch occurs when a previously fetched message is being transmitted

• the local fetch buffer holds the message being fetched

• the local prefetch buffer holds the message being prefetched

• the local fetch buffer holds the message being transmitted by the CAN core

• a successfully prefetched message is copied from the local prefetch buffer to the local fetch
buffer when that buffer is freed after a successful transmission.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched
will result in a TxAHBErr interrupt.

If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to read a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched
will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for
the case above. If no AHB error occurs, prefetch will be allowed again.

39.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.

The progress of the any ongoing access can be observed via the CanTxCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
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address, size or read/write pointers). It is also possible to wait for the Tx and TxLoss interrupts
described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-
configured and a higher priority message can be transmitted. Note that the single shot mode does not
require the channel to be disabled, but the progress should still be observed as above.

No message transmission is started while the channel is not enabled.

39.5.8 Interrupts

During transmission several interrupts can be generated:

• TxLoss: Message arbitration lost for transmit (could be caused by
communications error, as indicated by other interrupts as well)

• TxErrCntr: Error counter incremented for transmit

• TxSync: Synchronization message transmitted

• Tx: Successful transmission of one message

• TxEmpty: Successful transmission of all messages in buffer

• TxIrq: Successful transmission of a predefined number of messages

• TxAHBErr: AHB access error during transmission

• Off: Bus-off condition

• Pass: Error-passive condition

The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.

39.6 Reception

The receive channel is defined by the following parameters:

• base address

• buffer size

• write pointer

• read pointer

The receive channel can be enabled or disabled.

39.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.
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Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

39.6.2 Write and read pointers

The write pointer (CanRxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the
CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE=2 and CanRxRD.READ=0.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =0 and CanRxRD.READ=6.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =1 and CanRxRD.READ=7.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =5 and CanRxRD.READ=3.

When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

39.6.3 Location

The location of the circular buffer is defined by a base address (CanRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

39.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message
in the circular buffer (as defined by the write and read pointer), as soon as a message is received by the
CAN core, an AMBA AHB store access will be started. The received message will be temporarily
stored in a local store-buffer in the CAN controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the message reception to start prematurely

After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxWR.WRITE) is automatically incremented, taking wrap around effects of
the circular buffer into account.

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrq which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of mes-
sages have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter.
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The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register.MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

39.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.

While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

39.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RxAHBErr interrupt.

If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

39.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note
that only complete messages can be received from the CAN core. If the message is stored success-
fully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated.

The progress of the any ongoing access can be observed via the CanRxCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Rx and RxMiss interrupts
described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

No message reception is performed while the channel is not enabled

39.6.8 Interrupts

During reception several interrupts can be generated:

• RxMiss: Message filtered away for receive

• RxErrCntr: Error counter incremented for receive

• RxSync: Synchronization message received

• Rx: Successful reception of one message

• RxFull: Successful reception of all messages possible to store in buffer
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• RxIrq: Successful reception of a predefined number of messages

• RxAHBErr: AHB access error during reception

• OR: Over-run during reception

• OFF: Bus-off condition

• PASS: Error-passive condition

The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message recep-
tion, after the CanRxWR.WRITE pointer has been incremented.

The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
Note that the last message stored which fills the circular buffer will not generate an OR interrupt. The
overrun is also reported with the CanSTAT.OR bit, which is cleared when reading the register.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

39.7 Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.

When the CanCTRL.ENABLE bit is cleared to 0b, the CAN core is reset and the configuration bits
CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may be
modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by
only sending recessive bits. Note that the CAN core requires that 10 recessive bits are received before
any reception or transmission can be initiated. This can be caused either by no unit sending on the
CAN bus, or by random bits in message transfers.

39.8 Interrupt

Three interrupts are implemented by the CAN interface:

Index: Name: Description:

0 IRQ Common output from interrupt handler

1 TxSYNC Synchronization message transmitted (optional)

2 RxSYNC Synchronization message received (optional)

The interrupts are configured by means of thepirq VHDL generic and thesingleirqVHDL generic.
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39.9 Registers

The core is programmed through registers mapped into APB address space.

39.9.1 Configuration Register [CanCONF] R/W

31-24: SCALER Prescaler setting, 8-bit: system clock / (SCALER +1)
23-20: PS1 Phase Segment 1, 4-bit: (valid range 1 to 15)
19-16: PS2 Phase Segment 2, 4-bit: (valid range 2 to 8)
14-12: RSJ ReSynchronization Jumps, 3-bit: (valid range 1 to 4)
9:8: BPR Baud rate, 2-bit:

00b = system clock / (SCALER +1) / 1
01b = system clock / (SCALER +1) / 2
10b = system clock / (SCALER +1) / 4
11b = system clock / (SCALER +1) / 8

Table 405.GRCAN registers

APB address offset Register

16#000# Configuration Register

16#004# Status Register

16#008# Control Register

16#018# SYNC Mask Filter Register

16#01C# SYNC Code Filter Register

16#100# Pending Interrupt Masked Status Register

16#104# Pending Interrupt Masked Register

16#108# Pending Interrupt Status Register

16#10C# Pending Interrupt Register

16#110# Interrupt Mask Register

16#114# Pending Interrupt Clear Register

16#200# Transmit Channel Control Register

16#204# Transmit Channel Address Register

16#208# Transmit Channel Size Register

16#20C# Transmit Channel Write Register

16#210# Transmit Channel Read Register

16#214# Transmit Channel Interrupt Register

16#300# Receive Channel Control Register

16#304# Receive Channel Address Register

16#308# Receive Channel Size Register

16#30C# Receive Channel Write Register

16#310# Receive Channel Read Register

16#314# Receive Channel Interrupt Register

16#318# Receive Channel Mask Register

16#31C# Receive Channel Code Register

Table 406.Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCALER PS1 PS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSJ BPR SAM Sile
nt

Sele
ct

Ena
ble1

Ena
ble0

Abo
rt
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5: SAM Single sample when 0b. Triple sample when 1b.
4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECT Selection receiver input and transmitter output:

Select receive input 0 as active when 0b,
Select receive input 1 as active when 1b
Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

2: ENABLE1 Set value of output 1 enable
1: ENABLE0 Set value of output 0 enable
0: ABORT Abort transfer on AHB ERROR

All bits are cleared to 0 at reset.

Note that constraints on PS1, PS2 and RSJ are defined as:

• PS1 +1 >= PS2

• PS1 > PS2

• PS2      >= RSJ

Note that CAN standard TSEG1 is defined by PS1+1.

Note that CAN standard TSEG2 is defined by PS2.

Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:

system clock / ((SCALER+1) * BPR)

where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8.

For a quantum equal to one system clock period, an additional quantum is added to the node delay.
Note that for minimizing the node delay, then set either SCALER > 0 or BRP > 0.

Note that the resulting bit rate is:

system clock / ((SCALER+1) * BPR * (1+ PS1+1 + PS2))

where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.

Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.

For SAM = 0b (single), the bus is sampled once; recommended for high speed buses (SAE class C).

For SAM = 1b (triple), the bus is sampled three times; recommended for low/medium speed buses
(SAE class A and B) where filtering spikes on the bus line is beneficial.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.

39.9.2 Status Register [CanSTAT] R

31-28: TxChannelsNumber of TxChannels -1, 4-bit
27-24: RxChannelsNumber of RxChannels -1, 4-bit

Table 407.Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxChannels RxChannels TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr Acti
ve

AH
B
Err

OR Off Pass
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23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RxErrCntr Reception error counter, 8-bit
4: ACTIVE Transmission ongoing
3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits are cleared to 0 at reset.

The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full.

The OR and AHBErr status bits are cleared when the register has been read.

Note that TxErrCntr and RxErrCntr are defined according to CAN protocol.

Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the Can-
CONF.ABORT bit is set to 1b.

39.9.3 Control Register [CanCTRL] R/W

1: RESET Reset complete core when 1
0: ENABLE Enable CAN controller, when 1. Reset CAN controller, when 0

All bits are cleared to 0 at reset.

Note that RESET is read back as 0b.

Note that ENABLE should be cleared to 0b to while other settings are modified, ensuring that the
CAN core is properly synchronized.

Note that when ENABLE is cleared to 0b, the CAN interface is in sleep mode, only outputting reces-
sive bits.

Note that the CAN core requires that 10 recessive bits be received before receive and transmit opera-
tions can begin.

39.9.4 SYNC Code Filter Register [CanCODE] R/W

28-0: SYNC Message Identifier

All bits are cleared to 0 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

Table 408.Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese
t

Ena
ble

Table 409.SYNC Code Filter Register

31 30 29 28 0

SYNC
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39.9.5 SYNC Mask Filter Register [CanMASK] R/W

28-0: MASK Message Identifier

All bits are set to 1 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

A RxSYNC message ID is matched when:

((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

A TxSYNC message ID is matched when:

((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

39.9.6 Transmit Channel Control Register [CanTxCTRL] R/W

2: SINGLE Single shot mode
1: ONGOINGTransmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to 0b) if the
arbitration on the CAN bus is lost.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing message transmission is not aborted, unless
the CAN arbitration is lost or communication has failed.

Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that config-
uration of the channel is not safe.

39.9.7 Transmit Channel Address Register [CanTxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

Table 410.SYNC Mask Filter Register

31 30 29 28 0

MASK

Table 411.Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sin-
gle

Ong
oing

Ena
ble

Table 412.Transmit Channel Address Register

31 10 9 0

ADDR
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39.9.8 Transmit Channel Size Register [CanTxSIZE] R/W

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

39.9.9 Transmit Channel Write Register [CanTxWR] R/W

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.10 Transmit Channel Read Register [CanTxRD] R/W

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.

Note that the READ field can be use to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.

Table 413.Transmit Channel Size Register

31 21 20 6 5 0

SIZE

Table 414.Transmit Channel Write Register

31 20 19 4 3 0

WRITE

Table 415.Transmit Channel Read Register

31 20 19 4 3 0

READ
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When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this indicates that all messages in the buffer have been
transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.11 Transmit Channel Interrupt Register [CanTxIRQ] R/W

19-4: IRQ Interrupt is generated when CanTxRD.READ=IRQ, as a consequence of a message transmission

All bits are cleared to 0 at reset.

Note that this indicates that a programmed number of messages have been transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.12 Receive Channel Control Register [CanRxCTRL] R/W

1: ONGOINGReception ongoing (read-only)
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing message reception is not aborted

Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

39.9.13 Receive Channel Address Register [CanRxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

39.9.14 Receive Channel Size Register [CanRxSIZE] R/W

20-6: SIZE The size of the circular buffer is SIZE*4 messages

Table 416.Transmit Channel Interrupt Register

31 20 19 4 3 0

IRQ

Table 417.Receive Channel Control Register

31 2 1 0

OnG
oing

Ena
ble

Table 418.Receive Channel Address Register

31 10 9 0

ADDR

Table 419.Receive Channel Size Register

31 21 20 6 5 0

SIZE
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All bits are cleared to 0 at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

39.9.15 Receive Channel Write Register [CanRxWR] R/W

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.

Note that the WRITE field can be use to read out the progress of a transfer.

Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

39.9.16 Receive Channel Read Register [CanRxRD] R/W

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last message that has been read out.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

39.9.17 Receive Channel Interrupt Register [CanRxIRQ] R/W

19-4: IRQ Interrupt is generated when CanRxWR.WRITE=IRQ, as a consequence of a message reception

Table 420.Receive Channel Write Register

31 20 19 4 3 0

WRITE

Table 421.Receive Channel Read Register

31 20 19 4 3 0

READ

Table 422.Receive Channel Interrupt Register

31 20 19 4 3 0

IRQ
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All bits are cleared to 0 at reset.

Note that this indicates that a programmed number of messages have been received.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.18 Receive Channel Mask Register [CanRxMASK] R/W

28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between the received message
ID and the CanRxCODE.AC field

All bits are set to 1 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

39.9.19 Receive Channel Code Register [CanRxCODE] R/W

28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to 0at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

A message ID is matched when:

((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) = 0

39.9.20 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

• Set up the software interrupt-handler to accept an interrupt from the module.

• Read the Pending Interrupt Register to clear any spurious interrupts.

• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

• Handle the interrupt, taking into account all causes of the interrupt.

• Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is
zero. To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the
Interrupt Mask Register.

Table 423.Receive Channel Mask Register

31 30 29 28 0

AM

Table 424.Receive Channel Code Register

31 30 29 28 0

AC
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Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

• Pending Interrupt Masked Status Register [CanPIMSR] R

• Pending Interrupt Masked Register [CanPIMR] R

• Pending Interrupt Status Register [CanPISR] R

• Pending Interrupt Register [CanPIR] R/W

• Interrupt Mask Register [CanIMR] R/W

• Pending Interrupt Clear Register [CanPICR] W

16: TxLoss Message arbitration lost during transmission (could be caused by
communications error, as indicated by other interrupts as well)

15: RxMiss Message filtered away during reception
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all messages in buffer
7: RxFull Successful reception of all messages possible to store in buffer
6: TxIRQ Successful transmission of a predefined number of messages
5: RxIRQ Successful reception of a predefined number of messages
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition

Table 425.Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Tx

Loss

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rx

Miss

Tx
Err
Cntr

Rx
Err
Cntr

Tx
Syn
c

Rx
Syn
c

Tx Rx Tx
Emp
ty

Rx
Full

Tx
IRQ

Rx
IRQ

Tx
AH
B
Err

Rx
AH
B
Err

OR Off Pass
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0: PASS Error-passive condition

All bits in all interrupt registers are reset to 0b after reset.

Note that the TxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

Note that the RxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

39.10 Memory mapping

The CANmessage is represented in memory as shown intable 426.

Values: Levels according to CAN standard: 1b is recessive,
0b is dominant

Legend: Naming and number in according to CAN standard
IDE Identifier Extension: 1b for Extended Format,

0b for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

0b for Data Frame
bID Base Identifier
eID Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes
0011b 3 bytes

Table 426.CAN message representation in memory.

AHB addr

0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDE RT
R

- bID eID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

eID

0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DLC - - - - TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr - - - - Ahb
Err

OR Off Pass

0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 0 (first transmitted) Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 2 Byte 3

0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 4 Byte 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 6 Byte 7 (last transmitted)
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0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes
1000b 8 bytes
OTHERS illegal

TxErrCntr Transmission Error Counter
RxErrCntr Reception Error Counter
AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b
OFF Bus Off mode when 1b
PASS Error Passive mode when 1b
Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

39.11 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x03D. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

39.12 Configuration options

Table 427 shows the configuration options of the core (VHDL generics).

39.13 Signal descriptions

Table 428 shows the interface signals of the core (VHDL ports).

Table 427.Configuration options

Generic name Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#

pirq Interrupt line used by the GRCAN. 0 - NAHBIRQ-1 0

singleirq Implement only one common interrupt 0 - 1 0

txchannels Number of transmit channels 1 - 1 1

rxchannels Number of receive channels 1 - 1 1

ptrwidth Width of message pointers 16 - 16 16

Table 428.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

CANI Rx[1:0] Input Receive lines -

CANO Tx[1:0] Output Transmit lines -

En[1:0] Transmit enables -

* see GRLIB IP Library User’s Manual
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39.14 Library dependencies

Table 429 shows the libraries used when instantiating the core (VHDL libraries).

39.15 Instantiation

This example shows how the core can be instantiated.

library  ieee;
use      ieee.std_logic_1164.all;

library  gaisler;
use      gaisler.can.all;

entity example is
   generic (
      padtech:       in    integer := 0);
   port (
      -- CAN interface
      cantx:         out   std_logic_vector(1 downto 0);
      canrx:         in    std_logic_vector(1 downto 0);
      canen:         out   std_logic_vector(1 downto 0);

...

   -- Signal declarations
   signal   rstn:          std_ulogic;
   signal   clk:           std_ulogic;

   signal   ahbmo:         ahb_mst_out_vector := (others => ahbm_none);
   signal   ahbmi:         ahb_mst_in_type;

   signal   apbi:          apb_slv_in_type;
   signal   apbo:          apb_slv_out_vector := (others => apb_none);

   signal   cani0:         can_in_type;
   signal   cano0:         can_out_type;

...

   -- Component instantiation
   grcan0: grcan
      generic map (
         hindex         => 1,
         pindex         => 1,
         paddr          => 16#00C",
         pmask          => 16#FFC",
         pirq           => 1,
         txchannels     => 1,
         rxchannels     => 1,
         ptrwidth       => 16)
      port map (
         rstn           => rstn,
         clk            => clk,
         apbi           => apbi,
         apbo           => apbo(1),
         ahbi           => ahbmi,
         ahbo           => ahbmo(1),
         cani           => cani0,
         cano           => cano0);

Table 429.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CAN Signals, component GRCAN component and signal declarations.
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   cantx0_pad : outpad
      generic map (tech => padtech) port map (cantx(0), cani0.tx(0));

   canrx0_pad : inpad
      generic map (tech => padtech) port map (canrx(0), cani0.rx(0));

   canen0_pad : outpad
      generic map (tech => padtech) port map (canen(0), cani0.en(0));

   cantx1_pad : outpad
      generic map (tech => padtech) port map (cantx(1), cani0.tx(1));

   canrx1_pad : inpad
      generic map (tech => padtech) port map (canrx(1), cani0.rx(1));

   canen1_pad : outpad
      generic map (tech => padtech) port map (canen(1), cani0.en(1));
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40 GRCLKGATE - Clock gating unit

40.1 Overview

The clock gating unit provides a mean to save power by disabling the clock to unused functional
blocks. The core provides a mechanism to automatically disabling the clock to LEON processors in
power-down mode, and optionally also to disable the clock for shared floating-point units.

The core provides a register interface via its APB slave bus interface.

40.2 Operation

The operation of the clock gating unit is controlled through four registers: the unlock, clock enable,
core reset and CPU/FPU override registers. The clock enable register defines if a clock is enabled or
disabled. A ‘1’ in a bit location will enable the corresponding clock, while a ‘0’ will disable the clock.
The core reset register allows to generate a reset signal for each generated clock. A reset will be gen-
erated as long as the corresponding bit is set to ‘1’. The bits in clock enable and core reset registers
can only be written when the corresponding bit in the unlock register is 1. If a bit in the unlock regis-
ter is 0, the corresponding bits in the clock enable and core reset registers cannot be written.

To gate the clock for a core, the following procedure should be applied:

1. Disable the core through software to make sure it does not initialize any AHB accesses

2. Write a 1 to the corresponding bit in the unlock register

3. Write a 0 to the corresponding bit in the clock enable register

4. Write a 0 to the corresponding bit in the unlock register

To enable the clock for a core, the following procedure should be applied

1. Write a 1 to the corresponding bit in the unlock register

2. Write a 1 to the corresponding bit in the core reset register

3. Write a 1 to the corresponding bit in the clock enable register

4. Write a 1 to the corresponding bit in the core reset register

5. Write a 0 to the corresponding bit in the unlock register

The clock gating unit also provides gating for the processor core and, optionally, floating-point units.
A processor core will be automatically gated off when it enters power-down mode. Any shared FPU
will be gated off when all processor cores connected to the FPU have floating-point disabled or when
all connected processor cores are in power-down mode.

Processor/FPU clock gating can be disabled by writing ‘1’ to bit 0 of the CPU/FPU override register.

40.2.1 Shared FPU

For systems with shared FPU, a processor may be clock gated off while the connected FPU continues
to be clocked. The power-down instruction may overtake a previously issued floating-point instruc-
tion and cause the processor to be gated off before the floating-point operation has completed. This
can in turn lead to the processor not reacting to the completion of the floating-point operation and to a
subsequent processor freeze after the processor wakes up and continues to wait for the completion of
the floating-point operation.

In order to avoid this, software must make sure that all floating-point operations have completed
before the processor enters power-down. This is generally not a problem in real-world applications as
the power-down instruction is typically used in a idle loop and floating-point results have been stored
to memory before entering the idle loop. To make sure that there are no floating-point operations
pending, software should perform a store of the %fsr register before the power-down instruction.
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40.2.2 Scan test support

When scan test support is configured into the core and the scanen signal is active, all clock gates are
set to pass-through. Also, all registers in the core are clocked on the rising edge of the clock. The
scan-enable signal is provided via the APB input record.

A separate ungate active-high input signal that also sets all clock gates to pass-through can be enabled
in the core.

40.3 Registers

The core’s registers are mapped into APB address space.

40.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x02C. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 430. Clock gate unit registers

APB address offset Register

0x00 Unlock register

0x04 Clock enable register

0x08 Core reset register

0x0C CPU/FPU override register



AEROFLEX GAISLER 377 GRIP

40.5 Configuration options

Table 431 shows the configuration options of the core (VHDL generics).

Table 431.Configuration options

Generic Function Allowed range Default

tech Clock/fabrication technology 0 to NTECH-1 0

pindex Selects which APB select signal (PSEL) will be used to
access the unit

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

ncpu Number of processors that will connect to the unit - 1

nclks Number of peripheral units (clock/reset pairs) in addition
to any processors and floating-point units that will con-
nect to the unit.

0 - 31 8

emask Bit mask where bit n (0 is the least significant bit)
decides if a unit should be enabled (1) or disabled (0)
after system reset.

0 - 16#FFFFFFFF# 0

extemask If this generic is set to a non-zero value then the after-
reset-enable-mask will be taken from the input signal
epwen.

0 - 1 0

scantest Enable scan test support 0 - 1 0

edges Extra clock edges provided by the clock gate unit after
reset completes. CPUs getedges + 3 rising edges after
reset and other cores getedges+ 1 rising edges after sys-
tem reset.

- 0

noinv Do not use inverted clock for clock gate enable register.
This generic can be set to one for technologies that have
glitch free clock gates.

0 - 1 0

fpush Selects FPU configuration

0: System has processors without, or with dedicated,
FPUs
1: System has one FPU shared between all processors
3: System has one FPU for each parir of processors.
(FPU0 is connected to CPU0 and CPU1, FPU1 is con-
nected to CPU2 and CPU3, ...)

0 - 2 0

ungateen Enable separate ungate input for asynchronous un-gating
of all clocks.
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40.6 Signal descriptions

Table 432 shows the interface signals of the core (VHDL ports).

40.7 Library dependencies

Table 433 shows libraries used when instantiating the core (VHDL libraries).

40.8 Instantiation

This example shows how the core can be instantiated.

clkg0: grclkgate
      generic map (
        tech     => fabtech,
        pindex   => 4,
        paddr    => 16#040#,
        pmask    => 16#fff#,
        ncpu     => CFG_NCPU,
        nclks    => NCLKS,
        emask    => 0,                -- Don’t care
        extemask => 1,                -- Reset value defined by input vector (epwen below)
        scantest => scantest,
        edges    => CG_EDGES,
        noinv    => CG_NOINV,
        fpush    => CFG_GRFPUSH)

Table 432.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLKIN N/A Input Clock -

PWD N/A Input Power-down signal from processor cores High

FPEN N/A Input Floating-point enable signal from processor
cores, only used in configurations with shared
FPU.

High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GCLK[nclks-1:0] N/A Output Clock(s) to peripheral unit -

RESET[nclks-1:0] N/A Output Reset(s) to peripheral units Low

CLKAHB N/A Output Clock to non-gated units -

CLKCPU[ncpu-1:0] N/A Output Clock to processor cores -

ENABLE[nclks-1:0] N/A Output Enable signal(s) for peripheral units High

CLKFPU[nfpu**:0] N/A Output Clock to shared floating-point units, only used in
configurations with shared FPU.

-

EPWEN N/A Input External enable reset vector High

UNGATE N/A Input Ungate all clocks for test mode (only used if
enabled in configuration)

High

* see GRLIB IP Library User’s Manual
** where nfpu = (fpush/2)*(ncpu/2-1)

Table 433.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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      port map(
        rst      => rstn,  -- from reset generator
        clkin    => ahb_clk,  -- from clock generator
        pwd      => pwd,  -- from processors, typically dsuo.pwd(CFG_NCPU-1 downto 0)
        fpen     => fpen, -- from processors, if shared FPU is used
        apbi     => apbi,
        apbo     => apbo(4),
        gclk     => gclk,  -- clock to (gated) peripheral cores
        reset    => grst,  -- reset to (gated) peripheral cores
        clkahb   => clkm,  -- clock to AMBA system (not gated)
        clkcpu   => cpuclk, -- clock to processor cores
        enable   => clkenable, -- enable(n) signals that peripheral n is enabled
        clkfpu   => fpuclk,  -- clock to any shared FPU cores
        epwen    => pwenmask,  -- signal to set enable-after-reset
        ungate   => gnd);
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41 GRECC - Elliptic Curve Cryptography

41.1 Overview

Elliptic Curve Cryptography (ECC) is used as a public key mechanism. The computational burden
that is inhibited by ECC is less than the one of RSA. ECC provides the same level of security as RSA
but with a significantly shorter key length. ECC is well suited for application in mobile communica-
tion.

The GRECC core implements encryption and decryption for an elliptic curve based on 233-bit key
and point lengths. The implemented curve is denoted assect233r1 or B-233.

Thesect233r1elliptic curve domain parameters are specified in the “Standards for Efficient Cryptog-
raphy (SEC) - SEC2: Recommended Elliptic Curve Domain Parameters” document. The document is
established by the Standards for Efficient Cryptography Group (SECG).

TheB-233elliptic curve domain parameters are specified in the “Digital Signature Standard (DSS)”
document, Federal Information Processing Standards (FIPS) Publication 186-2. The document is
established by the National Institute of Standards and Technology (NIST).

The GRECC can be used with algorithms such as:

• Elliptic Curve Digital Signature Algorithm DSA (ECDSA), which appears in FIPS 186-2, IEEE
1363-2000 and ISO/IEC 15946-2

• Elliptic Curve El Gamal Method (key exchange protocol)

• Elliptic Curve Diffie-Hellman (ECDH) (key agreement protocol)

The core provides the following internal AMBA APB slave interface, with sideband signals as per
[GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

The core can be partition in the following hierarchical elements:

• Elliptic Curve Cryptography (ECC) core

• AMBA APB slave

• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

41.2 Operation

Elliptic Curve Cryptography (ECC) is an asymmetric cryptographic approach (also known as public
key cryptography) that applies different keys for encryption and decryption. The most expensive
operation during both encryption and decryption is the elliptic curve point multiplication. Hereby, a
point on the elliptic curve is multiplied with a long integer (k*P multiplication). The bit sizes of the
coordinates of the pointP=(x, y) and the factork have a length of hundreds of bits.

In this implementation the key and the point lengths are 233 bit, so that for every key there are 8 write
cycles necessary and for every point (consisting ofx andy) there are 16 write cycles necessary. After
at least 16700 clock cycles the result can be read out.
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The key is input via eight registers. The input pointPin=(x, y) is written via eight registers forx and
eight registers fory. After the last y input register is written, the encryption or decryption is started.
The progress can be observed via the status register. When the operation is completed, an interrupt is
generated. The output pointPout=(x, y) is then read out via eight registers forx and eight registers for
y.

41.3 Advantages

The main operation in ECC is the k*P multiplication. One k*P multiplication requires about 1500
field multiplications in the base field, which is the most expensive base operation. The complexity of
a field multiplication can be reduced by applying the Karatsuba method. Normally the Karatsuba
approach is applied recursively. The GRECC core includes an iterative implementation of the Karat-
suba method which allows to realize area efficient hardware accelerators for thek*P multiplication.
Hardware accelerators which are realized applying an iterative approach need up to 60 per cent less
area and  about 30 per cent less energy per multiplication than the recursive variants.

41.4 Background

The Standards for Efficient Cryptography Group (SECG) was initiated by Certicom Corporation to
address the difficulty vendors and users face when building and deploying interoperable security solu-
tions. The SECG is a broad international coalition comprised of leading technology companies and
key industry players in the information security industry. One of the goals is to enable the effective
incorporation of Elliptic Curve Cryptographic (ECC) technology into these various cryptographic
solutions.

The Standards for Efficient Cryptography Group (SECG) has develop two sets of documents. The
first set, under the name SEC, specifies interoperable cryptographic technologies and solutions. The
second set, Guidelines for Efficient Cryptography (GEC), provides background information on ellip-
tic curve cryptography and recommendations for ECC parameter and curve selection.

The Federal Information Processing Standards Publication Series of the National Institute of Stan-
dards and Technology (NIST) is the official series of publications relating to standards and guidelines
adopted under the provisions of the Information Technology Management Reform Act.

This Digital Signature Standard (DSS) specifies a suite of algorithms which can be used to generate a
digital signature. Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory. In addition, the recipient of signed data can use a digital sig-
nature in proving to a third party that the signature was in fact generated by the signatory. This is
known as nonrepudiation since the signatory cannot, at a later time, repudiate the signature.

41.5 233-bit elliptic curve domain parameters

The core implements the 233-bit elliptic curve domain parameterssect233r1,or the equivalentB-233,
which are verifiably random parameters. The following specification is established in “Standards for
Efficient Cryptography (SEC) - SEC 2: Recommended Elliptic Curve Domain Parameters”. The veri-
fiably random elliptic curve domain parameters over F2m are specified by the septupleT = (m; f (x);
a; b; G; n; h) wherem = 233 and the representation of F2233 is defined by:

f (x) = x233+x74 +1

The curveE: y2+xy = x3+ax2+b over F2m is defined by:

a = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

b = 0066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD

The base pointG in compressed form is:

G = 0300FA C9DFCBAC 8313BB21 39F1BB75 5FEF65BC 391F8B36 F8F8EB73 71FD558B

and in uncompressed form is:



AEROFLEX GAISLER 382 GRIP

G = 04 00FAC9DF CBAC8313 BB2139F1 BB755FEF 65BC391F 8B36F8F8

   EB7371FD 558B0100 6A08A419 03350678 E58528BE BF8A0BEF F867A7CA

   36716F7E 01F81052

Finally the ordern of G and the cofactor are:

n = 0100 00000000 00000000 00000000 0013E974 E72F8A69 22031D26 03CFE0D7

h = 02

41.6 Throughput

The data throughput for the GRECC core is around 233/16700 bits per clock cycle, i.e. approximately
13.9 kbits per MHz.

The underlaying EEC core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 850 kbit/s, the
power consumption was 56,8 mW, and the size was 48,5 kgates.

Figure 142. Dual Crypto Chip

41.7 Characteristics

The GRECC core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

• LUTs: 12850 (19%)

• Frequency:93 MHz
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41.8 Registers

The core is programmed through registers mapped into APB address space.

Table 434.GRECC registers

APB address offset Register

16#020# Key 0 Register

16#024# Key 1 Register

16#028# Key 2 Register

16#02C# Key 3 Register

16#030# Key 4 Register

16#034# Key 5 Register

16#038# Key 6 Register

16#03C# Key 7 Register

16#040# Point X Input 0 Register

16#044# Point X Input 1 Register

16#048# Point X Input 2 Register

16#04C# Point X Input 3 Register

16#050# Point X Input 4 Register

16#054# Point X Input 5 Register

16#058# Point X Input 6 Register

16#05C# Point X Input 7 Register

16#060# Point Y Input 0 Register

16#064# Point Y Input 1 Register

16#068# Point Y Input 2 Register

16#06C# Point Y Input 3 Register

16#070# Point Y Input 4 Register

16#074# Point Y Input 5 Register

16#078# Point Y Input 6 Register

16#07C# Point Y Input 7 Register

16#0A0# Point X Output 0 Register

16#0A4# Point X Output 1 Register

16#0A8# Point X Output 2 Register

16#0AC# Point X Output 3 Register

16#0B0# Point X Output 4 Register

16#0B4# Point X Output 5 Register

16#0B8# Point X Output 6 Register

16#0BC# Point X Output 7 Register

16#0C0# Point Y Output 0 Register

16#0C4# Point Y Output 1 Register

16#0C8# Point Y Output 2 Register

16#0CC# Point Y Output 3 Register

16#0D0# Point Y Output 4 Register

16#0D4# Point Y Output 5 Register

16#0D8# Point Y Output 6 Register

16#0DC# Point Y Output 7 Register

16#0FC# Status Register
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41.8.1 Key 0 to 7 Registers (W)

41.8.2 Point X Input 0 to 7 Registers (W)

Table 435.Key 0 Register (least significant)

31 0

KEY(31 downto 0)

Table 436.Key 1 Register

31 0

KEY(63 downto32)

Table 437.Key 2 Register

31 0

KEY(95 downto 64)

Table 438.Key 3 Register

31 0

KEY(127 downto 96)

Table 439.Key 4 Register

31 0

KEY(159 downto 128)

Table 440.Key 5 Register

31 0

KEY(191 downto 160)

Table 441.Key 6 Register

31 0

KEY(223 downto 192)

Table 442.Key 7 Register  (most significant)

31 9 8 0

- KEY(232 downto 224)

Table 443.Point X Input 0 Register (least significant)

31 0

X(31 downto 0)

Table 444.Point X Input 1 Register

31 0

X(63 downto32)

Table 445.Point X Input 2 Register

31 0

X(95 downto 64)
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Table 446.Point X Input 3 Register

31 0

X(127 downto 96)

Table 447.Point X Input 4 Register

31 0

X(159 downto 128)

Table 448.Point X Input 5 Register

31 0

X(191 downto 160)

Table 449.Point X Input 6 Register

31 0

X(223 downto 192)

Table 450.Point X Input 7 Register (most significant)

31 9 8 0

- X(232 downto 224)
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41.8.3 Point Y Input 0 to 7 Registers (W)

The encryption or decryption operation is started when thePoint Y Input 7 Register is written.

Table 451.Point Y Input 0 Register (least significant)

31 0

Y(31 downto 0)

Table 452.Point Y Input 1 Register

31 0

Y(63 downto32)

Table 453.Point Y Input 2 Register

31 0

Y(95 downto 64)

Table 454.Point Y Input 3 Register

31 0

Y(127 downto 96)

Table 455.Point Y Input 4 Register

31 0

Y(159 downto 128)

Table 456.Point Y Input 5 Register

31 0

Y(191 downto 160)

Table 457.Point Y Input 6 Register

31 0

Y(223 downto 192)

Table 458.Point Y Input 7 Register (most significant)

31 9 8 0

- Y(232 downto 224)
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41.8.4 Point X Output 0 to 7 Registers (R)

Table 459.Point X Output 0 Register (least significant)

31 0

X(31 downto 0)

Table 460.Point X Output 1 Register

31 0

X(63 downto32)

Table 461.Point X Output 2 Register

31 0

X(95 downto 64)

Table 462.Point X Output 3 Register

31 0

X(127 downto 96)

Table 463.Point X Output 4 Register

31 0

X(159 downto 128)

Table 464.Point X Output 5 Register

31 0

X(191 downto 160)

Table 465.Point X Output 6 Register

31 0

X(223 downto 192)

Table 466.Point X Output 7 Register (most significant)

31 9 8 0

- X(232 downto 224)
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41.8.5 Point Y Output 0 to 7 Registers (R)

41.8.6 Status Register (R)

31-1: - Unused
0: FSM 0 when ongoing, 1 when idle or ready

41.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x074. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 467.Point Y Output 0 Register (least significant)

31 0

Y(31 downto 0)

Table 468.Point Y Output 1 Register

31 0

Y(63 downto32)

Table 469.Point Y Output 2 Register

31 0

Y(95 downto 64)

Table 470.Point Y Output 3 Register

31 0

Y(127 downto 96)

Table 471.Point Y Output 4 Register

31 0

Y(159 downto 128)

Table 472.Point Y Output 5 Register

31 0

Y(191 downto 160)

Table 473.Point Y Output 6 Register

31 0

Y(223 downto 192)

Table 474.Point Y Output 7 Register (most significant)

31 9 8 0

- Y(232 downto 224)

Table 475.Status Register

31 1 0

. FS
M
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41.10 Configuration options

Table 476 shows the configuration options of the core (VHDL generics).

41.11 Signal descriptions

Table 477 shows the interface signals of the core (VHDL ports).

Note that the ECC core can also be used without the GRLIB plug&play information. The AMBA
APB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

41.12 Library dependencies

Table 478 shows libraries used when instantiating the core (VHDL libraries).

41.13 Instantiation

This example shows how the core can be instantiated.

library  ieee;
use      ieee.std_logic_1164.all;

library  grlib;
use      grlib.amba.all;

library  gaisler;
use      gaisler.crypto.all;
...
...
   signal debug: std_logic_vector(10 downto 0);
..

Table 476.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB BAR 0 - 16#FFF# 0

pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFC#

pirq Interrupt line used by the GRECC 0 - NAHBIRQ-1 0

Table 477.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

DEBUG[10:0] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Table 478.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CRYPTO Component GRECC component declarations
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..
   grecc0: grecc
      generic map (
         pindex         => pindex,
         paddr          => paddr,
         pmask          => pmask,
         pirq           => pirq)
      port map (
         rstn           => rstn,
         clk            => clk,
         apbi           => apbi,
         apbo           => apbo(pindex),
         debug          => debug);
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42 GRETH - Ethernet Media Access Controller (MAC) with EDCL support

42.1 Overview

Aeroflex Gaisler’s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MII and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the MII Management interface which
is used to configure the PHY.

Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. This is an UDP/IP based protocol used for remote debugging.

42.2 Operation

42.2.1 System overview

The GRETH consists of 3 functional units: The DMA channels, MDIO interface and the optional
Ethernet Debug Communication Link (EDCL).

The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and always runs in parallel with the DMA channels.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O

MDIO_I

MDC

AHB Master
Interface

Transmitter

Receiver

Transmitter

Receiver

DMA Engine

DMA Engine

FIFO

FIFO

TX_EN
TX_ER
TXD(3:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(3:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 143. Block diagram of the internal structure of the GRETH.
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The Media Independent Interface (MII) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the MII interface. Corre-
spondingly, there is an Ethernet receiver which stores all data from the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMII
which uses a subset of the MII signals.

The EDCL and the DMA channels share the Ethernet receiver and transmitter.

42.2.2 Protocol support

The GRETH is implemented according to IEEE standard 802.3-2002 and IEEE standard 802.3Q-
2003. There is no support for the optional control sublayer. This means that packets with type 0x8808
(the only currently defined ctrl packets) are discarded. The support for 802.3Q is optional and need to
be enabled via generics.

42.2.3 Clocking

GRETH has three clock domains: The AHB clock, Ethernet receiver clock and the Ethernet transmit-
ter clock. The ethernet transmitter and receiver clocks are generated by the external ethernet PHY, and
are inputs to the core through the MII interface. The three clock domains are unrelated to each other
and all signals crossing the clock regions are fully synchronized inside the core.

Both full-duplex and half-duplex operating modes are supported and both can be run in either 10 or
100 Mbit. The minimum AHB clock for 10 Mbit operation is 2.5 MHz, while 18 MHz is needed for
100 Mbit. Using a lower AHB clock than specified will lead to excessive packet loss.

42.2.4 RAM debug support

Support for debug accesses the core’s internal RAM blocks can be optionally enabled using the ram-
debug VHDL generic. Setting it to 1 enables accesses to the transmitter and receiver RAM buffers and
setting it to 2 enables accesses to the EDCL buffer in addition to the previous two buffers.

The transmitter RAM buffer is accessed starting from APB address offset 0x10000 which corresponds
to location 0 in the RAM. There are 512 32-bit wide locations in the RAM which results in the last
address being 0x107FC corresponding to RAM location 511 (byte addressing used on the APB bus).

Correspondingly the receiver RAM buffer is accessed starting from APB address offset 0x20000. The
addresses, width and depth is the same.

The EDCL buffers are accessed starting from address 0x30000. The number of locations depend on
the configuration and can be from 256 to 16384. Each location is 32-bits wide so the maximum
address is 0x3FC and 0xFFFC correspondingly.

Before any debug accesses can be made the ramdebugen bit in the control register has to be set. Dur-
ing this time the debug interface controls the RAM blocks and normal operations is stopped. EDCL
packets are not received. The MAC transmitter and receiver could still operate if enabled but the RAM
buffers would be corrupt if debug accces are made simultaneously. Thus they MUST be disabled
before the RAM debug mode is enabled.

42.2.5 Multibus version

There is a version of the core which has an additional master interface that can be used for the EDCL.
Otherwise this version is identical to the basic version. The additional master interface is enabled with
the edclsepahb VHDL generic. Then the ethi.edclsepahb signal control whether EDCL accesses are
done on the standard master interface or the additional interface. Setting the signal to ‘0’ makes the
EDCL use the standard master interface while ‘1’ selects the additional master. This signal is only
sampled at reset and changes to this signal have no effect until the next reset.
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42.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

42.3.1 Setting up a descriptor.

A single descriptor is shown in table 479 and 480. The number of bytes to be sent should be set in the
length field and the address field should point to the data. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this
requires that the transmitter interrupt bit in the control register is also set). The interrupt will be gener-
ated regardless of whether the packet was transmitted successfully or not. The Wrap (WR) bit is also
a control bit that should be set before transmission and it will be explained later in this section.

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH.

42.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the transmitter descriptor pointer register.
The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary
has been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors
can be set to make the pointer wrap back to zero before the 1 kB boundary.

Table 479.GRETH transmit descriptor word 0 (address offset 0x0)
31 16 15 14 13 12 11 10 0

RESERVED AL UE IE WR EN LENGTH

31: 16 RESERVED

15 Attempt Limit Error (AL) - The packet was not transmitted because the maximum number of
attempts was reached.

14 Underrun Error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 480.GRETH transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED
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The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set.

42.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the packet was completely
transmitted while the Attempt Limit Error bit is set if more collisions occurred than allowed. The
packet was successfully transmitted only if both of these bits are zero. The other bits in the first
descriptor word are set to zero after transmission while the second word is left untouched.

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH. There are three bits in the GRETH status register that hold transmis-
sion status. The Transmitter Error (TE) bit is set each time an transmission ended with an error (when
at least one of the two status bits in the transmit descriptor has been set). The Transmitter Interrupt
(TI) is set each time a transmission ended successfully.

The transmitter AHB error (TA) bit is set when an AHB error was encountered either when reading a
descriptor or when reading packet data. Any active transmissions were aborted and the transmitter
was disabled. The transmitter can be activated again by setting the transmit enable register.

42.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH does not add the Ethernet address and type fields so they must also be stored in the
data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet. Each descrip-
tor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than defined by
maxsize generic + header size bytes, the packet will not be sent.

42.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

42.4.1 Setting up descriptors

A single descriptor is shown in table 481 and 482. The address field should point to a word-aligned
buffer where the received data should be stored. The GRETH will never store more than defined by
the maxisize generic + header size bytes to the buffer. If the interrupt enable (IE) bit is set, an interrupt
will be generated when a packet has been received to this buffer (this requires that the receiver inter-
rupt bit in the control register is also set). The interrupt will be generated regardless of whether the
packet was received successfully or not. The Wrap (WR) bit is also a control bit that should be set
before the descriptor is enabled and it will be explained later in this section.

Table 481.GRETH receive descriptor word 0 (address offset 0x0)
31 27 26 25 19 18 17 16 15 14 13 12 11 10 0

RESERVED MC RESERVED LE OE CE FT AE IE WR EN LENGTH

31: 27 RESERVED

26 Multicast address (MC) - The destination address of the packet was a multicast address (not broad-
cast).

25: 19 RESERVED
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42.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the receiver descriptor pointer register. The
address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary
has been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors
can be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH read the first descriptor and wait for an incoming packet.

42.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 17-14
in the first descriptor word are status bits indicating different receive errors. All four bits are zero after
a reception without errors. The status bits are described in table 481.

Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.

18 Length error (LE) - The length/type field of the packet did not match the actual number of received
bytes.

17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.

16 CRC error (CE) - A CRC error was detected in this frame.

15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part
was truncated.

14 Alignment error (AE) - An odd number of nibbles were received.

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been
received to this descriptor provided that the receiver interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was received successfully or if it terminated with
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 482.GRETH receive descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED

Table 481.GRETH receive descriptor word 0 (address offset 0x0)
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Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH.

42.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

42.4.5 Accepted MAC addresses

In the default configuration the core receives packets with either the unicast address set in the MAC
address register or the broadcast address. Multicast support can also be enabled and in that case a hash
function is used to filter received multicast packets. A 64-bit register, which is accessible through the
APB interface, determines which addresses should be received. Each address is mapped to one of the
64 bits using the hash function and if the bit is set to one the packet will be received. The address is
mapped to the table by taking the 6 least significant bits of the 32-bit Ethernet crc calculated over the
destination address of the MAC frame. A bit in the receive descriptor is set if a packet with a multicast
address has been received to it.

42.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH provided full support for the MDIO
interface. If it is not needed in a design it can be removed with a VHDL generic.

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.

42.5.1 PHY interrupts

The core also supports status change interrupts from the PHY. A level sensitive interrupt signal can be
connected on the mdint input. The mdint_pol vhdl generic can be used to select the polarity. The PHY
status change bit in the status register is set each time an event is detected in this signal. If the PHY
status interrupt enable bit is set at the time of the event the core will also generate an interrupt on the
AHB bus.

42.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.
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42.6.1 Operation

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority.

42.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions.

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 483 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature.

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.

The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies.

The UDP data field contains the EDCL application protocol fields. Table 484 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in table 483
contains the data to be written. If R/W is zero the data field is empty in the received packets. Table 485
shows the application layer fields of the replies from the EDCL. The length field is always zero for
replies to write requests. For read requests it contains the number of bytes of data contained in the
data field.

Table 483.The IP packet expected by the EDCL.

Ethernet

Header

IP

Header

UDP

Header

2 B

Offset

4 B

Control word

4 B

Address

Data 0 - 242

4B Words

Ethernet

CRC

Table 484.The EDCL application layer fields in received frames.

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

Table 485.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused



AEROFLEX GAISLER 398 GRIP

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter value is stored in the sequence number field, the ACK/
NAK field is set to 0 in the reply and the internal counter is incremented, . The length field is always
set to 0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can
thus be set to hold for example some extra identifier bits if needed.

42.6.3 EDCL IP and Ethernet address settings

The default value of the EDCL IP and MAC addresses are set byipaddrh, ipaddrl, macad-
drh and macaddrl generics. The IP address can later be changed by software, but the MAC
address is fixed. To allow several EDCL enabled GRETH controllers on the same sub-net, the 4 LSB
bits of the IP and MAC address can optionally be set by an input signal. This is enabled by setting the
edcl  generic = 2, and driving the 4-bit LSB value on ethi.edcladdr.

42.6.4 EDCL buffer size

The EDCL has a dedicated internal buffer memory which stores the received packets during process-
ing. The size of this buffer is configurable with a VHDL generic to be able to obtain a suitable com-
promise between throughput and resource utilization in the hardware. Table 486 lists the different
buffer configurations. For each size the table shows how many concurrent packets the EDCL can han-
dle, the maximum size of each packet including headers and the maximum size of the data payload.
Sending more packets before receiving a reply than specified for the selected buffer size will lead to
dropped packets. The behavior is unspecified if sending larger packets than the maximum allowed.

42.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The GRETH
supports two of them: The Media Independent Interface (MII) and the Reduced Media Independent
Interface (RMII).

The MII was defined in the 802.3 standard and is most commonly supported. The ethernet interface
have been implemented according to this specification. It uses 16 signals.

Table 486.EDCL buffer sizes

Total buffer size (kB) Number of packet buffers Packet buffer size (B) Maximum data payload (B)

1 4 256 200

2 4 512 456

4 8 512 456

8 8 1024 968

16 16 1024 968

32 32 1024 968

64 64 1024 968
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The RMII was developed to meet the need for an interface allowing Ethernet controllers with smaller
pin counts. It uses 6 (7) signals which are a subset of the MII signals. Table 487 shows the mapping
between the RMII signals and the GRLIB MII interface.

42.8 Software drivers

Drivers for the GRETH MAC is provided for the following operating systems: RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Aeroflex Gaisler’s web site (http://gaisler.com/).

42.9 Registers

The core is programmed through registers mapped into APB address space.

Table 487.Signal mappings between RMII and the GRLIB MII interface.

RMII MII

txd[1:0] txd[1:0]

tx_en tx_en

crs_dv rx_crs

rxd[1:0] rxd[1:0]

ref_clk rmii_clk

rx_er not used

Table 488.GRETH registers

APB address offset Register

0x0 Control register

0x4 Status/Interrupt-source register

0x8 MAC Address MSB

0xC MAC Address LSB

0x10 MDIO Control/Status

0x14 Transmit descriptor pointer

0x18 Receiver descriptor pointer

0x1C EDCL IP

0x20 Hash table msb

0x24 Hash table lsb

0x28 EDCL MAC address MSB

0x2C EDCL MAC address LSB

0x10000 - 0x107FC Transmit RAM buffer debug access

0x20000 - 0x207FC Receiver RAM buffer debug access

0x30000 - 0x3FFFC EDCL buffer debug access

Table 489.GRETH control register
31 30 28 27 26 25 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ED BS MA MC RESERVED ED RD DD ME PI RES SP RS PM FD RI TI RE TE

31 EDCL available (ED) - Set to one if the EDCL is available.

30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB,
...., 6 = 64 kB.

27 RESERVED
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26 MDIO interrupts available (MA) - Set to one when the core supports mdio interrupts. Read only.

25 Multicast available (MC) - Set to one when the core supports multicast address reception. Read only.

24: 15 RESERVED

14 EDCL Disable (ED) - Set to one to disable the EDCL and zero to enable it. Reset value taken from
the ethi.edcldisable signal. Only available if the EDCL hardware is present in the core.

13 RAM debug enable (RD) - Set to one to enable the RAM debug mode. Reset value: ‘0’. Only avail-
able if the VHDL generic ramdebug is nonzero.

12 Disable duplex detection (DD) - Disable the EDCL speed/duplex detection FSM. If the FSM cannot
complete the detection the MDIO interface will be locked in busy mode. If software needs to access
the MDIO the FSM can be disabled here and as soon as the MDIO busy bit is 0 the interface is avail-
able. Note that the FSM cannot be reenabled again.

11 Multicast enable (ME) - Enable reception of multicast addresses. Reset value: ‘0’.

10 PHY status change interrupt enable (PI) - Enables interrupts for detected PHY status changes.

9: 8 RESERVED

7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Only used in RMII mode (rmii
= 1). A default value is automatically read from the PHY after reset. Reset value: ‘1’.

6 Reset (RS) - A one written to this bit resets the GRETH core. Self clearing. No other accesses should
be done .to the slave interface other than polling this bit until it is cleared.

5 Promiscuous mode (PM) - If set, the GRETH operates in promiscuous mode which means it will
receive all packets regardless of the destination address. Reset value: ‘0’.

4 Full duplex (FD) - If set, the GRETH operates in full-duplex mode otherwise it operates in half-
duplex. Reset value: ‘0’.

3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a
packet is received when this bit is set. The interrupt is generated regardless if the packet was received
successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until RE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until TE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

Table 490.GRETH status register
31 9 8 7 6 5 4 3 2 1 0

RESERVED PS IA TS TA RA TI RI TE RE

8 PHY status changes (PS) - Set each time a PHY status change is detected.

7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared
when written with a one. Reset value: ‘0’.

6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a
one. Reset value: ‘0’.

5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared
when written with a one. Not Reset.

Table 489.GRETH control register
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4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when
written with a one. Not Reset.

3 Transmitter interrupt (TI) - A packet was transmitted without errors. Cleared when written with a
one. Not Reset.

2 Receiver interrupt (RI) - A packet was received without errors. Cleared when written with a one. Not
Reset.

1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when
written with a one. Not Reset.

0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-
ten with a one. Not Reset.

Table 491.GRETH MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the MAC address

31: 16 RESERVED

15: 0 The two most significant bytes of the MAC Address. Not Reset.

Table 492.GRETH MAC address LSB.
31 0

Bit 31 downto 0 of the MAC address

31: 0 The four least significant bytes of the MAC Address. Not Reset.

Table 493.GRETH MDIO ctrl/status register.
31 16 15 11 10 6 5 4 3 2 1 0

DATA PHYADDR REGADDR NV BU LF RD WR

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed dur-
ing a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be accessed
during a write or read operation. Reset value: “00000”.

5 RESERVED

4 Not valid (NV) - When an operation is finished (BUSY = 0) this bit indicates whether valid data has
been received that is, the data field contains correct data. Reset value: ‘0’.

3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is finished
and the management link is idle this bit is cleared. Reset value: ‘0’.

2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management
link was not detected. Reset value: ‘1’.

1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field. Reset
value: ‘0’.

0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field.
Reset value: ‘0’.

Table 494.GRETH transmitter descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

Table 490.GRETH status register
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31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

Table 495.GRETH receiver descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

Table 496.GRETH EDCL IP register
31 0

EDCL IP ADDRESS

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

Table 497.GRETH Hash table msb register
31 0

Hash table (64:32)

31: 0 Hash table msb. Bits 64 downto 32 of the hash table.

Table 498.GRETH Hash table lsb register
31 0

Hash table (64:32)

31: 0 Hash table lsb. Bits 31downto 0 of the hash table.

Table 499.GRETH EDCL MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the EDCL MAC Address

31: 16 RESERVED

15: 0 The two most significant bytes of the EDCL MAC Address. Hardcoded reset value set with the
VHDL generic macaddrh.

Table 494.GRETH transmitter descriptor table base address register.
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42.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x1D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

42.11 Configuration options

Table 501 shows the configuration options of the core (VHDL generics).

Table 500.GRETH EDCL MAC address LSB.
31 0

Bit 31 downto 0 of the EDCL MAC Address

31: 0 The 4 least significant bytes of the EDCL MAC Address. Hardcoded reset value set with the VHDL
generics macaddrh and macaddrl. If the VHDL generic edcl is set to 2 bits 3 downto 0 are set with
the edcladdr input signal.

Table 501.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0

memtech Memory technology used for the FIFOs. 0 - NTECH inferred

ifg_gap Number of ethernet clock cycles used for one interframe
gap. Default value as required by the standard. Do not
change unless you know what you are doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one
packet. Default value as required by the standard.

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default
value as required by the standard. Sets the number of bits
used for the random value. Do not change unless you
know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time.
Default value as required by the ethernet standard. Do
not change unless you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock
(mdc). The mdc frequency will be clk/(2*(mdcs-
caler+1)).

0 - 255 25

enable_mdio Enable the Management interface, 0 - 1 0

fifosize Sets the size in 32-bit words of the receiver and transmit-
ter FIFOs.

4 - 32 8

nsync Number of synchronization registers used. 1 - 2 2

edcl Enable EDCL. 0 = disabled. 1 = enabled. 2 = enabled
and 4-bit LSB of IP and ethernet MAC address pro-
grammed by ethi.edcladdr, 3=in addition to features for
value 2 the reset value for the EDCL disable bit is taken
from the ethi.edcldisable signal instead of being hard-
coded to 0.

0 - 3 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1
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42.12 Signal descriptions

Table 502 shows the interface signals of the core (VHDL ports).

macaddrh Sets the upper 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and proto-
col implementations will discard frames with illegal
addresses silently. Consult network literature if unsure
about the addresses.

0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and proto-
col implementations will discard frames with illegal
addresses silently. Consult network literature if unsure
about the addresses.

0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset
value.

0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset
value.

0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the
MDIO register.

0 - 31 0

rmii Selects the desired PHY interface. 0 = MII, 1 = RMII. 0 - 1 0

oepol Selects polarity on output enable (ETHO.MDIO_OE).

0 = active low, 1 = active high

0 - 1 0

mdint_pol Selects polarity for level sensitive PHY interrupt line. 0
= active low, 1 = active high

0 - 1 0

enable_mdint Enable mdio interrupts 0 - 1 0

multicast Enable multicast support 0 - 1 0

ramdebug Enables debug access to the core’s RAM blocks through
the APB interface. 1=enables access to the receiver and
transmitter RAM buffers, 2=enables access to the EDCL
buffers in addition to the functionality of value 1. Setting
this generic to 2 will have no effect if the edcl generic is
0.

0 - 2 0

ehindex AHB master index for the separate EDCL master inter-
face. Only used if edclsepahb is 1.

0 - NAHBMST-1 0

edclsepahb Enables separate EDCL AHB master interface. A signal
determines if the separate interface or the common inter-
face is used. Only available in the GRETH_GBIT_MB
version of the core.

0 - 1 0

mdiohold Set output hold time for MDIO in number of AHB
cycles. Should be 10 ns or more.

1 - 30 1

maxsize Set maximum length of the data field of Ethernet 802.3
frame. Values of ‘maxsize’ and below for this field indi-
cate that the ethernet type field is used as the size of the
payload of the Ethernet Frame while values of above
‘maxsize’ indicate that the field is used to represent
EtherType. For 802.3q support set the length of the pay-
load to 1504

64 - 2047 1500

Table 502.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

Table 501.Configuration options

Generic Function Allowed range Default
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CLK N/A Input Clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ETHI gtx_clk Input Ethernet gigabit transmit clock. -

rmii_clk Input Ethernet RMII clock. -

tx_clk Input Ethernet transmit clock. -

rx_clk Input Ethernet receive clock. -

rxd Input Ethernet receive data. -

rx_dv Input Ethernet receive data valid. High

rx_er Input Ethernet receive error. High

rx_col Input Ethernet collision detected. (Asynchronous,
sampled with tx_clk)

High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled
with tx_clk)

High

mdio_i Input Ethernet management data input -

mdint Input Ethernet management interrupt -

phyrstaddr Input Reset address for GRETH PHY address field. -

edcladdr Input Sets the four least significant bits of the EDCL
MAC address and the EDCL IP address when
the edcl generic is set to 2.

-

edclsepahb Input Selects AHB master interface for the EDCL. ‘0’
selects the common interface and ‘1’ selects the
separate interface. Only available in the
GRETH_GBIT_MB version of the core when
the VHDL generic edclsepahb is set to 1.

-

edcldisable Input Reset value for edcl disable register bit. Setting
the signal to 1 disables the EDCL at reset and 0
enables it.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low

txd Output Ethernet transmit data. -

tx_en Output Ethernet transmit enable. High

tx_er Output Ethernet transmit error. High

mdc Output Ethernet management data clock. -

mdio_o Output Ethernet management data output. -

mdio_oe Output Ethernet management data output enable. Set by the
oepol
generic.

* see GRLIB IP Library User’s Manual

Table 502.Signal descriptions

Signal name Field Type Function Active
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42.13 Library dependencies

Table 503 shows libraries used when instantiating the core (VHDL libraries).

42.14 Instantiation

The first example shows how the non-mb version of the core can be instantiated and the second one
show the mb version.

42.14.1 Non-MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- ethernet signals
ethi :: in  eth_in_type;

 etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

  -- AMBA Components are instantiated here
  ...

  -- GRETH
 e1 : greth

generic map(
hindex       => 0,

 pindex       => 12,
 paddr        => 12,
 pirq         => 12,

memtech      => inferred,
 mdcscaler    => 50,
 enable_mdio  => 1,
 fifosize     => 32,
 nsync        => 1,
 edcl         => 1,
 edclbufsz    => 8,
 macaddrh     => 16#00005E#,

Table 503.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER NET Signals, components GRETH component declaration
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 macaddrl     => 16#00005D#,
 ipaddrh      => 16#c0a8#,
 ipaddrl      => 16#0035#)

 port map(
 rst          => rstn,
 clk          => clk,
 ahbmi        => ahbmi,
 ahbmo        => ahbmo(0),
 apbi         => apbi,
 apbo         => apbo(12),
 ethi         => ethi,
 etho         => etho
 );

end;

42.14.2 MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- ethernet signals
ethi :: in  eth_in_type;

 etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

  -- AMBA Components are instantiated here
  ...

  -- GRETH
 e1 : greth_mb

generic map(
hindex       => 0,

 pindex       => 12,
 paddr        => 12,
 pirq         => 12,

memtech      => inferred,
 mdcscaler    => 50,
 enable_mdio  => 1,
 fifosize     => 32,
 nsync        => 1,
 edcl         => 1,
 edclbufsz    => 8,
 macaddrh     => 16#00005E#,
 macaddrl     => 16#00005D#,
 ipaddrh      => 16#c0a8#,
 ipaddrl      => 16#0035#,
 ehindex  => 1,
 edclsepahb => 1)



AEROFLEX GAISLER 408 GRIP

 port map(
 rst          => rstn,
 clk          => clk,
 ahbmi        => ahbmi,
 ahbmo        => ahbmo(0),
 ahbmi2  => ahbmi,
 ahbmo2 => ahbmo(1),
 apbi         => apbi,
 apbo         => apbo(12),
 ethi         => ethi,
 etho         => etho
 );

end;
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43 GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL

43.1 Overview

Aeroflex Gaisler’s Gigabit Ethernet Media Access Controller (GRETH_GBIT) provides an interface
between an AMBA-AHB bus and an Ethernet network. It supports 10/100/1000 Mbit speed in both
full- and half-duplex. The AMBA interface consists of an APB interface for configuration and control
and an AHB master interface which handles the dataflow. The dataflow is handled through DMA
channels. There is one DMA engine for the transmitter and one for the receiver. Both share the same
AHB master interface.

The ethernet interface supports the MII and GMII interfaces which should be connected to an external
PHY. The GRETH also provides access to the MII Management interface which is used to configure
the PHY. Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is
also provided. This is an UDP/IP based protocol used for remote debugging.

Some of the supported features for the DMA channels are Scatter Gather I/O and TCP/UDP over IPv4
checksum offloading for both receiver and transmitter. Software Drivers are provided for RTEMS,
eCos, uClinux and Linux 2.6.

43.2 Operation

43.2.1 System overview

The GRETH_GBIT consists of 3 functional units: The DMA channels, MDIO interface and the
optional Ethernet Debug Communication Link (EDCL).

The main functionality consists of the DMA channels which are used for transferring data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O
MDIO_I
MDC

AHB Master
Interface

Transmitter

Receiver

Transmitter

Receiver

DMA Engine

DMA Engine

RAM

RAM

TX_EN
TX_ER
TXD(7:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(7:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 144. Block diagram of the internal structure of the GRETH_GBIT.

GTX_CLK
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The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP and ARP protocols together with a custom application layer protocol to accomplish this. The
EDCL contains no user accessible registers and always runs in parallel with the DMA channels.

The Media Independent Interface (MII) and Gigabit Media Independent Interface (GMII) are used for
communicating with the PHY. More information can be found in section 43.7.

The EDCL and the DMA channels share the Ethernet receiver and transmitter. More information on
these functional units is provided in sections 43.3 - 43.6.

43.2.2 Protocol support

The GRETH_GBIT is implemented according to IEEE standard 802.3-2002. There is no support for
the optional control sublayer. This means that packets with type 0x8808 (the only currently defined
ctrl packets) are discarded.

43.2.3 Hardware requirements

The GRETH_GBIT is synthesisable with most Synthesis tools. There are three or four clock domains
depending on if the gigabit mode is used. The three domains always present are the AHB clock,
Ethernet Receiver clock (RX_CLK) and the 10/100 Ethernet transmitter clock (TX_CLK). If the giga-
bit mode is also used the fourth clock domain is the gigabit transmitter clock (GTX_CLK). Both full-
duplex and half-duplex operating modes are supported and both can be run in either 10/100 or 1000
Mbit. The system frequency requirement (AHB clock) for 10 Mbit operation is 2.5 MHz, 18 MHz for
100 Mbit and 40 MHz for 1000 Mbit mode. The 18 MHz limit was tested on a Xilinx board with a
DCM that did not support lower frequencies so it might be possible to run it on lower frequencies. It
might also be possible to run the 10 Mbit mode on lower frequencies.

RX_CLK and TX_CLK are sourced by the PHY while GTX_CLK is sourced by the MAC according
to the 802.3-2002 standard. The GRETH_GBIT does not contain an internal clock generator so
GTX_CLK should either be generated in the FPGA (with a PLL/DLL) or with an external oscillator.

43.2.4 RAM debug support

Support for debug accesses the core’s internal RAM blocks can be optionally enabled using the ram-
debug VHDL generic. Setting it to 1 enables accesses to the transmitter and receiver RAM buffers and
setting it to 2 enables accesses to the EDCL buffer in addition to the previous two buffers.

The transmitter RAM buffer is accessed starting from APB address offset 0x10000 which corresponds
to location 0 in the RAM. There are 512 32-bit wide locations in the RAM which results in the last
address being 0x107FC corresponding to RAM location 511 (byte addressing used on the APB bus).

Correspondingly the receiver RAM buffer is accessed starting from APB address offset 0x20000. The
addresses, width and depth is the same.

The EDCL buffers are accessed starting from address 0x30000. The number of locations depend on
the configuration and can be from 256 to 16384. Each location is 32-bits wide so the maximum
address is 0x3FC and 0xFFFC correspondingly.

Before any debug accesses can be made the ramdebugen bit in the control register has to be set. Dur-
ing this time the debug interface controls the RAM blocks and normal operations is stopped. EDCL
packets are not received. The MAC transmitter and receiver could still operate if enabled but the RAM
buffers would be corrupt if debug accces are made simultaneously. Thus they MUST be disabled
before the RAM debug mode is enabled.
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43.2.5 Multibus version

There is a version of the core which has an additional master interface that can be used for the EDCL.
Otherwise this version is identical to the basic version. The additional master interface is enabled with
the edclsepahb VHDL generic. Then the ethi.edclsepahb signal control whether EDCL accesses are
done on the standard master interface or the additional interface. Setting the signal to ‘0’ makes the
EDCL use the standard master interface while ‘1’ selects the additional master. This signal is only
sampled at reset and changes to this signal have no effect until the next reset.

43.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

43.3.1 Setting up a descriptor.

A single descriptor is shown in table 504 and 505. The number of bytes to be sent should be set in the
length field and the address field should point to the data. There are no alignment restrictions on the
address field. If the interrupt enable (IE) bit is set, an interrupt will be generated when the packet has
been sent (this requires that the transmitter interrupt bit in the control register is also set). The inter-
rupt will be generated regardless of whether the packet was transmitted successfully or not.

Table 504.GRETH_GBIT transmit descriptor word 0 (address offset 0x0)
31 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED UC TC IC MO LC AL UE IE WR EN LENGTH

31: 21 RESERVED

20 UDP checksum (UC) - Calculate and insert the UDP checksum for this packet. The checksum is
only inserted if an UDP packet is detected.

19 TCP checksum (TC) - Calculate and insert the TCP checksum for this packet. The checksum is only
inserted if an TCP packet is detected.

18 IP checksum (IC) - Calculate and insert the IP header checksum for this packet. The checksum is
only inserted if an IP packet is detected.

17 More (MO) - More descriptors should be fetched for this packet (Scatter Gather I/O).

16 Late collision (LC) - A late collision occurred during the transmission (1000 Mbit mode only).

15 Attempt limit error (AL) - The packet was not transmitted because the maximum number of
attempts was reached.

14 Underrun error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.

13 Interrupt enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 505.GRETH_GBIT transmit descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
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To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH_GBIT. The rest of the fields in the
descriptor are explained later in this section.

43.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the transmitter descriptor pointer
register. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of
descriptor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should
be located at the base address and when it has been used by the GRETH_GBIT the pointer field is
incremented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero
when the next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used).
The WR bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB bound-
ary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH_GBIT that there are more active descriptors in the descriptor table. This bit should
always be set when new descriptors are enabled, even if transmissions are already active. The descrip-
tors must always be enabled before the transmit enable bit is set.

43.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the transmitter RAM was not able to provide data at a suf-
ficient rate. This indicates a synchronization problem most probably caused by a low clock rate on the
AHB clock. The whole packet is buffered in the transmitter RAM before transmission so underruns
cannot be caused by bus congestion. The Attempt Limit Error bit is set if more collisions occurred
than allowed. When running in 1000 Mbit mode the Late Collision bit indicates that a collision
occurred after the slottime boundary was passed.

The packet was successfully transmitted only if these three bits are zero. The other bits in the first
descriptor word are set to zero after transmission while the second word is left untouched.

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH_GBIT. There are three bits in the GRETH_GBIT status register that
hold transmission status. The Transmit Error (TE) bit is set each time an transmission ended with an
error (when at least one of the three status bits in the transmit descriptor has been set). The Transmit
Successful (TI) is set each time a transmission ended successfully.

The Transmit AHB Error (TA) bit is set when an AHB error was encountered either when reading a
descriptor, reading packet data or writing status to the descriptor. Any active transmissions are aborted
and the transmitter is disabled. The transmitter can be activated again by setting the transmit enable
register.

43.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH_GBIT does not add the Ethernet address and type fields so they must also be
stored in the data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet.
Each descriptor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than
1514 B, the packet will not be sent.
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43.3.5 Scatter Gather I/O

A packet can be generated from data fetched from several descriptors. This is called Scatter Gather I/
O. The More (MO) bit should be set to 1 to indicate that more descriptors should be used to generate
the current packet. When data from the current descriptor has been read to the RAM the next descrip-
tor is fetched and the new data is appended to the previous data. This continues until a descriptor with
the MO bit set to 0 is encountered. The packet will then be transmitted.

Status is written immediately when data has been read to RAM for descriptors with MO set to 1. The
status bits are always set to 0 since no transmission has occurred. The status bits will be written to the
last descriptor for the packet (which had MO set to 0) when the transmission has finished.

No interrupts are generated for descriptors with MO set to 1 so the IE bit is don’t care in this case.

The checksum offload control bits (explained in section 43.3.6) must be set to the same values for all
descriptors used for a single packet.

43.3.6 Checksum offloading

Support is provided for checksum calculations in hardware for TCP and UDP over IPv4. The check-
sum calculations are enabled in each descriptor and applies only to that packet (when the MO bit is set
all descriptors used for a single packet must have the checksum control bits set in the same way).

The IP Checksum bit (IC) enables IP header checksum calculations. If an IPv4 packet is detected
when transmitting the packet associated with the descriptor the header checksum is calculated and
inserted. If TCP Checksum (TC) is set the TCP checksum is calculated and inserted if an TCP/IPv4
packet is detected. Finally, if the UDP Checksum bit is set the UDP checksum is calculated and
inserted if a UDP/IPv4 packet is detected. In the case of fragmented IP packets, checksums for TCP
and UDP are only inserted for the first fragment (which contains the TCP or UDP header).

43.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

43.4.1 Setting up descriptors

A single descriptor is shown in table 506 and 507. The address field points at the location where the
received data should be stored. There are no restrictions on alignment. The GRETH_GBIT will never
store more than 1518 B to the buffer (the tagged maximum frame size excluding CRC). The CRC
field (4 B) is never stored to memory so it is not included in this number. If the interrupt enable (IE)
bit is set, an interrupt will be generated when a packet has been received to this buffer (this requires
that the receiver interrupt bit in the control register is also set). The interrupt will be generated regard-
less of whether the packet was received successfully or not.

The enable bit is set to indicate that the descriptor is valid which means it can be used by the to store a
packet. After it is set the descriptor should not be touched until the EN bit has been cleared by the
GRETH_GBIT.

The rest of the fields in the descriptor are explained later in this section..

Table 506.GRETH_GBIT receive descriptor word 0 (address offset 0x0)
31 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED MC IF TR TD UR UD IR ID LE OE CE FT AE IE WR EN LENGTH

31: 27 RESERVED

26 Multicast address (MC) - The destination address of the packet was a multicast address (not broad-
cast).

25 IP fragment (IF) - Fragmented IP packet detected.
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43.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the receiver descriptor pointer reg-
ister. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descrip-
tor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be
located at the base address and when it has been used by the GRETH_GBIT the pointer field is incre-
mented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero when the
next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used). The WR
bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH_GBIT read the first descriptor and wait for an incoming packet.

43.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 24-14
in the first descriptor word are status bits indicating different receive errors. Bits 18 - 14 are zero after
a reception without link layer errors. The status bits are described in table 506 (except the checksum
offload bits which are also described in section 43.4.6).

24 TCP error (TR) - TCP checksum error detected.

23 TCP detected (TD) - TCP packet detected.

22 UDP error (UR) - UDP checksum error detected.

21 UDP detected (UD) - UDP packet detected.

20 IP error (IR) - IP checksum error detected.

19 IP detected (ID) - IP packet detected.

18 Length error (LE) - The length/type field of the packet did not match the actual number of received
bytes.

17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.

16 CRC error (CE) - A CRC error was detected in this frame.

15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part
was truncated.

14 Alignment error (AE) - An odd number of nibbles were received.

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been
received to this descriptor provided that the receiver interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was received successfully or if it terminated with
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 507.GRETH_GBIT receive descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

Table 506.GRETH_GBIT receive descriptor word 0 (address offset 0x0)
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Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.

Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH.

43.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

43.4.5 Accepted MAC addresses

In the default configuration the core receives packets with either the unicast address set in the MAC
address register or the broadcast address. Multicast support can also be enabled and in that case a hash
function is used to filter received multicast packets. A 64-bit register, which is accessible through the
APB interface, determines which addresses should be received. Each address is mapped to one of the
64 bits using the hash function and if the bit is set to one the packet will be received. The address is
mapped to the table by taking the 6 least significant bits of the 32-bit Ethernet crc calculated over the
destination address of the MAC frame. A bit in the receive descriptor is set if a packet with a multicast
address has been received to it.

43.4.6 Checksum offload

Support is provided for checksum calculations in hardware for TCP/UDP over IPv4. The checksum
logic is always active and detects IPv4 packets with TCP or UDP payloads. If IPv4 is detected the ID
bit is set, UD is set if an UDP payload is detected in the IP packet and TD is set if a TCP payload is
detected in the IP packet (TD and UD are never set if an IPv4 packet is not detected). When one or
more of these packet types is detected its corresponding checksum is calculated and if an error is
detected the checksum error bit for that packet type is set. The error bits are never set if the corre-
sponding packet type is not detected. The core does not support checksum calculations for TCP and
UDP when the IP packet has been fragmented. This condition is indicated by the IF bit in the receiver
descriptor and when set neither the TCP nor the UDP checksum error indications are valid.

43.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH_GBIT provides full support for the
MDIO interface.

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.
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43.5.1 PHY interrupts

The core also supports status change interrupts from the PHY. A level sensitive interrupt signal can be
connected on the mdint input. The mdint_pol vhdl generic can be used to select the polarity. The PHY
status change bit in the status register is set each time an event is detected in this signal. If the PHY
status interrupt enable bit is set at the time of the event the core will also generate an interrupt on the
AHB bus.

43.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.

43.6.1 Operation

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority.

43.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions.

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 508 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature.

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.

The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies.

The UDP data field contains the EDCL application protocol fields. Table 509 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any

Table 508.The IP packet expected by the EDCL.

Ethernet

Header

IP

Header

UDP

Header

2 B

Offset

4 B

Control word

4 B

Address

Data 0 - 242

4B Words

Ethernet

CRC
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value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in Table
508 contains the data to be written. If R/W is zero the data field is empty in the received packets. Table
510 shows the application layer fields of the replies from the EDCL. The length field is always zero
for replies to write requests. For read requests it contains the number of bytes of data contained in the
data field.

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK field is set to 0 in the reply. The length field is always set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extra id bits if needed.

43.6.3 EDCL IP and Ethernet address settings

The default value of the EDCL IP and MAC addresses are set byipaddrh, ipaddrl, macad-
drh and macaddrl generics. The IP address can later be changed by software, but the MAC
address is fixed. To allow several EDCL enabled GRETH controllers on the same sub-net, the 4 LSB
bits of the IP and MAC address can optionally be set by an input signal. This is enabled by setting the
edcl  generic = 2, and driving the 4-bit LSB value on ethi.edcladdr.

43.6.4 EDCL buffer size

The EDCL has a dedicated internal buffer memory which stores the received packets during process-
ing. The size of this buffer is configurable with a VHDL generic to be able to obtain a suitable com-
promise between throughput and resource utilization in the hardware. Table 511 lists the different
buffer configurations. For each size the table shows how many concurrent packets the EDCL can han-
dle, the maximum size of each packet including headers and the maximum size of the data payload.
Sending more packets before receiving a reply than specified for the selected buffer size will lead to
dropped packets. The behavior is unspecified if sending larger packets than the maximum allowed.

Table 509.The EDCL application layer fields in received frames.

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

Table 510.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

Table 511.EDCL buffer sizes

Total buffer size (kB) Number of packet buffers Packet buffer size (B) Maximum data payload (B)

1 4 256 200

2 4 512 456

4 8 512 456

8 8 1024 968

16 16 1024 968

32 32 1024 968

64 64 1024 968
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43.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The
GRETH_GBIT supports the Media Independent Interface (MII) and the Gigabit Media Independent
Interface (GMII).

The GMII is used in 1000 Mbit mode and the MII in 10 and 100 Mbit. These interfaces are defined
separately in the 802.3-2002 standard but in practice they share most of the signals. The GMII has 9
additional signals compared to the MII. Four data signals are added to the receiver and transmitter
data interfaces respectively and a new transmit clock for the gigabit mode is also introduced.

43.8 Registers

The core is programmed through registers mapped into APB address space.

Table 512.Signals in GMII and MII.

MII and GMII GMII Only

txd[3:0] txd[7:4]

tx_en rxd[7:4]

tx_er gtx_clk

rx_col

rx_crs

rxd[3:0]

rx_clk

rx_er

rx_dv

Table 513.GRETH_GBIT registers

APB address offset Register

0x0 Control register

0x4 Status/Interrupt-source register

0x8 MAC Address MSB

0xC MAC Address LSB

0x10 MDIO Control/Status

0x14 Transmit descriptor pointer

0x18 Receiver descriptor pointer

0x1C EDCL IP

0x20 Hash table msb

0x24 Hash table lsb

0x28 EDCL MAC address MSB

0x2C EDCL MAC address LSB

0x10000 - 0x107FC Transmit RAM buffer debug access

0x20000 - 0x207FC Receiver RAM buffer debug access

0x30000 - 0x3FFFC EDCL buffer debug access
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Table 514.GRETH control register
31 30 28 27 26 25 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ED BS GA MA MC RESERVED ED RD DD ME PI BM GB SP RS PR FD RI TI RE TE

31 EDCL available (ED) - Set to one if the EDCL is available.

30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB,
...., 6 = 64 kB.

27 Gigabit MAC available (GA) - This bit always reads as a 1 and indicates that the MAC has 1000
Mbit capability.

26 Mdio interrupts enabled (ME) - Set to one when the core supports mdio interrupts. Read only.

25 Multicast available (MC) - Set to one when the core supports multicast address reception. Read only.

24: 15 RESERVED

14 EDCL Disable(ED) - Set to one to disablethe EDCL and zero to enable it. Reset value taken from the
ethi.edcldisable signal. Only available if the EDCL hardware is present in the core.

13 RAM debug enable (RD) - Set to one to enable the RAM debug mode. Reset value: ‘0’. Only avail-
able if the VHDL generic ramdebug is nonzero.

12 Disable duplex detection (DD) - Disable the EDCL speed/duplex detection FSM. If the FSM cannot
complete the detection the MDIO interface will be locked in busy mode. If software needs to access
the MDIO the FSM can be disabled here and as soon as the MDIO busy bit is 0 the interface is avail-
able. Note that the FSM cannot be reenabled again.

11 Multicast enable (ME) - Enable reception of multicast addresses. Reset value: ‘0’.

10 PHY status change interrupt enable (PI) - Enables interrupts for detected PHY status changes.

9 Burstmode (BM) - When set to 1, transmissions use burstmode in 1000 Mbit Half-duplex mode
(GB=1, FD = 0). When 0 in this speed mode normal transmissions are always used with extension
inserted. Operation is undefined when set to 1 in other speed modes. Reset value: ‘0’.

8 Gigabit (GB) - 1 sets the current speed mode to 1000 Mbit and when set to 0, the speed mode is
selected with bit 7 (SP). Reset value: ‘0’.

7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Must not be set to 1 at the
same time as bit 8 (GB). Reset valuie: ‘0’.

6 Reset (RS) - A one written to this bit resets the GRETH_GBIT core. Self clearing. No other accesses
should be done .to the slave interface other than polling this bit until it is cleared.

5 Promiscuous mode (PM) - If set, the GRETH_GBIT operates in promiscuous mode which means it
will receive all packets regardless of the destination address. Reset value: ‘0’.

4 Full duplex (FD) - If set, the GRETH_GBIT operates in full-duplex mode otherwise it operates in
half-duplex. Reset value: ‘0’.

3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a
packet is received when this bit is set. The interrupt is generated regardless if the packet was received
successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until RE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until TE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

Table 515.GRETH_GBIT status register.
31 9 8 7 6 5 4 3 2 1 0

RESERVED PS IA TS TA RA TI RI TE RE
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31: 9 RESERVED

8 PHY status changes (PS) - Set each time a PHY status change is detected.

7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared
when written with a one. Reset value: ‘0’.

6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a
one. Reset value: ‘0’.

5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared
when written with a one. Not Reset.

4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when
written with a one. Not Reset.

3 Transmit successful (TI) - A packet was transmitted without errors. Cleared when written with a one.
Not Reset.

2 Receive successful (RI) - A packet was received without errors. Cleared when written with a one.
Not Reset.

1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when
written with a one. Not Reset.

0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-
ten with a one. Not Reset.

Table 516.GRETH_GBIT MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the MAC Address

31: 16 RESERVED

15: 0 The two most significant bytes of the MAC Address. Not Reset.

Table 517.GRETH_GBIT MAC address LSB.
31 0

Bit 31 downto 0 of the MAC Address

31: 0 The 4 least significant bytes of the MAC Address. Not Reset.

Table 518.GRETH_GBIT MDIO control/status register.
31 16 15 11 10 6 5 4 3 2 1 0

DATA PHYADDR REGADDR NV BU LF RD WR

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed dur-
ing a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be
accessed during a write or read operation. Reset value: ‘”00000”.

5 RESERVED

4 Not valid (NV) - When an operation is finished (BUSY = 0) this bit indicates whether valid data has
been received that is, the data field contains correct data. Reset value: ‘0’.

3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is fin-
ished and the management link is idle this bit is cleared. Reset value: ‘0’.

Table 515.GRETH_GBIT status register.
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2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management
link was not detected. Reset value: ‘1’.

1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field.
Reset value: ‘0’.

0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field.
Reset value: ‘0’.

Table 519.GRETH_GBIT transmitter descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

Table 520.GRETH_GBIT receiver descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

Table 521.GRETH_GBIT EDCL IP register
31 0

EDCL IP ADDRESS

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

Table 522.GRETH Hash table msb register
31 0

Hash table (64:32)

31: 0 Hash table msb. Bits 64 downto 32 of the hash table.

Table 523.GRETH Hash table lsb register
31 0

Hash table (64:32)

31: 0 Hash table lsb. Bits 31downto 0 of the hash table.

Table 518.GRETH_GBIT MDIO control/status register.
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43.9 Software drivers

Drivers for the GRETH_GBIT MAC is provided for the following operating systems: RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Aeroflex Gaisler’s web site (http://www.gaisler.com/).

43.10 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x01D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

43.11 Configuration options

Table 526 shows the configuration options of the core (VHDL generics).*) Not all addresses are
allowed and most NICs and protocol implementations will discard frames with illegal addresses
silently. Consult network literature if unsure about the addresses.

Table 524.GRETH_GBIT EDCL MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the EDCL MAC Address

31: 16 RESERVED

15: 0 The two most significant bytes of the EDCL MAC Address. Hardcoded reset value set with the
VHDL generic macaddrh.

Table 525.GRETH_GBIT EDCL MAC address LSB.
31 0

Bit 31 downto 0 of the EDCL MAC Address

31: 0 The 4 least significant bytes of the EDCL MAC Address. Hardcoded reset value set with the VHDL
generics macaddrh and macaddrl. If the VHDL generic edcl is set to 2 bits 3 downto 0 are set with
the edcladdr input signal.

Table 526.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0

memtech Memory technology used for the FIFOs. 0 - NTECH inferred

ifg_gap Number of ethernet clock cycles used for one interframe gap.
Default value as required by the standard. Do not change unless
you know what your doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one packet.
Default value as required by the standard.

1 - 255 16
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backoff_limit Limit on the backoff size of the backoff time. Default value as
required by the standard. Sets the number of bits used for the
random value. Do not change unless you know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time. Default
value as required by the ethernet standard. Do not change unless
you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock (mdc). The
mdc frequency will be clk/(2*(mdcscaler+1)).

0 - 255 25

nsync Number of synchronization registers used. 1 - 2 2

edcl Enable EDCL. 0 = disabled. 1 = enabled. 2 = enabled and 4-bit
LSB of IP and ethernet MAC address programmed by
ethi.edcladdr, 3=in addition to features for value 2 the reset value
for the EDCL disable bit is taken from the ethi.edcldisable signal
instead of being hardcoded to 0.

0 - 3 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1

burstlength Sets the maximum burstlength used during DMA 4 - 128 32

macaddrh Sets the upper 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and protocol imple-
mentations will discard frames with illegal addresses silently.
Consult network literature if unsure about the addresses.

0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and protocol imple-
mentations will discard frames with illegal addresses silently.
Consult network literature if unsure about the addresses.

0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the MDIO regis-
ter. When set to 32, the address is taken from the ethi.phyrstaddr
signal.

0 - 32 0

sim Set to 1 for simulations and 0 for synthesis. 1 selects a faster mdc
clock to speed up simulations.

0 - 1 0

mdint_pol Selects polarity for level sensitive PHY interrupt line. 0 = active
low, 1 = active high

0 - 1 0

enable_mdint Enables mdio interrupts. 0 - 1 0

multicast Enables multicast support. 0 - 1 0

ramdebug Enables debug access to the core’s RAM blocks through the
APB interface. 1=enables access to the receiver and transmitter
RAM buffers, 2=enables access to the EDCL buffers in addition
to the functionality of value 1. Setting this generic to 2 will have
no effect if the edcl generic is 0.

0 - 2 0

ehindex AHB master index for the separate EDCL master interface. Only
used if edclsepahb is 1.

0 - NAHBMST-1 0

edclsepahb Enables separate EDCL AHB master interface. A signal deter-
mines if the separate interface or the common interface is used.
Only available in the GRETH_GBIT_MB version of the core.

0 - 1 0

mdiohold Set output hold time for MDIO in number of AHB cycles.
Should be 10 ns or more.

1 - 30 1

Table 526.Configuration options

Generic Function Allowed range Default
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43.12 Signal descriptions

Table 527 shows the interface signals of the core (VHDL ports).

Table 527.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ETHI gtx_clk Input Ethernet gigabit transmit clock. -

rmii_clk Input Ethernet RMII clock. -

tx_clk Input Ethernet transmit clock. -

rx_clk Input Ethernet receive clock. -

rxd Input Ethernet receive data. -

rx_dv Input Ethernet receive data valid. High

rx_er Input Ethernet receive error. High

rx_col Input Ethernet collision detected. (Asynchronous,
sampled with tx_clk)

High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled
with tx_clk)

High

mdio_i Input Ethernet management data input -

mdint Input Ethernet management interrupt -

phyrstaddr Input Reset address for GRETH PHY address field. -

edcladdr Input Sets the four least significant bits of the EDCL
MAC address and the EDCL IP address when
the edcl generic is set to 2.

-

edclsepahb Input Selects AHB master interface for the EDCL. ‘0’
selects the common interface and ‘1’ selects the
separate interface. Only available in the
GRETH_GBIT_MB version of the core when
the VHDL generic edclsepahb is set to 1.

-

edcldisable Input Reset value for edcl disable register bit. Setting
the signal to 1 disables the EDCL at reset and 0
enables it.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low

txd Output Ethernet transmit data. -

tx_en Output Ethernet transmit enable. High

tx_er Output Ethernet transmit error. High

mdc Output Ethernet management data clock. -

mdio_o Output Ethernet management data output. -

mdio_oe Output Ethernet management data output enable. Set by the
oepol
generic.

* see GRLIB IP Library User’s Manual
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43.13 Library dependencies

Table 528 shows libraries used when instantiating the core (VHDL libraries).

43.14 Instantiation

The first example shows how the non-mb version of the core can be instantiated and the second one
show the mb version.

43.14.1 Non-MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- ethernet signals
ethi :  in  eth_in_type;

 etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

  -- AMBA Components are instantiated here
  ...

  -- GRETH
 e1 : greth_gbit

generic map(
hindex       => 0,

 pindex       => 12,
 paddr        => 12,
 pirq         => 12,

memtech      => inferred,
 mdcscaler    => 50,
 burstlength  => 32,
 nsync        => 1,
 edcl         => 1,

Table 528.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER ETHERNET_MAC Signals, component GRETH_GBIT component declarations,
GRETH_GBIT signals.

GAISLER NET Signals Ethernet signals
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 edclbufsz    => 8,
 macaddrh     => 16#00005E#,
 macaddrl     => 16#00005D#,
 ipaddrh      => 16#c0a8#,
 ipaddrl      => 16#0035#)

 port map(
 rst          => rstn,
 clk          => clk,
 ahbmi        => ahbmi,
 ahbmo        => ahbmo(0),
 apbi         => apbi,
 apbo         => apbo(12),
 ethi         => ethi,
 etho         => etho
 );

end;

43.14.2 MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- ethernet signals
ethi :  in  eth_in_type;

 etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
begin

  -- AMBA Components are instantiated here
  ...

  -- GRETH
 e1 : greth_gbit_mb

generic map(
hindex       => 0,

 pindex       => 12,
 paddr        => 12,
 pirq         => 12,

memtech      => inferred,
 mdcscaler    => 50,
 burstlength  => 32,
 nsync        => 1,
 edcl         => 1,
 edclbufsz    => 8,
 macaddrh     => 16#00005E#,
 macaddrl     => 16#00005D#,
 ipaddrh      => 16#c0a8#,
 ipaddrl      => 16#0035#,
 ehindex  => 1
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 edclsepahb => 1)
 port map(

 rst          => rstn,
 clk          => clk,
 ahbmi        => ahbmi,
 ahbmo        => ahbmo(0),
 ahbmi2 => ahbmi,
 ahbmo2  => ahbmo(1),
 apbi         => apbi,
 apbo         => apbo(12),
 ethi         => ethi,
 etho         => etho
 );

end;
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44 GRFIFO - FIFO Interface

44.1 Overview

The FIFO interface is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing FIFO data in memory external to the
FIFO interface. This memory can be located on-chip or external to the chip.

The FIFO interface supports transmission and reception of blocks of data by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of data can be ongoing simultaneously.

After a data transfer has been set up via the AMBA APB interface, the DMA controller initiates a
burst of read accesses on the AMBA AHB bus to fetch data from memory that are performed by the
AHB master. The data are then written to the external FIFO. When a programmable amount of data
has been transmitted, the DMA controller issues an interrupt.

After reception has been set up via the AMBA APB interface, data are read from the external FIFO.
To store data to memory, the DMA controller initiates a burst of write accesses on the AMBA AHB
bus that are performed by the AHB master. When a programmable amount of data has been received,
the DMA controller issues an interrupt.

Figure 145. Block diagram
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44.1.1 Function

The core implements the following functions:

• data transmission to external FIFO

• circular transmit buffer

• direct memory access for transmitter

• data reception from external FIFO

• circular receive buffer for receiver

• direct memory access

• automatic 8- and 16-bit data width conversion

• general purpose input output

44.1.2 Transmission

Data to be transferred via the FIFO interface are fetched via the AMBA AHB master interface from
on-chip or off-chip memory. This is performed by means of direct memory access (DMA), imple-
menting a circular transmit buffer in the memory. The transmit channel is programmable via the
AMBA APB slave interface, which is also used for the monitoring of the FIFO and DMA status.

The transmit channel is programmed in terms of a base address and size of the circular transmit buffer.
The outgoing data are stored in the circular transmit buffer by the system. A write address pointer reg-
ister is then set by the system to indicate the last byte written to the circular transmit buffer. An inter-
rupt address pointer register is used by the system to specify a location in the circular transmit buffer
from which a data read should cause an interrupt to be generated.

The FIFO interface automatically indicates with a read address pointer register the location of the last
fetched byte from the circular transmit buffer. Read accesses are performed as incremental bursts,
except when close to the location specified by the interrupt pointer register at which point the last
bytes might be fetched by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the transmit
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.

To handle the 8- and 16-bit FIFO data width, a 32-bit read access might carry less than four valid
bytes. In such a case, the remaining bytes are ignored. When additional data are available in the circu-
lar transmit buffer, the previously fetched bytes will be re-read together with the newly written bytes
to form the 32-bit data. Only the new bytes will be transmitted to the FIFO, not to transmit the same
byte more than once. The aforementioned write address pointer indicates what bytes are valid.

An interrupt is generated when the circular transmit buffer is empty. The status of the external FIFO is
observed via the AMBA APB slave interface, indicating Full Flag and Half-Full Flag.

44.1.3 Reception

Data received via the FIFO interface are stored via the AMBA AHB master interface to on-chip or
off-chip memory. This is performed by means of direct memory access (DMA), implementing a cir-
cular receive buffer in the memory. The receive channel is programmable via the AMBA APB slave
interface, which is also used for the monitoring of the FIFO and DMA status.

The receive channel is programmed in terms of a base address and size of the circular receive buffer.
The incoming data are stored in the circular receive buffer. The interface automatically indicates with
a write address pointer register the location of the last stored byte. A read address pointer register is
used by the system to indicate the last byte read from the circular receive buffer. An interrupt address
pointer register is used by the system to specify a location in the circular receive buffer to which a data
write should cause an interrupt to be generated.
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Write accesses are performed as incremental bursts, except when close to the location specified by the
interrupt pointer register at which point the last bytes might be stored by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the receive
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.

To handle the 8- and 16-bit FIFO data width, a 32-bit write access might carry less than four valid
bytes. In such a case, the remaining bytes will all be zero. When additional data are received from the
FIFO interface, the previously stored bytes will be re-written together with the newly received bytes
to form the 32-bit data. In this way, the previously written bytes are never overwritten. The aforemen-
tioned write address pointer indicates what bytes are valid.

An interrupt is generated when the circular receive buffer is full. If more FIFO data are available, they
will not be moved to the circular receive buffer. The status of the external FIFO is observed via the
AMBA APB slave interface, indicating Empty Flag and Half-Full Flag.

44.1.4 General purpose input output

Data input and output signals unused by the FIFO interface can be used as general purpose input out-
put, providing 0, 8 or 16 individually programmable channels.

44.1.5 Interfaces

The core provides the following external and internal interfaces:

• FIFO interface

• AMBA AHB master interface, with sideband signals as per [GLRIB] including:

• cachability information

• interrupt bus

• configuration information

• diagnostic information

• AMBA APB slave interface, with sideband signals as per [GLRIB] including:

• interrupt bus

• configuration information

• diagnostic information

The interface is intended to be used with the following FIFO devices from ATMEL:

Name:Type:

M67204H4K x 9 FIFOESA/SCC 9301/049, SMD/5962-89568

M67206H16K x 9 FIFOESA/SCC 9301/048, SMD/5962-93177

M672061H16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

44.2 Interface

The external interface supports one or more FIFO devices for data output (transmission) and/or one or
more FIFO devices for data input (reception). The external interface supports FIFO devices with 8-
and 16-bit data width. Note that one device is used when 8-bit and two devices are used when 16-bit
data width is needed. The data width is programmable. Note that this is performed commonly for both
directions.
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The external interface supports one parity bit over every 8 data bits. Note that there can be up to two
parity bits in either direction. The parity is programmable in terms of odd or even parity. Note that odd
parity is defined as an odd number of logical ones in the data bits and parity bit. Note that even parity
is defined as an even number of logical ones in the data bits and parity bit. Parity is generated for write
accesses to the external FIFO devices. Parity is checked for read accesses from the external FIFO
devices and a parity failure results in an internal interrupt.

The external interface provides a Write Enable output signal. The external interface provides a Read
Enable output signal. The timing of the access towards the FIFO devices is programmable in terms of
wait states based on system clock periods.

The external interface provides an Empty Flag input signal, which is used for flow-control during the
reading of data from the external FIFO, not reading any data while the external FIFO is empty. Note
that the Empty Flag is sampled at the end of the read access to determine if the FIFO is empty. To
determine when the FIFO is not empty, the Empty Flag is re-synchronized with Clk.

The external interface provides a Full Flag input signal, which is used for flow-control during the
writing of data to the external FIFO, not writing any data while the external FIFO is full. Note that the
Full Flag is sampled at the end of the write access to determine if the FIFO is full. To determine when
the FIFO is not full, the Full Flag is re-synchronized with Clk.

The external interface provides a Half-Full Flag input signal, which is used as status information only.

The data input and output signals are possible to use as general purpose input output channels. This
need is only realized when the data signals are not used by the FIFO interface. Each general purpose
input output channel is individually programmed as input or output. The default reset configuration
for each general purpose input output channel is as input. The default reset value each general purpose
input output channel is logical zero. Note that protection toward spurious pulse commands during
power up shall be mitigated as far as possible by means of I/O cell selection from the target technol-
ogy.

44.3 Waveforms

The following figures show read and write accesses to the FIFO with 0 and 4 wait states, respectively.
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44.4 Transmission

The transmit channel is defined by the following parameters:

• base address

• buffer size

• write pointer

• read pointer

The transmit channel can be enabled or disabled.

44.4.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

The size of the buffer is defined by the FifoTxSIZE.SIZE field, specifying the number of 64 byte
blocks that fit in the buffer.

E.g. FifoTxSIZE.SIZE = 1 means 64 bytes fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one word in the buffer
empty. This is to simplify wrap-around condition checking.

E.g. FifoTxSIZE.SIZE = 1 means that 60 bytes fit in the buffer at any given time.

44.4.2 Write and read pointers

The write pointer (FifoTxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoTxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of bytes available in the buffer
for transmission. The difference is calculated using the buffer size, specified by the FifoTxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE=2 and
FifoTxRD.READ=0.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =0 and
FifoTxRD.READ =62.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =1 and
FifoTxRD.READ =63.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =5 and
FifoTxRD.READ =3.

When a byte has been successfully written to the FIFO, the read pointer (FifoTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer FifoTxWR.WRITE and read pointer FifoTxRD.READ are equal, there are no bytes
available for transmission.

44.4.3 Location

The location of the circular buffer is defined by a base address (FifoTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.
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44.4.4 Transmission procedure

When the channel is enabled (FifoTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a transmission will be started. Note that the channel should not be enabled if a
potential difference between the write and read pointers could be created, to avoid the data transmis-
sion to start prematurely.

A data transmission will begin with a fetch of the data from the circular buffer to a local buffer in the
FIFO controller. After a successful fetch, a write access will be performed to the FIFO.

The read pointer (FifoTxRD.READ) is automatically incremented after a successful transmission,
taking wrap around effects of the circular buffer into account. If there is at least one byte available in
the circular buffer, a new fetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the TxError, TxEmpty and TxIrq which are issued on the unsuccessful trans-
mission of a byte due to an error condition on the AMBA bus, when all bytes have been transmitted
successfully and when a predefined number of bytes have been transmitted successfully.

Note that 32-bit wide read accesses past the address of the last byte or halfword available for trans-
mission can be performed as part of a burst operation, although no read accesses are made beyond the
circular buffer size.

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

44.4.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoTxADDR.ADDR) field.

While the channel is disabled, the read pointer (FifoTxRD.READ) can be changed to an arbitrary
value pointing to the first byte to be transmitted, and the write pointer (FifoTxWR.WRITE) can be
changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

44.4.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being fetched will result in a
TxError interrupt.

If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will re-try to read the
data being fetched from memory till successful.

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
data caused the AHB error. The interface will not start any new write accesses to the FIFO. Any ongo-
ing FIFO access will be completed and the FifoTxSTAT.TxOnGoing bit will be cleared. When the
channel is re-enabled, the fetch and transmission of data will resume at the position where it was dis-
abled, without losing any data.

44.4.7 Enable and disable

When an enabled transmit channel is disabled (FifoTxCTRL.ENABLE=0b), the interface will not
start any new read accesses to the circular buffer by means of DMA over the AMBA AHB bus. No
new write accesses to the FIFO will be started. Any ongoing FIFO access will be completed. If the
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data is written successfully, the read pointer (FifoTxRD.READ) is automatically incremented and the
FifoTxSTAT.TxOnGoing bit will be cleared. Any associated interrupts will be generated.

Any other fetched or pre-fetched data from the circular buffer which is temporarily stored in the local
buffer will be discarded, and will be fetched again when the transmit channel is re-enabled.

The progress of the any ongoing access can be observed via the FifoTxSTAT.TxOnGoing bit. The
FifoTxSTAT.TxOnGoing must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the TxEmpty interrupt described
hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data transmission is started while the channel is not enabled.

44.4.8 Interrupts

During transmission several interrupts can be generated:

• TxEmpty: Successful transmission of all data in buffer

• TxIrq: Successful transmission of a predefined number of data

• TxError: AHB access error during transmission

The TxEmpty and TxIrq interrupts are only generated as the result of a successful data transmission,
after the FifoTxRD.READ pointer has been incremented.

44.5 Reception

The receive channel is defined by the following parameters:

• base address

• buffer size

• write pointer

• read pointer

The receive channel can be enabled or disabled.

44.5.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

The size of the buffer is defined by the FifoRxSIZE.SIZE field, specifying the number 64 byte blocks
that fit in the buffer.

E.g. FifoRxSIZE.SIZE=1 means 64 bytes fit in the buffer.

Note however that it is not possible for the hardware to fill the buffer completely, leaving at least two
words in the buffer empty. This is to simplify wrap-around condition checking.

E.g. FifoRxSIZE.SIZE=1 means that 56 bytes fit in the buffer at any given time.

44.5.2 Write and read pointers

The write pointer (FifoRxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoRxRD.READ) indicates the position+1 of the last byte read from the buffer.
The read pointer operates on number of bytes, not on absolute or relative addresses.
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The difference between the write and the read pointers is the number of bytes available in the buffer
for reception. The difference is calculated using the buffer size, specified by the FifoRxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =2 and
FifoRxRD.READ=0.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =0 and
FifoRxRD.READ=62.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =1 and
FifoRxRD.READ=63.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =5 and
FifoRxRD.READ=3.

When a byte has been successfully received and stored, the write pointer (FifoRxWR.WRITE) is
automatically incremented, taking wrap around effects of the circular buffer into account.

44.5.3 Location

The location of the circular buffer is defined by a base address (FifoRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

44.5.4 Reception procedure

When the channel is enabled (FifoRxCTRL.ENABLE=1), and there is space available for data in the
circular buffer (as defined by the write and read pointer), a read access will be started towards the
FIFO, and then an AMBA AHB store access will be started. The received data will be temporarily
stored in a local store-buffer in the FIFO controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the data reception to start prematurely

After a datum has been successfully stored the FIFO controller is ready to receive new data. The write
pointer (FifoRxWR.WRITE) is automatically incremented, taking wrap around effects of the circular
buffer into account.

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the RxError, RxParity, RxFull and RxIrq which are issued on the unsuccessful
reception of data due to an AMBA AHB error or parity error, when the buffer has been successfully
filled and when a predefined number of data have been received successfully.

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

44.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoRxADDR.ADDR) field.

While the channel is disabled, the write pointer (FifoRxWR.WRITE) can be changed to an arbitrary
value pointing to the first data to be received, and the read pointer (FifoRxRD.READ) can be changed
to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.



AEROFLEX GAISLER 438 GRIP

44.5.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being stored will result in an
RxError interrupt.

If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will retry to store the
received data till successful

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
address caused the AHB error. The interface will not start any new read accesses to the FIFO. Any
ongoing FIFO access will be completed and the data will be stored in the local receive buffer. The
FifoRxSTAT.ONGOING bit will be cleared. When the receive channel is re-enabled, the reception
and storage of data will resume at the position where it was disabled, without losing any data.

44.5.7 Enable and disable

When an enabled receive channel is disabled (FifoRxCTRL.ENABLE=0b), any ongoing data storage
on the AHB bus will not be aborted, and no new storage will be started. If the data is stored success-
fully, the write pointer (FifoRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated. The interface will not start any new read accesses to the FIFO. Any ongoing FIFO
access will be completed.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data reception is performed while the channel is not enabled.

The progress of the any ongoing access can be observed via the FifoRxSTAT.ONGOING bit. Note
that the there might be data left in the local store-buffer in the FIFO controller. This can be observed
via the FifoRxSTAT.RxByteCntr field. The data will not be lost if the channel is not reconfigured
before re-enabled.

To empty this data from the local store-buffer to the external memory, the channel needs to be ren-
abled. By setting the FifoRxIRQ.IRQ field to match the value of the FifoRxWR.WRITE field plus the
value of the FifoRxSTAT.RxByteCntr field, an emptying to the external memory is forced of any data
temporarily stored in the local store-buffer. Note however that additional data could be received in the
local store-buffer when the channel is re-enabled.

The FifoRxSTAT.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers).

44.5.8 Interrupts

During reception several interrupts can be generated:

• RxFull: Successful reception of all data possible to store in buffer

• RxIrq: Successful reception of a predefined number of data

• RxError: AHB access error during reception

• RxParity: Parity error during reception

The RxFull and RxIrq interrupts are only generated as the result of a successful data reception, after
the FifoRxWR.WRITE pointer has been incremented.

44.6 Operation

44.6.1 Global reset and enable

When the FifoCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing data transfers will be aborted.



AEROFLEX GAISLER 439 GRIP

44.6.2 Interrupt

Seven interrupts are implemented by the FIFO interface:

Index: Name:Description:

0 TxIrq Successful transmission of block of data

1 TxEmptyCircular transmission buffer empty

2 TxErrorAMBA AHB access error during transmission

3 RxIrq Successful reception of block of data

4 RxFullCircular reception buffer full

5 RxErrorAMBA AHB access error during reception

6 RxParityParity error during reception

The interrupts are configured by means of thepirq VHDL generic. The setting of thesingleirqVHDL
generic results in a single interrupt output, instead of multiple, configured by the means of thepirq
VHDL generic, and enables the read and write of the interrupt registers. When multiple interrupts are
implemented, each interrupt is generated as a one system clock period long active high output pulse.
When a single interrupt is implemented, it is generated as an active high level output.

44.6.3 Reset

After a reset the values of the output signals are as follows:

Signal: Value after reset:

FIFOO.WEnde-asserted

FIFOO.REnde-asserted

44.6.4 Asynchronous interfaces

The following input signals are synchronized to Clk:

• FIFOI.EFn

• FIFOI.FFn

• FIFOI.HFn
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44.7 Registers

The core is programmed through registers mapped into APB address space.

44.7.1 Configuration Register [FifoCONF] R/W

Field: Description:
6: ABORT Abort transfer on AHB ERROR
5-4: DW Data width:

00b = none
01b = 8 bitFIFOO.Dout[7:0],

FIFOI.Din[7:0]
10b = 16 bitFIFOO.Dout[15:0]

FIFOI.Din[15:0]

Table 529.GRFIFO registers

APB address offset Register

0x000 Configuration Register

0x004 Status Register

0x008 Control Register

0x020 Transmit Channel Control Register

0x024 Transmit Channel Status Register

0x028 Transmit Channel Address Register

0x02C Transmit Channel Size Register

0x030 Transmit Channel Write Register

0x034 Transmit Channel Read Register

0x038 Transmit Channel Interrupt Register

0x040 Receive Channel Control Register

0x044 Receive Channel Status Register

0x048 Receive Channel Address Register

0x04C Receive Channel Size Register

0x050 Receive Channel Write Register

0x054 Receive Channel Read Register

0x058 Receive Channel Interrupt Register

0x060 Data Input Register

0x064 Data Output Register

0x068 Data Direction Register

0x100 Pending Interrupt Masked Status Register

0x104 Pending Interrupt Masked Register

0x108 Pending Interrupt Status Register

0x10C Pending Interrupt Register

0x110 Interrupt Mask Register

0x114 Pending Interrupt Clear Register

Table 530.Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Abo
rt

DW Par-
ity

WS
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11b = spare/none
3: PARITY Parity type:

0b = even
1b = odd

2-0: WS Number of wait states, 0 to 7

All bits are cleared to 0 at reset.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses on the affected channel will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the affected
channel is re-enabled setting the FifoTxCTRL.ENABLE or FifoRxCTRL.ENABLE bit, respectively.

Note that a wait states corresponds to an additional clock cycle added to the period when the read or
write strobe is asserted. The default asserted width is one clock period for the read or write strobe
when WS=0. Note that an idle gap of one clock cycle is always inserted between read and write
accesses, with neither the read nor the write strobe being asserted.

Note that an additional gap of one clock cycle with the read or write strobe de-asserted is inserted
between two accesses when WS is equal to or larger than 100b.

44.7.2 Status Register [FifoSTAT] R

31-28: TxChannels Number of TxChannels -1, 4-bit
27-24: RxChannels Number of RxChannels -1, 4-bit
5: SingleIrq Single interrupt output and interrupt registers when set to 1

44.7.3 Control Register [FifoCTRL] R/W

1: RESET Reset complete FIFO interface, all registers

All bits are cleared to 0 at reset.

Note that RESET is read back as 0b.

Table 531.Status register

31 28 27 24 23 16

TxChannels RxChannels -

15 6 5 4 0

- SingleIrq -

Table 532.Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese
t
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44.7.4 Transmit Channel Control Register [FifoTxCTRL] R/W

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while fetching transmit data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing data writes to the FIFO are not aborted.

44.7.5 Transmit Channel Status Register [FifoTxSTAT] R

6: TxOnGoingAccess ongoing
4: TxIrq Successful transmission of block of data
3: TxEmpty Transmission buffer has been emptied
2: TxError AMB AHB access error during transmission
1: FF FIFO Full Flag
0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.

The following sticky status bits are cleared when the register has been read:

• TxIrq, TxEmpty and TxError.

44.7.6 Transmit Channel Address Register [FifoTxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

Table 533.Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ena
ble

Table 534.Transmit Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxO
nGo
ing

TxIr
q

TxE
mpt
y

TxE
rror

FF HF

Table 535.Transmit Channel Address Register

31 10 9 0

ADDR
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44.7.7 Transmit Channel Size Register [FifoTxSIZE] R/W

16-6: SIZE Size of circular buffer, in number of 64 bytes block

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE val-
ues is undefined.

Note that only SIZE*64-4 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

44.7.8 Transmit Channel Write Register [FifoTxWR] R/W

15-0: WRITE Pointer to last written byte + 1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last byte
to transmit.

Note that it is not possible to fill the buffer. There is always one word position in buffer unused. Soft-
ware is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

44.7.9 Transmit Channel Read Register [FifoTxRD] R/W

15-0: READ Pointer to last read byte + 1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte transmitted.

Note that the READ field can be used to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until completed.

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Table 536.Transmit Channel Size Register

31 17 16 6 5 0

SIZE

Table 537.Transmit Channel Write Register

31 16 15 0

WRITE

Table 538.Transmit Channel Read Register

31 16 15 0

READ
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The field is implemented as relative to the buffer base address (scaled with the SIZE field).

44.7.10 Transmit Channel Interrupt Register [FifoTxIRQ] R/W

15-0: IRQ Pointer+1 to a byte address from which the read of transmitted data shall result in an interrupt

All bits are cleared to 0 at reset.

Note that this indicates that a programmed amount of data has been sent. Note that the LSB may be
ignored for 16-bit wide FIFO devices.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

44.7.11 Receive Channel Control Register [FifoRxCTRL] R/W

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while storing receive data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing data reads from the FIFO are not aborted.

44.7.12 Receive Channel Status Register [FifoRxSTAT] R

10-8: RxByteCntrNumber of bytes in local buffer
6: RxOnGoingAccess ongoing
5: RxParity Parity error during reception
4: RxIrq Successful reception of block of data
3: RxFull Reception buffer has been filled
2: RxError AMB AHB access error during reception
1: EF FIFO Empty Flag
0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.

The following sticky status bits are cleared when the register has been read:

• RxParity, RxIrq, RxFull and RxError.

The circular buffer is considered as full when there are two words or less left in the buffer.

Table 539.Transmit Channel Interrupt Register

31 16 15 0

IRQ

Table 540.Receive Channel Control Register

31 2 1 0

Ena
ble

Table 541.Receive Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxByteCntr RxO
nGo
ing

RxP
arity

RxIr
q

RxF
ull

RxE
rror

EF HF
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44.7.13 Receive Channel Address Register [FifoRxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

44.7.14 Receive Channel Size Register [FifoRxSIZE] R/W

16-6: SIZE Size of circular buffer, in number of 64 byte blocks

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE val-
ues is undefined.

Note that only SIZE*64-8 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

44.7.15 Receive Channel Write Register [FifoRxWR] R/W

15-0: WRITE Pointer to last written byte +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte received.

Note that the WRITE field can be used to read out the progress of a transfer.

Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Table 542.Receive Channel Address Register

31 10 9 0

ADDR

Table 543.Receive Channel Size Register

31 17 16 6 5 0

SIZE

Table 544.Receive Channel Write Register

31 16 15 0

WRITE
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44.7.16 Receive Channel Read Register [FifoRxRD] R/W

15-0: READ Pointer to last read byte +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last byte that has been read out.

Note that it is not possible to fill the buffer. There is always one word position unused in the buffer.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices

44.7.17 Receive Channel Interrupt Register [FifoRxIRQ] R/W

15-0: IRQ Pointer+1 to a byte address to which the write of received data shall result in an interrupt

All bits are cleared to 0 at reset.

Note that this indicates that a programmed amount of data has been received.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Note that by setting the IRQ field to match the value of the Receive Channel Write Register.WRITE
field plus the value of the Receive Channel Status Register.RxByteCntr field, an emptying to the
external memory is forced of any data temporarily stored in the local buffer.

44.7.18 Data Input Register [FifoDIN] R

15-0: DIN Input data FIFOI.Din[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOI.Din[15:0] not used by the FIFO can be used as general purpose input
output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

Table 545.Receive Channel Read Register

31 16 15 0

READ

Table 546.Receive Channel Interrupt Register

31 16 15 0

IRQ

Table 547.Data Input Register

31 16 15 0

DIN
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44.7.19 Data Output Register [FifoDOUT] R/W

15-0: DOUT Output data FIFOO.Dout[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

44.7.20 Data Register [FifoDDIR] R/W

15-0: DDIR Direction: FIFOO.Dout[15:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

44.7.21 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

• Set up the software interrupt-handler to accept an interrupt from the module.

• Read the Pending Interrupt Register to clear any spurious interrupts.

• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

• Handle the interrupt, taking into account all causes of the interrupt.

• Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is
zero. To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the
Interrupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Table 548.Data Output Register

31 16 15 0

DOUT

Table 549.Data Direction Register

31 16 15 0

DDIR
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Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

• Pending Interrupt Masked Status Register[FifoPIMSR]R

• Pending Interrupt Masked Register[FifoPIMR]R

• Pending Interrupt Status Register[FifoPISR]R

• Pending Interrupt Register[FifoPIR]R/W

• Interrupt Mask Register[FifoIMR]R/W

• Pending Interrupt Clear Register[FifoPICR]W

6: RxParity Parity error during reception
5: RxError AMBA AHB access error during reception
4: RxFull Circular reception buffer full
3: RxIrq Successful reception of block of data
2: TxError AMBA AHB access error during transmission
1: TxEmpty Circular transmission buffer empty
0: TxIrq Successful transmission of block of data

All bits in all interrupt registers are reset to 0b after reset.

44.8 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x035. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 550.Interrupt registers

31 7 6 5 4 3 2 1 0

- RxParity RxError RxFull RxIrq TxError TxEmpty TxIrq
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44.9 Configuration options

Table 551 shows the configuration options of the core (VHDL generics).

44.10 Signal descriptions

Table 552 shows the interface signals of the core (VHDL ports).

Table 551.Configuration options

Generic name Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRFIFO. 0 - NAHBIRQ-1 0

dwidth Data width 16 16

ptrwidth Width of data pointers 16 - 16 16

singleirq Single interrupt output. A single interrupt is assigned to
the AMBA APB interrupt bus instead of multiple sepa-
rate ones. The single interrupt output is controlled by the
interrupt registers which are also enabled with this
VHDL generic.

0, 1 0

oepol Output enable polarity 0, 1 1

Table 552.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

FIFOI DIN[31:0] Input Data input -

PIN[3:0] Parity input -

EFN Empty flag Low

FFN Full flag Low

HFN Half flag Low

FIFOO DOUT[31:0] Output Data output -

DEN[31:0] Data output enable -

POUT[3:0] Parity output -

PEN[3:0] Parity output enable -

WEN Write enable Low

REN Read enable Low

* see GRLIB IP Library User’s Manual
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44.11 Library dependencies

Table 553 shows the libraries used when instantiating the core (VHDL libraries).

44.12 Instantiation

This example shows how the core can be instantiated.

TBD

Table 553.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GRLIB AMBA Signals, component DMA2AHB definitions

GAISLER MISC Signals, component Component declarations, signals.
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45 GRADCDAC - ADC / DAC Interface

45.1 Overview

The block diagram shows a possible partitioning of the combined analogue-to-digital converter
(ADC) and digital-to-analogue converter (DAC) interface.

The combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC) inter-
face is assumed to operate in an AMBA bus system where an APB bus is present. The AMBA APB
bus is used for data access, control and status handling.

The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices. The
two interfaces are merged both at the pin/pad level as well as at the interface towards the AMBA bus.
The interface supports simultaneously one ADC device and one DAC device in parallel.

Address and data signals unused by the ADC and the DAC can be used for general purpose input out-
put, providing 0, 8, 16 or 24 channels.

The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready
signals. The timing is programmable. It also provides an 8-bit address output. The ADC conversion
can be initiated either via the AMBA interface or by internal or external triggers. An interrupt is gen-
erated when a conversion is completed.

The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is
programmable. It also provides an 8-bit address output. The DAC conversion is initiated via the
AMBA interface. An interrupt is generated when a conversion is completed.

45.1.1 Function

The core implements the following functions:

• ADC interface conversion:

• ready feed-back, or

• timed open-loop

• DAC interface conversion:

• timed open-loop

• General purpose input output:

• unused data bus, and

Figure 149. Block diagram and usage example
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• unused address bus

• Status and monitoring:

• on-going conversion

• completed conversion

• timed-out conversion

Note that it is not possible to perform ADC and DAC conversions simultaneously. On only one con-
version can be performed at a time.

45.1.2 Interfaces

The core provides the following external and internal interfaces:

• Combined ADC/DAC interface

• programmable timing

• programmable signal polarity

• programmable conversion modes

• AMBA APB slave interface

The ADC interface is intended for amongst others the following devices:

Name:Width:Type:

AD574 12-bit R/C*, CE, CS*, RDY*, tri-state

AD674 12-bit R/C*, CE, CS*, RDY*, tri-state

AD774 12-bit R/C*, CE, CS*, RDY*, tri-state

AD670  8-bit R/W*, CE*, CS*, RDY, tri-state

AD571 10-bit Blank/Convert*, RDY*, tri-state

AD1671 12-bit Encode, RDY*, non-tri-state

LTC141414-bitConvert*, RDY, non-tri-state

The DAC interface is intended for amongst others the following devices:

Name:Width:Type:

AD56110-bitParallel-Data-in-Analogue-out

AD56512-bitParallel-Data-in-Analogue-out

AD66712-bitParallel-Data-in-Analogue-out, CS*

AD76712-bitParallel-Data-in-Analogue-out, CS*

DAC08 8-bit Parallel-Data-in-Analogue-out

45.2 Operation

45.2.1 Interfaces

The internal interface on the on-chip bus towards the core is a common AMBA APB slave for data
access, configuration and status monitoring, used by both the ADC interface and the DAC interface.
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The ADC address output and the DAC address output signals are shared on the external interface.
The address signals are possible to use as general purpose input output channels. This is only realized
when the address signals are not used by either ADC or DAC.

The ADC data input and the DAC data output signals are shared on the external interface. The data
input and output signals are possible to use as general purpose input output channels. This is only
realized when the data signals are not used by either ADC or DAC.

Each general purpose input output channel shall be individually programmed as input or output. This
applies to both the address bus and the data bus. The default reset configuration for each general pur-
pose input output channel is as input. The default reset value each general purpose input output chan-
nel is logical zero.

Note that protection toward spurious pulse commands during power up shall be mitigated as far as
possible by means of I/O cell selection from the target technology.

45.2.2 Analogue to digital conversion

The ADC interface supports 8 and 16 bit wide input data.

The ADC interface provides an 8-bit address output, shared with the DAC interface. Note that the
address timing is independent of the acquisition timing.

The ADC interface shall provide the following control signals:

• Chip Select

• Read/Convert

• Ready

The timing of the control signals is made up of two phases:

• Start Conversion

• Read Result

The Start Conversion phase is initiated by one of the following sources, provided that no other conver-
sion is ongoing:

• Event on one of three separate trigger inputs

• Write access to the AMBA APB slave interface

Note that the trigger inputs can be connected to internal or external sources to the ASIC incorporating
the core. Note that any of the trigger inputs can be connected to a timer to facilitate cyclic acquisition.
The selection of the trigger source is programmable. The trigger inputs is programmable in terms of:
Rising edge or Falling edge. Triggering events are ignored if ADC or DAC conversion is in progress.

The transition between the two phases is controlled by the Ready signal. The Ready input signal is
programmable in terms of: Rising edge or Falling edge. The Ready input signaling is protected by
means of a programmable time-out period, to assure that every conversion terminates. It is also possi-
ble to perform an ADC conversion without the use of the Ready signal, by means of a programmable
conversion time duration. This can be seen as an open-loop conversion.

The Chip Select output signal is programmable in terms of:

• Polarity

• Number of assertions during a conversion, either

• Pulsed once during Start Conversion phase only,

• Pulsed once during Start Conversion phase and once during Read Result phase, or

• Asserted at the beginning of the Start Conversion phase and de-asserted at the end of the Read
Result phase
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The duration of the asserted period is programmable, in terms of system clock periods, for the Chip
Select signal when pulsed in either of two phases.

The Read/Convert signal is de-asserted during the Start Conversion phase, and asserted during the
Read Result phase. The Read/Convert output signal is programmable in terms of: Polarity. The setup
timing from Read/Convert signal being asserted till the Chip Select signal is asserted is programma-
ble, in terms of system clock periods. Note that the programming of Chip Select and Read/Convert
timing is implemented as a common parameter.

At the end of the Read Result phase, an interrupt is generated, indicating that data is ready for readout
via the AMBA APB slave interface. The status of an on-going conversion is possible to read out via
the AMBA APB slave interface. The result of a conversion is read out via the AMBA APB slave inter-
face. Note that this is independent of what trigger started the conversion.

An ADC conversion is non-interruptible. It is possible to perform at least 1000 conversions per sec-
ond.

45.2.3 Digital to analogue conversion

The DAC interface supports 8 and 16 bit wide output data. The data output signal is driven during the
conversion and is placed in high impedance state after the conversion.

The DAC interface provides an 8-bit address output, shared with the ADC interface. Note that the
address timing is independent of the acquisition timing.

CS

RC

Trig

Rdy

Data

Addr

Clk

WS WS

Start conversion

WS WS

Read result

Sample dataSettings: RCPOL=0
CSPOL=0
RDYPOL=1
TRIGPOL=1
RDYMODE=1
CSMODE=00
ADCWS=0

Figure 150. Analogue to digital conversion waveform, 0 wait states (WS)
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The DAC interface provides the following control signal: Write Strobe. Note that the Write Strobe
signal can also be used as a chip select signal. The Write Strobe output signal is programmable in
terms of: Polarity. The Write Strobe signal is asserted during the conversion. The duration of the
asserted period of the Write Strobe is programmable in terms of system clock periods.

At the end the conversion, an interrupt is generated. The status of an on-going conversion is possible
to read out via the AMBA APB slave interface. A DAC conversion is non-interruptible.

45.3 Operation

45.3.1 Interrupt

Two interrupts are implemented by the ADC/DAC interface:

Index:Name:Description:

0 ADC ADC conversion ready

1 DAC DAC conversion ready

The interrupts are configured by means of thepirq VHDL generic.

45.3.2 Reset

After a reset the values of the output signals are as follows:

Signal:Value after reset:

ADO.Aout[7:0]de-asserted

ADO.Aen[7:0]de-asserted

ADO.Dout[15:0]de-asserted

ADO.Den[15:0]de-asserted

ADO.WRde-asserted (logical one)

ADO.CSde-asserted (logical one)

ADO.RCde-asserted (logical one)

WR

Data

Addr

Clk

WS WS

Conversion

Settings: WRPOL=0
DACWS=0

Figure 151. Digital to analogue conversion waveform, 0 wait states (WS)

WS



AEROFLEX GAISLER 456 GRIP

45.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:

• ADI.Ain[7:0]

• ADI.Din[15:0]

• ADI.RDY

• ADI.TRIG[2:0]

45.4 Registers

The core is programmed through registers mapped into APB address space.

45.4.1 Configuration Register [ADCONF] R/W

23-19: DACWS Number of DAC wait states, 0 to 31 [5 bits]
18: WRPOL Polarity of DAC write strobe:

0b = active low
1b = active high

17-16: DACDW DAC data width
00b = none
01b = 8 bit ADO.Dout[7:0]
10b = 16 bit ADO.Dout[15:0]
11b = none/spare

15-11: ADCWS Number of ADC wait states, 0 to 31 [5 bits]
10: RCPOL Polarity of ADC read convert:

0b = active low read
1b = active high read

9-8: CSMODE Mode of ADC chip select:
00b = asserted during conversion and read phases

Table 554.GRADCDAC registers

APB address offset Register

16#000# Configuration Register

16#004# Status Register

16#010# ADC Data Input Register

16#014# DAC Data Output Register

16#020# Address Input Register

16#024# Address Output Register

16#028# Address Direction Register

16#030# Data Input Register

16#034# Data Output Register

16#038# Data Direction Register

Table 555.Configuration register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACWS WR
POL

DACDW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCWS RCP
OL

CSMODE CSP
OL

RD
YM
OD
E

RD
YP
OL

TRI
GP
OL

TRIG-
MODE

ADCDW
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01b = asserted during conversion phase
10b = asserted during read phase
11b = asserted continuously during both phases

7: CSPOL Polarity of ADC chip select:0b = active low
1b = active high

6: RDYMODE:Mode of ADC ready:
0b = unused, i.e. open-loop
1b = used, with time-out

5: RDYPOL Polarity of ADC ready:
0b = falling edge
1b = rising edge

4: TRIGPOL Polarity of ADC triggers:
0b = falling edge
1b = rising edge

3-2: TRIGMODEADC trigger source:
00b = none
01b = ADI.TRIG[0]
10b = ADI.TRIG[1]
11b = ADI.TRIG[2]

1-0: ADCDW ADC data width:
00b = none
01b = 8 bit ADI.Din[7:0]
10b = 16 bit ADI.Din[15:0]
11b = none/spare

The ADCDW field defines what part of ADI.Din[15:0] is read by the ADC.

The DACDW field defines what part of ADO.Dout[15:0] is written by the DAC.

Parts of the data input/output signals used neither by ADC nor by DAC are available for the general
purpose input output functionality.

Note that an ADC conversion can be initiated by means of a write access via the AMBA APB slave
interface, thus not requiring an explicit ADC trigger source setting.

The ADCONF.ADCWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the ADC control signals:

• ADO.RC stable before ADO.CS period

• ADO.CS asserted period, when pulsed

• ADO.TRIG[2:0] event until ADO.CS asserted period

• Time-out period for ADO.RDY: 2048 * (1+ADCONF.ADCWS)

• Open-loop conversion timing: 512 * (1+ADCONF.ADCWS)

The ADCONF.DACWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the DAC control signals:

• ADO.Dout[15:0] stable before ADO.WR period

• ADO.WR asserted period

• ADO.Dout[15:0] stable after ADO.WR period
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45.4.2 Status Register [ADSTAT] R

6: DACNO DAC conversion request rejected(due to ongoing DAC or ADC conversion)
5: DACRDY DAC conversion completed
4: DACON DAC conversion ongoing
3: ADCTO ADC conversion timeout
2: ADCNO ADC conversion request rejected(due to ongoing ADC or DAC conversion)
1: ADCRDY ADC conversion completed
0: ADCON ADC conversion ongoing

When the register is read, the following sticky bit fields are cleared:

• DACNO, DACRDY,

• ADCTO, ADCNO, and ADCRDY.

Note that the status bits can be used for monitoring the progress of a conversion or to ascertain that the
interface is free for usage.

45.4.3 ADC Data Input Register [ADIN] R/W

15-0: ADCIN ADC input data ADI.Din[15:0]

A write access to the register initiates an analogue to digital conversion, provided that no other ADC
or DAC conversion is ongoing (otherwise the request is rejected).

A read access that occurs before an ADC conversion has been completed returns the result from a pre-
vious conversion.

Note that any data can be written and that it cannot be read back, since not relevant to the initiation of
the conversion.

Note that only the part of ADI.Din[15:0] that is specified by means of bit ADCONF.ADCDW is used
by the ADC. The rest of the bits are read as zeros.

Note that only bits dwidth-1 to 0 are implemented.

45.4.4 DAC Data Output Register [ADOUT] R/W

15-0: DACOUT DAC output data ADO.Dout[15:0]

Table 556.Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DA
CN
O

DA
CR
DY

DA
CO
N

AD
CTO

AD
CN
O

AD
CR
DY

AD
CO
N

Table 557.ADC Data Input Register

31 16 15 0

ADCIN

Table 558.DAC Data Output Register

31 16 15 0

DACOUT



AEROFLEX GAISLER 459 GRIP

A write access to the register initiates a digital to analogue conversion, provided that no other DAC or
ADC conversion is ongoing (otherwise the request is rejected).

Note that only the part of ADO.Dout[15:0] that is specified by means of ADCONF.DACDW is driven
by the DAC. The rest of the bits are not driven by the DAC during a conversion.

Note that only the part of ADO.Dout[15:0] which is specified by means of ADCONF.DACDW can be
read back, whilst the rest of the bits are read as zeros.

Note that only bits dwidth-1 to 0 are implemented.

45.4.5 Address Input Register [ADAIN] R

7-0: AIN Input address ADI.Ain[7:0]

All bits are cleared to 0 at reset.

Note that only bits awidth-1 to 0 are implemented.

45.4.6 Address Output Register [ADAOUT] R/W

7-0: AOUT Output address ADO.Aout[7:0]

All bits are cleared to 0 at reset.

Note that only bits awidth-1 to 0 are implemented.

45.4.7 Address Direction Register [ADADIR] R/W

7-0: ADIR Direction: ADO.Aout[7:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.

Note that only bits awidth-1 to 0 are implemented.

45.4.8 Data Input Register [ADDIN] R

15-0: DIN Input data ADI.Din[15:0]

Table 559.Address Input Register

31 8 7 0

AIN

Table 560.Address Output Register

31 8 7 0

AOUT

Table 561.Address Direction Register

31 8 7 0

ADIR

Table 562.Data Input Register

31 16 15 0

DIN
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All bits are cleared to 0 at reset.

Note that only the part of ADI.Din[15:0] not used by the ADC can be used as general purpose input
output, see ADCONF.ADCDW.

Note that only bits dwidth-1 to 0 are implemented.

45.4.9 Data Output Register [ADDOUT] R/W

15-0: DOUT Output data ADO.Dout[15:0]

All bits are cleared to 0 at reset.

Note that only the part of ADO.Dout[15:0] neither used by the DAC nor the ADC can be used as gen-
eral purpose input output, see ADCONF.DACDW and ADCONF. ADCDW.

Note that only bits dwidth-1 to 0 are implemented.

45.4.10 Data Register [ADDDIR] R/W

15-0: DDIR Direction: ADO.Dout[15:0]
0b = input = high impedance,
1b = output = driven

All bits are cleared to 0 at reset.

Note that only the part of ADO.Dout[15:0] not used by the DAC can be used as general purpose input
output, see ADCONF.DACDW.

Note that only bits dwidth-1 to 0 are implemented.

45.5 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x036. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 563.Data Output Register

31 16 15 0

DOUT

Table 564.Data Direction Register

31 16 15 0

DDIR
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45.6 Configuration options

Table 565 shows the configuration options of the core (VHDL generics).

45.7 Signal descriptions

Table 566 shows the interface signals of the core (VHDL ports).

Table 565.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRADCDAC. 0 - NAHBIRQ-1 1

nchannel Number of input/outputs 1 - 32 24

npulse Number of pulses 1 - 32 8

invertpulse Invert pulse output when set 1 - 32 0

cntrwidth Pulse counter width 4 to 32 20

oepol Output enable polarity 0, 1 1

Table 566.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ADI ADI.Ain[7:0] Input Common Address input -

ADI.Din[15:0] ADC Data input

ADI.RDY ADC Ready input

ADI.TRIG[2:0] ADC Trigger inputs

ADO ADO.Aout[7:0] Output Common Address output -

ADO.Aen[7:0] Common Address output enable

ADO.Dout[15:0] DAC Data output -

ADO.Den[15:0] DAC Data output enable

ADO.WRDAC Write Strobe

ADO.CSADC Chip Select

ADO.RCADC Read/Convert

* see GRLIB IP Library User’s Manual

Note that the VHDL generic oepol is used for configuring the logical level of ADO.Den and ADO.Aen while asserted.
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45.8 Signal definitions and reset values

The signals and their reset values are described in table 567.

45.9 Timing

The timing waveforms and timing parameters are shown in figure 152 and are defined in table 568.
Note that the input and output polarities of control and response signals are programmable. The fig-
ures shows operation where there are zero wait states. Note also that the address timing has no direct
correlation with the ADC and DAC accesses, since controlled by a separate set of registers.

Table 567.Signal definitions and reset values

Signal name Type Function Active Reset value

a[] Input/Output Address High Tri-state

d[] Input/Output Data High Tri-state

wr Output DAC Write Strobe - Logical 0

cs Output ADC Chip Select - Logical 0

rc Output ADC Read/Convert - Logical 0

rdy Input ADC Ready - -

trig[] Input ADC Trigger - -

Figure 152. Timing waveforms
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45.10 Library dependencies

Table 569 shows the libraries used when instantiating the core (VHDL libraries).

45.11 Instantiation

This example shows how the core can be instantiated.

TBD

Table 568.Timing parameters

Name Parameter Reference edge Min Max Unit

tGRAD0 a/d clock to output delay risingclk edge - TBD ns

tGRAD1 clock to output delay risingclk edge - TBD ns

tGRAD2 clock to a/d non-tri-state delay risingclk edge TBD - ns

tGRAD3 a/d clock to data tri-state delay risingclk edge - TBD ns

tGRAD4 a/d input to clock setup risingclk edge TBD - ns

tGRAD5 a/d input from clock hold risingclk edge TBD - ns

tGRAD6 input to clock setup risingclk edge - TBD ns

tGRAD7 input from clock hold risingclk edge TBD - ns

tGRAD8 input assertion duration - TBD - clk periods

Table 569.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals GRADCDAC component declaration
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46 GRFPU - High-performance IEEE-754 Floating-point unit

46.1 Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in the IEEE
Standard for Binary Floating-Point Arithmetic (IEEE-754) and the SPARC V8 standard (IEEE-1754).
Supported formats are single and double precision floating-point numbers. The advanced design com-
bines two execution units, a fully pipelined unit for execution of the most common FP operations and
a non-blocking unit for execution of divide and square-root operations.

The logical view of the GRFPU is shown in figure 153.

Figure 153. GRFPU Logical View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU’s implementation of the IEEE-754 standard including FP formats, opera-
tions, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For imple-
mentation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-Point
Unit” (available atwww.gaisler.com).

46.2 Functional description

46.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in the IEEE-
754 standard with exception for denormalized numbers. See section 46.2.5 for more information on
denormalized numbers.

46.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move. The
operations implement all FP instructions specified by SPARC V8 instruction set, and most of the
operations defined in IEEE-754. All operations are summarized in table 570, with their opcodes, oper-
ands, results and exception codes. Throughputs and latencies and are shown in table 570.
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Arithmetic operations include addition, subtraction, multiplication, division and square-root. Each
arithmetic operation can be performed in single or double precision formats. Arithmetic operations
have one clock cycle throughput and a latency of four clock cycles, except for divide and square-root
operations, which have a throughput of 16 - 25 clock cycles and latency of 16 - 25 clock cycles (see

Table 570.: GRFPU operations

Operation OpCode[8:0] Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD

001000001

001000010

SP
DP

SP
 DP

SP
DP

UNF, NV,
OF, UF, NX

Addition

FSUBS
FSUBD

001000101

001000110

SP
DP

SP
DP

SP
DP

UNF, NV,
OF, UF, NX

Subtraction

FMULS
FMULD
FSMULD

001001001

001001010

001101001

SP
DP
SP

SP
DP
SP

SP
DP
DP

UNF, NV,
OF, UF, NX

UNF, NV,
OF, UF, NX
UNF, NV,
OF, UF

Multiplication, FSMULD gives
exact double-precision product of
two single-precision operands.

FDIVS
FDIVD

001001101

001001110

SP
DP

SP
DP

SP
DP

UNF, NV,
OF, UF, NX,
DZ

Division

FSQRTS
FSQRTD

000101001

000101010

-
-

SP
DP

SP
DP

UNF, NV,
NX

Square-root

Conversion operations

FITOS
FITOD

011000100

011001000

- INT SP
DP

NX
-

Integer to floating-point conversion

FSTOI
FDTOI

011010001

011010010

- SP
DP

INT  UNF, NV,
NX

Floating-point to integer conversion.
The result is rounded in round-to-
zero mode.

FSTOI_RND
FDTOI_RND

111010001

111010010

- SP
DP

INT  UNF, NV,
NX

Floating-point to integer conversion.
Rounding according to RND input.

FSTOD
FDTOS

011001001

011000110

- SP
DP

DP
SP

UNF, NV
UNF, NV,
OF, UF, NX

Conversion between floating-point
formats

Comparison operations

FCMPS
FCMPD

001010001

001010010

SP
DP

SP
DP

CC NV Floating-point compare. Invalid
exception is generated if either oper-
and is a signaling NaN.

FCMPES
FCMPED

001010101

001010110

SP
DP

SP
DP

CC NV Floating point compare. Invalid
exception is generated if either oper-
and is a NaN (quiet or signaling).

Negate, Absolute value and Move

FABSS 000001001 - SP SP - Absolute value.

FNEGS 000000101 - SP SP - Negate.

FMOVS 000000001 SP SP - Move. Copies operand to result out-
put.

SP - single precision floating-point number

DP - double precision floating-point number

INT - 32 bit integer

CC - condition codes, see table 573

UNF, NV, OF, UF, NX - floating-point exceptions, see section 46.2.3
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table 571). Add, sub and multiply can be started on every clock cycle, providing high throughput for
these common operations. Divide and square-root operations have lower throughput and higher
latency due to complexity of the algorithms, but are executed in parallel with all other FP operations
in a non-blocking iteration unit. Out-of-order execution of operations with different latencies is easily
handled through the GRFPU interface by assigning an id to every operation which appears with the
result on the output once the operation is completed (see section 46.4).

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of four clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.

Comparison functions offering two different types of quiet Not-a-Numbers (QNaNs) handling are
provided. Move, negate and absolute value are also provided. These operations do not ever generate
unfinished exception (unfinished exception is never signaled since compare, negate, absolute value
and move handle denormalized numbers).

46.2.3 Exceptions

GRFPU detects all exceptions defined by the IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) exception
conditions. Generation of special results such as NaNs and infinity is also implemented. Overflow
(OF) and underflow (UF) are detected before rounding. If an operation underflows the result is flushed
to zero (GRFPU does not support denormalized numbers or gradual underflow). A special Unfinished
exception (UNF) is signaled when one of the operands is a denormalized number which is not handled
by the arithmetic and conversion operations.

46.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

46.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A sys-
tem (microprocessor) with the GRFPU could emulate rare cases of operations on denormals in soft-
ware using non-FPU operations. A special Unfinished exception (UNF) is used to signal an arithmetic
or conversion operation on the denormalized numbers. Compare, move, negate and absolute value
operations can handle denormalized numbers and do not raise the unfinished exception. GRFPU does
not generate any denormalized numbers during arithmetic and conversion operations on normalized
numbers. If the infinitely precise result of an operation is a tiny number (smaller than minimum value
representable in normal format) the result is flushed to zero (with underflow and inexact flags set).

Table 571.: Throughput and latency

Operation Throughput Latency

FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 4

FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD,
FDTOS

1 4

FCMPS, FCMPD, FCMPES, FCMPED 1 4

FDIVS 16 16

FDIVD 16.5 (15/18)* 16.5 (15/18)*

FSQRTS 24 24

FSQRTD  24.5 (23/26)* 24.5 (23/26)*

* Throughput and latency are data dependant with two possible cases with equal statistical possibility.
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46.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic and con-
version operations are treated as (correctly signed) zeroes. Calculations are performed on zero oper-
ands instead of the denormalized numbers obeying all rules of the floating-point arithmetics including
rounding of the results and detecting exceptions.

46.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard. Opera-
tions on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate the Invalid exception
and deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for FCMPES and
FCMPED, do not raise any exceptions and propagate QNaNs through the FP operations by delivering
NaN-results according to table 572. QNaN_GEN is 0x7fffe00000000000 for double precision results
and 0x7fff0000 for single precision results.

Table 572.: Operations on NaNs

Operand 2

Operand 1

FP QNaN2 SNaN2

none FP QNaN2 QNaN_GEN

FP FP QNaN2 QNaN_GEN

QNaN1 QNaN1 QNaN2 QNaN_GEN

SNaN1 QNaN_GEN QNaN_GEN QNaN_GEN
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46.3 Signal descriptions

Table 573 shows the interface signals of the core (VHDL ports). All signals are active high except for
RST which is active low.

46.4 Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before a rising edge while all other signals
are latched on rising edge.

Table 573.: Signal descriptions

Signal I/O Description

CLK I Clock

RST I Reset

START I Start an FP operation on the next rising clock edge

NONSTD I Nonstandard mode. Denormalized operands are converted to zero.

FLOP[8:0] I FP operation. For codes see table 570.

OPID[7:0] I FP operation id. Every operation is associated with an id which will appear on the RESID
output when the FP operation is completed. This value shall be incremented by 1 (with
wrap-around) for every started FP operation. If flushing is used, FP operation id is 6 -bits
wide (OPID[5:0] are used for id, OPID[7:6] are tied to “00”). If flushing is not used (input
signal FLUSH is tied to ‘0’), all 8-bits (OPID[7:0]) are used.

OP1[63:0]

OP2[63:0]

I FP operation operands are provided on these one or both of these inputs. All 64 bits are used
for IEEE-754 double precision floating-point numbers, bits [63:32] are used for IEEE-754
single precision floating-point numbers and 32-bit integers.

RNDMODE[1:0] I Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 -
round-to--inf.

FLUSH I Flush FP operation with FLUSHID.

FLUSHID[5:0] I Id of the FP operation to be flushed.

RDY O The result of a FP operation will be available at the end of the next clock cycle.

ALLOW[2:0] O Indicates allowed FP operations during the next clock cycle.
ALLOW[0] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed

ALLOW[1] - FMULS, FMULD, FSMULD allowed

ALLOW[2] - all other FP operations allowed

IDOUT[7:0] O Id of the FP operation whose result appears at the end of the next clock cycle.

RES[63:0] O Result of an FP operation. If the result is double precision floating-point number all 64 bits
are used, otherwise single precision or integer result appears on RESULT[63:32].

EXC[5:0] O Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with
denormalized input(s).

EXC[4] - Invalid exception.

EXC[3] - Overflow.

EXC[2] - Underflow.

EXC[1] - Division by zero.

EXC[0] - Inexact.

CC[1:0] O Result (condition code) of an FP compare operation.
00 - equal
01 - operand1 < operand2
10 - operand1 > operand2
11 - unordered
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The FPU is fully pipelined and a new operation can be started every clock cycle. The only exceptions
are divide and square-root operations which require 16 to 26 clock cycles to complete, and which are
not pipelined. Division and square-root are implemented through iterative series expansion algorithm.
Since the algorithms basic step is multiplication the floating-point multiplier is shared between multi-
plication, division and square-root. Division and square-root do not occupy the multiplier during the
whole operation and allow multiplication to be interleaved and executed parallelly with division or
square-root.

One clock cycle before an operation is completed, the output signal RDY is asserted to indicate that
the result of an FPU operation will appear on the output signals at the end of the next cycle. The id of
the operation to be completed and allowed operations are reported on signals RESID and ALLOW.
During the next clock cycle the result appears on RES, EXCEPT and CC outputs.

Figure 154 shows signal timing during four arithmetic operations on GRFPU.

Figure 154. Signal timing

46.5 Shared FPU

46.5.1 Overview

In multi-processor systems, a single GRFPU can be shared between multiple CPU cores providing an
area efficient solution. In this configuration, the GRFPU is extended with a wrapper. Each CPU core
issues a request to execute a specific FP operation to the wrapper, which performs fair arbitration
using the round-robin algorithm. When a CPU core has started a divide or square-root operation, the
FPU is not able to accept a new division or square-root until the current operation has finished. Also,
during the execution of a division or square-root, other operations cannot be accepted during certain
cycles. This can lead to the, currently, highest prioritized CPU core being prevented from issuing an
operation to the FPU. If this happens, the next CPU core that has a operation that can be started will
be allowed to access the FPU and the current arbitration order will be saved. The arbitration order will
be restored when the operation type that was prevented can be started. This allows the FPU resource
the be fairly shared between several CPU cores while at the same time allowing maximum utilization
of the FPU.

In shared FPU configuration, GRFPU uses an 8 bit wide id for each operation. The three high-order
bits are used to identify the CPU core which issued the FP operation, while the five low-order bits are
used to enumerate FP operations issued by one core. FP operation flushing is not possible in shared
FPU configuration.
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46.5.2 Shared FPU and clock gating

Clock gating of LEON processors is typically implemented so that the clock for a processor core is
gated off when the processor is idle. The clock for a shared FPU is typically gated off when the con-
nected processors are all idle or have floating-point disabled.

This means that, in a shared FPU configuration, a processor may be clock gated off while the con-
nected FPU continues to be clocked. The power-down instruction may overtake a previously issued
floating-point instruction and cause the processor to be gated off before the floating-point operation
has completed. This can in turn lead to the processor not reacting to the completion of the floating-
point operation and to a subsequent processor freeze after the processor wakes up and continues to
wait for the completion of the floating-point operation.

In order to avoid this, software must make sure that all floating-point operations have completed
before the processor enters power-down. This is generally not a problem in real-world applications as
the power-down instruction is typically used in a idle loop and floating-point results have been stored
to memory before entering the idle loop. To make sure that there are no floating-point operations
pending, software should perform a store of the %fsr register before the power-down instruction.
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47 GRFPC - GRFPU Control Unit

The GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU).
GRFPC performs scheduling, decoding and dispatching of the FP operations to the GRFPU as well as
managing the floating-point register file, the floating-point state register (FSR) and the floating-point
deferred-trap queue (FQ). Floating-point operations are executed in parallel with other integer instruc-
tions, the LEON integer pipeline is only stalled in case of operand or resource conflicts.

In the FT-version, all registers are protected with TMR and the floating-point register file is protected
using parity coding.

47.1 Floating-Point register file

The GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The
register file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and
floating-point operate instructions (FPop).

47.2 Floating-Point State Register (FSR)

The GRFPC manages the floating-point state register (FSR) containing FPU mode and status informa-
tion. All fields of the FSR register as defined in SPARC V8 specification are implemented and man-
aged by the GRFPU conforming to the SPARC V8 specification and the IEEE-754 standard.
Implementation-specific parts of the FSR managing are the NS (non-standard) bit andftt field.

If the NS (non-standard) bit of the FSR register is set, all floating-point operations will be performed
in non-standard mode as described in section 46.2.6. When the NS bit is cleared all operations are per-
formed in standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented

- hardware_error: non-resumable hardware error
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

GRFPU implements theqnebit of the FSR register which reads 0 if the floating-point deferred-queue
(FQ) is empty and 1 otherwise.

The FSR is accessed using LDFSR and STFSR instructions.

47.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements the SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by a floating-point instruction performing an operation resulting in
one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• an operation on denormalized floating-point numbers (in standard IEEE-mode) raises
unfinished_FPop floating-point exception

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

The trap is deferred to one of the floating-point instructions (FPop, FP load/store, FP branch) follow-
ing the trap-inducing instruction (note that this may not be next floating-point instruction in the pro-
gram order due to exception-detecting mechanism and out-of-order instruction execution in the
GRFPC). When the trap is taken the floating-point deferred-queue (FQ) contains the trap-inducing
instruction and up to seven FPop instructions that were dispatched in the GRFPC but did not com-
plete.
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After the trap is taken theqne bit of the FSR is set and remains set until the FQ is emptied. The
STDFQ instruction reads a double-word from the floating-point deferred queue, the first word is the
address of the instruction and the second word is the instruction code. All instructions in the FQ are
FPop type instructions. The first access to the FQ gives a double-word with the trap-inducing instruc-
tion, following double-words contain pending floating-point instructions. Supervisor software should
emulate FPops from the FQ in the same order as they were read from the FQ.

Note that instructions in the FQ may not appear in the same order as the program order since GRFPU
executes floating-point instructions out-of-order. A floating-point trap is never deferred past an
instruction specifying source registers, destination registers or condition codes that could be modified
by the trap-inducing instruction. Execution or emulation of instructions in the FQ by the supervisor
software gives therefore the same FPU state as if the instructions were executed in the program order.
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48 GRFPU Lite - IEEE-754 Floating-Point Unit

48.1 Overview

The GRFPU Lite floating-point unit implements floating-point operations as defined in IEEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754).

Supported formats are single and double precision floating-point numbers. The floating-point unit is
not pipelined and executes one floating-point operation at a time.

48.2 Functional Description

48.2.1 Floating-point number formats

The floating-point unit handles floating-point numbers in single or double precision format as defined
in IEEE-754 standard.
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48.2.2 FP operations

The floating-point unit supports four types of floating-point operations: arithmetic, compare, convert
and move. The operations, summarised in the table below, implement all FP instructions specified by
the SPARC V8 instruction set except FSMULD and instructions with quadruple precision.

Below is a table of worst-case throughput of the floating point unit.

Table 574.:Floating-point operations

Operation Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD

SP
DP

SP
 DP

SP
DP

NV, OF, UF, NX Addition

FSUBS
FSUBD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX Subtraction

FMULS
FMULD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX

NV, OF, UF, NX

Multiplication

FDIVS
FDIVD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX,
DZ

Division

FSQRTS
FSQRTD

-
-

SP
DP

SP
DP

NV, NX Square-root

Conversion operations

FITOS
FITOD

- INT SP
DP

NX
-

Integer to floating-point conversion

FSTOI
FDTOI

- SP
DP

INT  NV, NX Floating-point to integer conversion. The result is
rounded in round-to-zero mode.

FSTOD
FDTOS

- SP
DP

DP
SP

NV
NV, OF, UF, NX

Conversion between floating-point formats

Comparison operations

FCMPS
FCMPD

SP
DP

SP
DP

CC NV Floating-point compare. Invalid exception is gener-
ated if either operand is a signaling NaN.

FCMPES
FCMPED

SP
DP

SP
DP

CC NV Floating point compare. Invalid exception is gener-
ated if either operand is a NaN (quiet or signaling).

Negate, Absolute value and Move

FABSS - SP SP - Absolute value.

FNEGS - SP SP - Negate.

FMOVS SP SP - Move. Copies operand to result output.

SP - single precision float-
ing-point number

DP - double precision
floating-point number

INT - 32 bit integer

CC - condition codes

NV, OF, UF, NX - floating-point exceptions, see section 48.2.3

Table 575.Worst-case instruction timing

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65
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48.2.3 Exceptions

The floating-point unit detects all exceptions defined by the IEEE-754 standard. This includes detec-
tion of Invalid Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact
(NX) exception conditions. Generation of special results such as NaNs and infinity is also imple-
mented.

48.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.
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49 GRLFPC - GRFPU Lite Floating-point unit Controller

49.1 Overview

The GRFPU Lite Floating-Point Unit Controller (GRLFPC) is used to attach the GRFPU Lite float-
ing-point unit (FPU) to the LEON integer unit (IU). It performs decoding and dispatching of the float-
ing-point (FP) operations to the floating-point unit as well as managing the floating-point register file,
the floating-point state register (FSR) and the floating-point deferred-trap queue (FQ).

The GRFPU Lite floating-point unit is not pipelined and executes only one instruction at a time. To
improve performance, the controller (GRLFPC) allows the GRFPU Lite floating-point unit to execute
in parallel with the processor pipeline as long as no new floating-point instructions are pending.

49.2 Floating-Point register file

The floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The register file
is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and floating-point
operate instructions (FPop).

In the FT-version, the floating-point register file is protected using 4-bit parity per 32-bit word. The
controller is capable of detecting and correcting one bit error per byte. Errors are corrected using the
instruction restart function in the IU.

49.3 Floating-Point State Register (FSR)

The controller manages the floating-point state register (FSR) containing FPU mode and status infor-
mation. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the controller conform to the SPARC V8 specification and IEEE-754 standard.

The non-standard bit of the FSR register is not used, all floating-point operations are performed in
standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented

- unfinished_FPop: all FPop operation complete with valid result
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

The controller implements theqnebit of the FSR register which reads 0 if the floating-point deferred-
queue (FQ) is empty and 1 otherwise. The FSR is accessed using LDFSR and STFSR instructions.

49.4 Floating-Point Exceptions and Floating-Point Deferred-Queue

The floating-point unit implements the SPARC deferred trap model for floating-point exceptions
(fp_exception). A floating-point exception is caused by a floating-point instruction performing an
operation resulting in one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

• hardware_error: uncorrectable parity error is detected in the FP register file

The trap is deferred to the next floating-point instruction (FPop, FP load/store, FP branch) following
the trap-inducing instruction. When the trap is taken the floating-point deferred-queue (FQ) contains
the trap-inducing instruction.
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After the trap is taken theqnebit of the FSR is set and remains set until the FQ is emptied. STDFQ
instruction reads a double-word from the floating-point deferred queue, the first word is the address of
the instruction and the second word is the instruction code.
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50 GRGPIO - General Purpose I/O Port

50.1 Overview

The general purpose input output port core is a scalable and provides optional interrupt support. The
port width can be set to 2 - 32 bits through thenbitsVHDL generic (i.e.nbits= 16). Interrupt genera-
tion and shaping is only available for those I/O lines where the corresponding bit in theimaskVHDL
generic has been set to 1.

Each bit in the general purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection.

It is possible to share GPIO pins with other signals. The output register can then be bypassed through
the bypass register.

The figure 155 shows a diagram for one I/O line.

50.2 Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The input
from each buffer is synchronized by two flip-flops in series to remove potential meta-stability. The
synchronized values can be read-out from the I/O port data register. They are also available on the
GPIOO.VAL signals. The output enable is controlled by the I/O port direction register. A ‘1’ in a bit
position will enable the output buffer for the corresponding I/O line. The output value driven is taken
from the I/O port output register.

The core can be implemented with one of three different alternatives for interrupt generation. Either
each I/O line can drive a separate interrupt line on the APB interrupt bus, the interrupt line to use can
be assigned dynamically for each I/O line, or one interrupt line can be shared for all I/O lines. In the
fixed mapping with a separate interrupt line for each I/O line, the interrupt number is equal to the I/O
line index plus an offset given by the first interrupt line assigned to the core,pirq, (PIO[1] = interrupt
pirq+1, etc.). If the core has been implemented to support dynamic mapping of interrupts, each I/O
line can be mapped using the Interrupt map register(s) to an interrupt line starting at interruptpirq.
When the core is implemented to drive one, fixed, shared interrupt line for all I/O lines, the core will
drive interrupt linepirq only. The value ofpirq can be read out from the core’s AMBA plug’n’play
information.

Interrupt generation is controlled by three registers: interrupt mask, polarity and edge registers. To
enable an interrupt, the corresponding bit in the interrupt mask register must be set. If the edge regis-
ter is ‘0’, the interrupt is treated as level sensitive. If the polarity register is ‘0’, the interrupt is active

Figure 155. General Purpose I/O Port diagram
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low. If the polarity register is ‘1’, the interrupt is active high. If the edge register is ‘1’, the interrupt is
edge-triggered. The polarity register then selects between rising edge (‘1’) or falling edge (‘0’).

A GPIO pin can be shared with other signals. The ports that should have the capability to be shared
are specified with thebypassgeneric (the corresponding bit in the generic must be 1). The unfiltered
inputs are available through GPIOO.SIG_OUT and the alternate output value must be provided in
GPIOI.SIG_IN. The bypass register then controls whether the alternate output is chosen. The direc-
tion of the GPIO pin can also be shared, if the corresponding bit is set in thebpdir generic. In such
case, the output buffer is enabled when GPIOI.SIG_EN is active.

50.3 Registers

The core is programmed through registers mapped into APB address space.

Table 576. General Purpose I/O Port registers

APB address offset Register

0x00 I/O port data register

0x04 I/O port output register

0x08 I/O port direction register

0x0C Interrupt mask register

0x10 Interrupt polarity register

0x14 Interrupt edge register

0x18 Bypass register

0x1C Capability register

0x20 - 0x3C Interrupt map register(s). Address 0x20 + 4*n contains interrupt map
registers for IO[4*n : 3+4+n], if implemented.

Table 577.I/O port data register
31 16 16-1 0

“000..0” I/O port input value

16-1: 0 I/O port input value

Table 578.I/O port output register
31 16 16-1 0

“000..0” I/O port output value

16-1: 0 I/O port output value

Table 579.I/O port direction register
31 16 16-1 0

“000..0” I/O port direction value

16-1: 0 I/O port direction value (0=output disabled, 1=output enabled)

Table 580.Interrupt mask register
31 16 16-1 0

“000..0” Interrupt mask

16-1: 0 Interrupt mask (0=interrupt masked, 1=intrrupt enabled)

Table 581.Interrupt polarity register
31 16 16-1 0

“000..0” Interrupt polarity
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50.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x01A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

16-1: 0 Interrupt polarity (0=low/falling, 1=high/rising)

Table 582.Interrupt edge register
31 16 16-1 0

“000..0” Interrupt edge

16-1: 0 Interrupt edge (0=level, 1=edge)

Table 583.Bypass register
31 16 16-1 0

“000..0” Bypass

16-1: 0 Bypass. (0=normal output, 1=alternate output)

Table 584.Capability register
31 13 12 8 7 5 4 0

“000..0” IRQGEN NLINES

12 8 IRQGEN: Interrupt generation setting: If irqgen = 0, I/O line n will drive interrupt line pirq + n, up to
NAHBIRQ-1. No Interrupt map registers will be implemented. This is the default, and traditional,
implementation of the core.

If irqgen = 1, all I/O lines capable of generating interrupts will use interrupt pirq and no Interrupt
map registers are implemented.

If irqgen > 1, the core will include Interrupt map registers allowing software to dynamically map
which lines that should drive interrupt lines [pirq : pirq+irqgen-1].

The value of pirq can be read out from the core’s plug&play information.

This field is available in revision 2 and above of the GPIO port. This field is read-only.

4: 0 NLINES. Number of pins in GPIO port - 1. Compatibility note: This field is available in revision 2
and above of the GPIO port. This field is read-only.

Table 585.Interrupt map register(s)
31 29 28 24 23 21 20 16 15 13 12 8 7 6 4 0

“000..0” IRQMAP[4*n] “000..0” IRQMAP[4*n+1] “000..0” IRQMAP[4*n+2] “000..0” IRQMAP[4*n+3]

31: 0 IRQMAP[i] : The field IRQMAP[i] determines to which interrupt I/O line i is connected. If IRQ-
MAP[i] is set tox, IO[i] will drive interruptpirq+x. Wherepirq is the first interrupt assigned to the
core. Several I/O can be mapped to the same interrupt.

The core has one IRQMAP field per I/O line. The Interrupt map register at offset 0x20+4*n contains
the IRQMAP fields for IO[4*n : 4*n+3]. This means that the fields for IO[0:3] are located on offset
0x20, IO[4:7] on offset 0x24, IO[8:11] on offset 0x28, and so on. An I/O line’s interrupt generation
must be enabled in the Interrupt mask register in order for the I/O line to drive the interrupt specified
by the IRQMAP field. The Interrupt map register(s) can only be written if the core was implemented
with support for interrupt mapping.

Table 581.Interrupt polarity register
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50.5 Configuration options

Table 586 shows the configuration options of the core (VHDL generics).

Table 586.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to
access the GPIO unit

0 to NAHBIRQ-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

nbits Defines the number of bits in the I/O port 1 to 32 8

imask Defines which I/O lines are provided with interrupt gen-
eration and shaping

0 - 16#FFFF# 0

oepol Select polarity of output enable signals. 0 = active low, 1
= active high.

0 - 1 0

syncrst Selects between synchronous (1) or asynchronous (0)
reset during power-up.

0 - 1 0

bypass Defines which I/O lines are provided bypass capabilities 0 - 16#7FFFFFFF# 0

scantest Enable scan support for asyncronous-reset flip-flops 0 - 1 0

bpdir Defines which I/O lines are provided output enable
bypass capabilities

0 - 16#7FFFFFFF# 0

pirq First interrupt line that the core will drive. The core will
only drive interrupt lines up to line NAHBIRQ-1. If
NAHBIRQ is set to 32 andpirq is set to 16, the core will
only be able to generate interrupts for I/O lines 0 - 15.

0 - NAHBIRQ-1 0

irqgen This generic configures interrupt generation.

If irqgen= 0, I/O linen will drive interrupt linepirq + n,
up to NAHBIRQ-1. No Interrupt map registers will be
implemented. This is the default, and traditional, imple-
mentation of the core.

If irqgen = 1, all I/O lines capable of generating inter-
rupts will use interruptpirq and no Interrupt map regis-
ters will be implemented.

If irqgen > 1, the core will include Interrupt map regis-
ters allowing software to dynamically map which lines
that should drive interrupt lines [pirq : pirq+irqgen-1]

0 - NAHBIRQ-1 0
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50.6 Signal descriptions

Table 587 shows the interface signals of the core (VHDL ports).

50.7 Library dependencies

Table 588 shows libraries used when instantiating the core (VHDL libraries).

50.8 Component declaration

The core has the following component declaration.

ibrary gaisler;
use gaisler.misc.all;

entity grgpio is
  generic (
    pindex   : integer := 0;
    paddr    : integer := 0;
    pmask    : integer := 16#fff#;
    imask    : integer := 16#0000#;
    nbits    : integer := 16-- GPIO bits

  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    apbi   : in  apb_slv_in_type;
    apbo   : out apb_slv_out_type;
    gpioi  : in  gpio_in_type;
    gpioo  : out gpio_out_type
  );

Table 587.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPIOO OEN[31:0] Output I/O port output enable see oepol

DOUT[31:0] Output I/O port outputs -

VAL[31:0] Output The current (synchronized) value of the GPIO
signals

-

SIG_OUT[31:0] Output The current (unsynchronized) value of the GPIO
signals

GPIOI DIN[31:0] Input I/O port inputs -

SIG_IN[31:0] Input Alternate output -

SIG_EN[31:0] Input Alternate output enable High

* see GRLIB IP Library User’s Manual

Table 588.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration
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end;

50.9 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

signal gpti : gptimer_in_type;

begin

gpio0 : if CFG_GRGPIO_EN /= 0 generate     -- GR GPIO unit
    grgpio0: grgpio
      generic map( pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 8)
      port map( rstn, clkm, apbi, apbo(11), gpioi, gpioo);

      pio_pads : for i in 0 to 7 generate
        pio_pad : iopad generic map (tech => padtech)
            port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i));
      end generate;
end generate;
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51 GRGPREG - General Purpose Register

51.1 Overview

The core provides a programmable register that drives an output vector that can be used to control
miscellaneous options in a design.

51.2 Operation

The core contains one register of configurable length that is mapped into APB address space. The
value of this register is propagated to an output vector. The reset value of the register can be specified
via VHDL generics, or via an input vector.

51.3 Registers

The core is programmed through registers mapped into APB address space.

51.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x087. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 589.General purpose register registers

APB address offset Register

0x00 General purpose register bits 31:0

0x04 General purpose register bits 63:0

Table 590.General purpose register
31 nbits nbits-1 0

RESERVED REGISTER BITS

31:nbits RESERVED (not present if nbits >= 32)

nbits-1:0 Register bits. Position i corresponds to bit i in the core’s output vector

Table 591.General purpose register (extended)
31 nbits-32 nbits-33 0

RESERVED REGISTER BITS

31:nbits-32 RESERVED (not present if nbits = 64 or nbits <= 32)

nbits-33:0 Register bits. Position i corresponds to bit 31+i in the core’s output vector (not present if nbits < 33)
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51.5 Configuration options

Table 592 shows the configuration options of the core (VHDL generics).

51.6 Signal descriptions

Table 593 shows the interface signals of the core (VHDL ports).

51.7 Library dependencies

Table 594 shows the libraries used when instantiating the core (VHDL libraries).

51.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;

library gaisler;
use gaisler.misc.all;

entity grgpreg_ex is

Table 592.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

nbits Number of register bits 1 - 64 16

rstval Reset value for bits 31:0 0 - 16#FFFFFFFF# 0

rstval2 Reset value for bits 63:32 0 - 16#FFFFFFFF# 0

extrst Use input vectorresval to specify reset value. If this
generic is 0 the register reset value is determined by
VHDL genericsrstval andrstval2. If this generic is 1,
the reset value is specified by the input vectorresval.

0 - 1 0

Table 593.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GRGPREGO N/A Output Value of register mapped into APB address space -

RESVAL N/A Input (Optionally) specifes register reset value -

* see GRLIB IP Library User’s Manual

Table 594.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals Component declaration, I2C signal definitions
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  port (
    clkm  : in std_ulogic;
    rstn : in std_ulogic;

    -- I2C signals
iic_scl : inout std_ulogic;
iic_sda : inout std_ulogic

    );
end;

architecture rtl of i2c_ex is
  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

 -- Width of general purpose register
  constant GRGPREG_NBITS : integer := 9;

 signal gprego           : std_logic_vector(GRGPREG_NBITS-1 downto 0);
  signal gpregresval      : std_logic_vector(GRGPREG_NBITS-1 downto 0);
begin

  -- AMBA Components are instantiated here
  ...

  -- General purpose register
 grgpreg0 : grgpreg                  -- General purpose register

generic map (
 pindex  => 10,
 paddr   => 16#0a0#,
 pmask   => 16#fff#,
 nbits   => GRGPREG_NBITS,
 rstval  => 0,                   -- Not used
 rstval2 => 0,                   -- Not used
 extrst  => 1)                   -- Use input vector for reset value

 port map (
 rst     => rstn,
 clk     => clkm,
 apbi    => apbi,

apbo    => apbo(10),
 gprego  => gprego,
 resval  => gpregresval);

end;
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52 GRIOMMU - AHB/AHB bridge with access protection and address translation

52.1 Overview

The core is used to connect two AMBA AHB buses clocked by synchronous clocks with any fre-
quency ratio. The two buses are connected through an interface pair consisting of an AHB slave and
an AHB master interface. AHB transfer forwarding is performed in one direction, where AHB trans-
fers to the slave interface are forwarded to the master interface. The core can be configured to provide
access protection and address translation for AMBA accesses traversing over the core. Access protec-
tion can be provided using a bit vector to restrict access to memory. Access protection and address
translation can also be provided using page tables in main memory, providing full IOMMU function-
ality. Both protection strategies allow devices to be placed into a configurable number of groups that
share data structures located in main memory. The protection and address translation functionality
provides protection for memory assigned to processes and operating systems from unwanted accesses
by units capable of direct memory access.

Applications of the core include system partitioning, clock domain partitioning, system expansion and
secure software partitioning.

Features offered by the core include:

• Single and burst AHB transfer forwarding

• Access protection and address translation that can provide full IOMMU functionality

• Devices can be placed into groups where a group shares page tables / access restriction vectors

• Hardware table-walk

• Efficient bus utilization through (optional) use of SPLIT response, data prefetching and posted
writes

• Read and write combining, improves bus utilization and allows connecting cores with differing
AMBA access size restrictions.

• Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional
bridge. The core can be connected with an another instance of the core, or with a uni-directional
AHB/AHB bridge core (AHB2AHB), to form a bi-directional bridge.

BUS
CONTROL

 SLAVE 1

AHB System bus

Figure 156. System with core providing access restricion/address translation for masters on AHB IO bus
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52.2 Bridge operation

52.2.1 General

The first sub sections below describe the general AHB bridge function. The functionality providing
access restriction and address translation is described starting with section 52.3. In the description of
AHB accesses below the core propagates accesses from the IO bus to the System bus, see figure 156.

The address space occupied by the core on the IO bus is configurable and determined by Bank
Address Registers in the slave interface’s AHB Plug&Play configuration record.

The core is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.

For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the core uses GRLIB’s AMBA Plug&Play information to determine
whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.

The core can be implemented to use SPLIT responses or to insert wait states when handling an access.
With SPLIT responses enabled, an AHB master initiating a read transfer to the core is always splitted
on the first transfer attempt to allow other masters to use the slave bus while the core performs read
transfer on the master bus. The descriptions of operation in the sections below assume that the core
has been implemented with support for AMBA SPLIT responses. The effects of disabling support for
AMBA SPLIT responses are described in section 52.2.11.

If interrupt forwarding is enabled the interrupts on the IO bus interrupt lines will be forwarded to the
system bus and vice versa.

52.2.2 AHB read transfers

When a read transfer is registered on the slave interface connected to the IO bus, the core gives a
SPLIT response. The master that initiated the transfer will be de-granted allowing other bus masters to
use the slave bus while the core performs a read transfer on the master side. The master interface then
requests the bus and starts the read transfer on the master side. Single transfers on the slave side are
normally translated to single transfers with the same AHB address and control signals on the master
side, however read combining can translate one access into several smaller accesses. Translation of
burst transfers from the slave to the master side depends on the burst type, burst length, access size
and core configuration.

If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL generic rburst). The core can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL genericiburst).
When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the core will return data with zero
wait states.

If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the system bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
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master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.

In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

52.2.3 AHB write transfers

The core implements posted writes. During the AHB write transfer on the slave side the data is buff-
ered in the internal write FIFO and the transfer is completed on the slave side by always giving an
OKAY response. The master interface requests the bus and performs the write transfer when the mas-
ter bus is granted. If the burst transfer crosses the write burst boundary (defined by VHDL generic
wburst), a SPLIT response is given. When the core has written the contents of the FIFO out on the
master side, the core will allow the master on the slave side to perform the remaining accesses of the
write burst transfer.

Writes are accepted with zero wait states if the core is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the core will not flush the write FIFO during the BUSY cycle.

52.2.4 Deadlock conditions

When two cores are used to form a bi-directional bridge, a deadlock situation can occur if the cores
are simultaneously accessed from both buses. The core that has been configured as a slave contains
deadlock detection logic which will resolve a deadlock condition by giving a RETRY response, or by
issuing SPLIT complete followed by a new SPLIT response. When the core resolves a deadlock while
prefetching data, any data in the prefetch buffer will be dropped when the core’s slave interface issues
the AMBA RETRY response. When the access is retried it may lead to the same memory locations
being read twice.

Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wait-
ing for its release. In this scenario, the accesses from the processor on bus B could, depending on sys-
tem configuration, continuously trigger a deadlock condition where the core will drop data in, or be
prevented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this
kind the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.

Other deadlock conditions exist with locked transfers, see section 52.2.5.

52.2.5 Locked transfers

The core supports locked transfers. The master bus will be locked when the bus is granted and remain
locked until the transfer completes on the slave side. Locked transfers can lead to deadlock condi-
tions, the core’s VHDL genericlckdac determines if and how the deadlock conditions are resolved.

With the VHDL genericlckdacset to 0, locked transfers maynot be made after another read access
which received SPLIT until the first read access has received split complete. This is because the core
will return split complete for the first access first and wait for the first master to return. This will cause
deadlock since the arbiter is not allowed to change master until a locked transfer has been completed.
The AMBA specification requires that the locked transfer is handled before the previous transfer,
which received a SPLIT response, is completed.

With lckdacset to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT response. Withlckdacset to 2 the core will



AEROFLEX GAISLER 492 GRIP

save state for the read access that received a SPLIT response, allow the locked access to complete, and
then complete the first access. All non-locked accesses from other masters will receive SPLIT
responses until the saved data has been read out.

If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL genericlckdacis set
to 0 the core will deadlock. Iflckdacis set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.

52.2.6 Read and write combining

Read and write combining allows the core to assemble or split AMBA accesses on the core’s slave
interface into one or several accesses on the master interface. This functionality can improve bus utili-
zation and also allows cores that have differing AMBA access size restrictions to communicate with
each other. The functionality attained by read and write combining depends on the VHDL generics
rdcomb (defines type of read combining),wrcomb (defines type of write combining),slvmstaccsz
(defines maximum AHB access size supported by the core’s slave interface) andmstmaccsz(defines
maximum AHB access size that can be used by core’s master interface). These VHDL generics are
described in section 52.13. The table below shows the effect of different settings. BYTE and HALF-
WORD accesses are special cases. The table does not list illegal combinations, for instancemst-
maccsz /= slvmaccsz requires thatwrcomb /= 0 andrdcomb /= 0.

Table 595.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface

BYTE or HALF-WORD sin-
gle read access to any area

- - - Single access of same size

BYTE or HALF-WORD
read burst to prefetchable
area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
number of 32-bit words in the read buffer, but
will not cross the read burst boundary.

BYTE or HALF-WORD
read burst to non-prefetch-
able area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

BYTE or HALF-WORD sin-
gle write

- - - Single access of same size

BYTE or HALF-WORD
write burst

- - - Incremental write burst of same size and length,
the maximum length is the number of 32-bit
words in the write FIFO.

Single read access to any
area

Access size <=
mstmaccsz

- - Single access of same size

Single read access to any
area

Access size >
mstmaccsz

- 1 Sequence of single accesses of mstmaccsz.
Number of accesses: (access size)/mstmaccsz

Single read access to any
area

Access size >
mstmaccsz

- 2 Burst of accesses of size mstmaccsz. Length of
burst: (access size)/mstmaccsz

Read burst to prefetchable
area

- - 0 Burst of accesses of incoming access size up to
address boundary defined by rburst.

Read burst to prefetchable
area

- - 1 or 2 Burst of accesses of size mstmaccsz up to
address boundary defined by rburst.

Read burst to non-prefetch-
able area

Access size <=
mstmaccsz

- - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.
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Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 52.2.7 for a discussion on burst operation.

Read and write combining with VHDL genericswrcomb/rdcombset to 1 cause the core to use single
accesses when dividing an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the core before the
core has read or written all the data. In bi-directional configurations, an incoming access on the master
core may cause a collision that aborts the operation on the slave core. This may cause the core to read
the same memory locations twice. This is normally not a problem when accessing memory areas. The
same issues apply when using an AHB arbiter that performs early burst termination. The standard
GRLIB AHBCTRL core does not perform early burst termination.

To ensure that the core does not re-read an address, and that all data in an access from the core’s slave
interface is propagated out on the master interface without interruption the VHDL genericsrdcomb
andwrcombshould both be set to 0 or 2. In addition to this, the AHB arbiter may not perform early
burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).

Read and write combining can be limited to specified address ranges. See description of thecomb-
maskVHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

52.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.

If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then set theallbrst generic to 0 and skip the remainder of this section.

The VHDL genericallbrst controls if the core will support fixed length and wrapping burst accesses.
If allbrst is set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for

Read burst to non-prefetch-
able area

Access size >
mstmaccsz

- 1 or 2 Burst of accesses of size mstmaccsz. Length of
burst:
(incoming burst length)*(access size)/mstmaccsz

Single write Access size <=
mstmaccsz

- - Single write access of same size

Single write Access size >
mstmaccsz

1 - Sequence of single access of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz.

Single write Access size >
mstmaccsz

2 - Burst of accesses of mstmaccsz. Length of burst:
(access size)/mstmaccsz.

Write burst - 0 - Burst of same size as incoming burst, up to
address boundary defined by VHDL generic
wburst.

Write burst - 1 or 2 - Burst write of maximum possible size. The core
will use the maximum size (up to mstmaccsz)
that it can use to empty the write buffer.

Table 595.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface
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fixed length and wrapping bursts is enabled by settingallbrst to 1 or 2. Table 52.2.7 describes how the
core will handle different burst types depending on the setting ofallbrst.

Table 596.Burst handling

Value of
allbrst
generic

Access type* Undefined length
incrementing burst
INCR

Fixed length incrementing
burst
INCR{4,8,16}

Wrapping burst
WRAP{4,8,16}

0 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Fixed length burst with
BUSY cycles inserted. If the
burst is short then the burst
may end with a BUSY cycle.
If access combining is used
the HBURST signal will get
incorrect values.

Malfunction. Not supported

Reads to
prefetchable
area

Incrementing burst of maximum allowed size, filling
prefetch buffer, starting at address boundary defined by
prefetch buffer.

Malfunction. Not supported

Write burst Incrementing burst Incrementing burst, if write
combining is enabled, and
triggered, the burst will be
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcomb should not be set to
1 (but to 0 or 2) in this case

Write combining is not sup-
ported. Same access size will be
used on both sides of the bridge.

1 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Same burst type with BUSY
cycles inserted. If read com-
bining is enabled, and trig-
gered by the incoming access
size, an incremental burst of
unspecified length will be
used. If the burst is short then
the burst may end with a
BUSY cycle.

Same burst type with BUSY
cycles inserted. If read combin-
ing is enabled, and triggered by
the incoming access size, an
incremental burst of unspecified
length will be used. This will
cause AMBA violations if the
wrapping burst does not start
from offset 0.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer.

For reads, the core will perform full (or part that fits in prefetch
buffer) fixed/wrapping burst on master interface and then
respond with data. No BUSY cycles are inserted.

If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

2 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Reads are treated as a prefetchable burst. See below.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer,
starting at address
boundary defined by
prefetch buffer.

Core will perform full (or part that fits in prefetch buffer) fixed/
wrapping burst on master interface and then respond with data.
No BUSY cycles are inserted.

If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).



AEROFLEX GAISLER 495 GRIP

52.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The core is configured at implementation to use one of two available schemes to handle incoming
accesses. The core will issue SPLIT responses when it is busy and on incoming read accesses. If the
core has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the core will give some advantage to the master it has a response for and then allow all masters
in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the core to the bus arbitration.

When designing a system containing a core the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the core will affect the system. The two different schemes are further described in sections
52.2.9 and 52.2.10.

52.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL genericfcfs is non-zero.

With first-come, first-served ordering the core will keep track of the order of incoming accesses. The
accesses will then be served in the same order. For instance, if master 0 initiates an access to the core,
followed by master 3 and then master 5, the core will propagate the access from master 0 (and
respond with SPLIT on a read access) and then respond with SPLIT to the other masters. When the
core has a response for master 0, this master will be allowed in arbitration again by the core asserting
HSPLIT. When the core has finished serving master 0 it will allow the next queued master in arbitra-
tion, in this case master 3. Other incoming masters will receive SPLIT responses and will not be
allowed in arbitration until all previous masters have been served.

An incoming locked access will always be given precedence over any other masters in the queue.

A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the core has been configured for.

It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The core will not prioritize any
master, except for masters performing locked accesses.

52.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL genericfcfs is set to zero.

When several masters have received SPLIT and the core has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the core asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the core asserts their HSPLIT signals simulta-
neously. By doing this the core defers the decision on the master to be granted next to the AHB arbi-
ter. The core does not show any preference based on the order in which it issued SPLIT responses to
masters, except to the master that initially started a read or write operation. Care has been taken so
that the core shows a consistent behavior when issuing SPLIT responses. For instance, the core could
be simplified if it could issue a SPLIT response just to be able to change state, and not initiate a new
operation, to an access coming after an access that read out prefetched data. When the core entered its
idle state it could then allow all masters in bus arbitration and resume normal operation. That solution
could lead to starvation issues such as:

T0: Master 1 and Master 2 have received SPLIT responses, the core is prefetching data for Master 1

T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT

T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration
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T3: Master 2 performs an access, receives SPLIT, however the core does not initiate an access, it just
stalls in order to enter its idle state.

T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response

T5: Master 2 performs an access, receives SPLIT since the core is prefetching data for master 1

T6: Go back to T0

This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the core. In most systems it is unlikely that this behavior would introduce
a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to complete
its access. Please note that the example above is illustrative and the problem does not exist in the core
as the core does not issue SPLIT responses to (non-locked) accesses in order to just change state but a
similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is given
higher priority than Master 2.

In the case of write operations the scenario is slightly different. The core will accept a write immedi-
ately and will not issue a SPLIT response. While the core is busy performing the write on the master
side it will issue SPLIT responses to all incoming accesses. When the core has completed the write
operation on the master side it will continue to issue SPLIT responses to any incoming access until
there is a cycle where the core does not receive an access. In this cycle the core will assert HSPLIT for
all masters that have received a SPLIT response and return to its idle state. The first master to access
the core in the idle state will be able to start a new operation. This can lead to the following behavior:

T0: Master 1 performs a write operation, does NOT receive a SPLIT response

T1: Master 2 accesses the core and receives a SPLIT response

T2: The core now switches state to idle since the write completed and asserts HSPLIT for Master 2.

T3: Master 1 is before Master 2 in the arbitration order and we are back at T0.

In order to avoid this last pattern the core would have to keep track of the order in which it has issued
SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-served
ordering described in section 52.2.9.

52.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL genericsplit. SPLIT sup-
port should be enabled for most systems. The benefits of using SPLIT responses is that the bus on the
core’s slave interface side can be free while the core is performing an operation on the master side.
This will allow other masters to access the bus and generally improve system performance. The use of
SPLIT responses also allows First-come, first-served transaction ordering.

For configurations where the core is the only slave interface on a bus, it can be beneficial to imple-
ment the core without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the core and may also reduce the time required to perform accesses that
traverse the core. It should be noted that building a bi-directional core without support for SPLIT
responses will increase the risk of access collisions.

If SPLIT support is disabled the core will insert wait states where it would otherwise issue a SPLIT
response. This means that the arbitration ordering will be left to the bus arbiter and the core cannot be
implemented with the First-come, first-served transaction ordering scheme. The core will still issue
RETRY responses to resolve dead lock conditions, to split up long burst and also when the core is
busy emptying it’s write buffer on the master side.

The core may also be implemented with dynamic SPLIT support, this allows the use of SPLIT
responses to be configurable via the core’s register interface (see SP field in the core’s Control regis-
ter).
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52.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. This section deals with latencies in the core’s bridge function. Access protection
mechanisms may add additional delays, please refer to the description of access protection for a
description of any additional delays.

Table 597 below shows core behavior in a system where both AMBA buses are running at the same
frequency and the core has been configured to use AMBA SPLIT responses. Table 598 further down
shows core behavior in the same system without support for SPLIT responses.

While the transitions shown in tables 597 and 598 are simplified they give an accurate view of the
core delay. If the master interface needs to wait for a bus grant or if the read operation receives wait
states, these cycles must be added to the cycle count in the tables. The behavior of the core with a fre-

Table 597.Example of single read with FFACT = 1, and SPLIT support

Clock cycle Core slave side activity Core master side activity

0 Discovers access and transitions from idle state Idle

1 Slave side waits for master side, SPLIT response
is given to incoming access, any new incoming
accesses also receive SPLIT responses.

Discovers slave side transition. Master interface output
signals are assigned.

2 If bus access is granted, perform address phase. Other-
wise wait for bus grant.

3 Register read data and transition to data ready state.

4 Discovers that read data is ready, assign read
data output and assign SPLIT complete

Idle

5 SPLIT complete output is HIGH

6 Typically a wait cycle for the SPLIT:ed master to
be allowed into arbitration. Core waits for master
to return. Other masters receive SPLIT
responses.

7 Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high

8 Access data phase. Core has returned to idle
state.

Table 598.Example of single read with FFACT = 1, without SPLIT support

Clock cycle Core slave side activity Core master side activity

0 Discovers access and transitions from idle state Idle

1 Slave side waits for master side, wait states are
inserted on the AMBA bus.

Discovers slave side transition. Master interface output
signals are assigned.

2 Bus access is granted, perform address phase.

3 Register read data and transition to data ready state.

4 Discovers that read data is ready, assign
HREADY output register and data output regis-
ter.

Idle

5 HREADY is driven on AMBA bus. Core has
returned to idle state
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quency factor of two between the buses is shown in tables 599 and 600 (best case, delay may be larger
depending on which slave clock cycle an access is made to the core).

Table 601 below lists the delays incurred for single operations that traverse the bridge while the bridge
is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present
if the master accessed any other slave.

Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

Table 599.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Discovers slave side transition. Master inter-
face output signals are assigned.

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.2 1 Bus access is granted, perform address

phase.3

4 2 Register read data and transition to data
ready state.5

6 Discovers that read data is ready, assign
HREADY output register and data output
register.

3 Idle

7 HREADY is driven on AMBA bus. Core
has returned to idle state

Table 600.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Idle

1

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.

2 Discovers slave side transition. Master inter-
face output signals are assigned.

3 Bus access is granted, perform address
phase.

2 Discovers that read data is ready, assign
HREADY output register and data output
register.

4 Register read data and transition to data
ready state.

5 Idle

3 HREADY is driven on AMBA bus. Core
has returned to idle state

6

7
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If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.

Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

52.3 General access protection and address translation

52.3.1 Overview

The core provides two types of access protection. The first option is to use a bit vector to implement
access restriction on a memory page basis. The second option is to use a page-table to provide access
restriction and address translation. Regardless of the protection strategy, the core provides means to
assign masters on the IO bus in groups where each group can be associated with a data structure
(access restriction vector or page table) in memory. The core can be implemented to support a dynam-
ically configurable page size from 4 to 512 KiB, or a fixed page size of 4 KiB.

When a master on the IO bus initiates an access to be propagated by the core, the core will first look at
the incoming master’s group assignment setting to determine to which group the master belongs.
When the group is known, the core can propagate or inhibit the access based on the group’s attributes,
or determine the address of the in-memory data structures to use for access checks (and possibly
address translation). The in-memory data structure may be cached by the core, otherwise the informa-
tion will be fetched from main memory.

Once the core has the necessary information to process the incoming access, the access will be either
allowed to propagate through the core or, in case the access is to a restricted memory location, be
inhibited. If the access is inhibited, the core will issue an AMBA ERROR response to the master if the
incoming access is a read access. The core implements posted writes, therefore write operations will
not receive an AMBA ERROR response. An interrupt can, optionally, be asserted when an access is
inhibited. The AHB failing access register can be configured to log the first or most recent access that
was inhibited.

When enabled, the core always checks access permissions when a master initiates an access. For the
access protection and translation operation to be effective the masters are required to adhere to the
AMBA 2.0 specification and not issue burst transfers that cross a 1 KiB address boundary.

It is possible for masters to access the core’s register interface through the core. In this case the core
will perform an access to itself on the System AHB bus. For configurations where the core is used to
form a bi-directional core, any data structures read by the core must be located on the same bus as the
core’s master interface. The core cannot access data structures that are placed on the same bus as mas-

Table 601.Access latencies

Access Master acc. cycles Slave cycles Delay incurred by performing access over core

Single read 3 1 1 * clkslv + 3 * clkmst

Burst read with prefetch 2 + (burst length)x 2 2 * clkslv + (2 + burst length)* clkmst

Single writexx (2) 0 0

Burst writexx (2 + (burst length)) 0 0

x A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
xx The core implements posted writes, the number of cycles taken by the master side can only affect the next access.
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ters that the core protects against, in other words data structures must be accessible on a slave on the
System bus, see figure 156.

52.3.2 Delays incurred from access protection

The time required for the core’s master interface to start an access may be delayed by access protec-
tion checks. Table 602 below shows the added delays, please refer to section 52.2.12 for a description
of delays from the core’s bridge operation.

52.4 Access Protection Vector

The Access Protection Vector (APV) consists of a continuous bit vector where each bit determines the
access rights to a memory page. The bit vector provides access restriction on the full 4 GiB AMBA
address space. The required size of the bit vector depends on the page size used by the core, see table
below:

Each group can have a bit vector with a base address specified by a field in the group’s Group Control
Register. When a master performs an access to the core, the master’s group number is used to select
one of the available bit vectors. The AMBA access size used to fetch the vector is fixed at implemen-
tation time and can be read out from the core’s Capability register 1. If the AMBA access size to use is
32-bits (WORD sized) and the page size is 4 KiB, bits 31:17 of the incoming address (HADDR) are
used to index a word in the bit vector, and bits HADDR[16:12] are used to select one of the 32 bits in
the word. For each increase in AMBA access size (DWORD, 4WORD, 8WORD), one bit less of the
physical address is used to index the vector and this bit is instead used to select one specific bit in the
data read from memory. Similarly, for each increase in page size one bit less of the physical address is
used.

Table 602.Access protection check latencies

Protection mode Delay in clock cycles on master side

Disabled 0

Write-protection only and read access 0

Master assigned to group in passthrough or inactive group 1

Access Protection Vector, cache hit 1

Access Protection Vector cache miss, cache disabled/not implementedMinimumx 4 clock cycles

IOMMU Protection, cache hit 1

IOMMU Protection, TLB miss, TLB disabled/not implemented Minimumx 4 clock cycles

x The core may suffer additional AMBA bus delays when accessing the vector in memory. 4 cycles is the minim time
required and assumes that the core is instantly granted access to the bus and that data is delivered with zero wait states.

Table 603.Bit vector size vs. page size

Page size Bit vector size

4 KiB 128 KiB

8 KiB 64 KiB

16 KiB 32 KiB

32 KiB 16 KiB

64 KiB 8 KiB

128 KiB 4 KiB

256 KiB 2 KiB

512 KiB 1 KiB
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The lowest page is protected by the most significant bit in the bit vector. This means that page 0 is
protected by the most significant bit in byte 0 read from the bit vector’s base address (using big endian
addressing). When performing WORD accesses, the lowest page is protected by bit 31 in the accessed
word (using the bit numbering convention used throughout this document).

If the bit at the selected position is ‘0’, the access to the page is allowed and the core will propagate
the access. If the selected bit is ‘1’, and the access is an read access, an AMBA ERROR response is
given to the master initiating the access. If the selected bit is ‘1’, and the access is a write access, the
write is inhibited (not propagated through the core).

52.4.1 Access Protection Vector cache

The core can be implemented with an internal memory that caches the Access Protection Vector. The
cache size is configurable at implementation time and depends on a number of parameters that can be
read out via Capability registers 0 and 1. If the core has been implemented with IOMMU functionality
and a IOMMU Translation Lookaside Buffer (TLB), the RAMs in the APV cache will be shared with
the IOMMU TLB.

The cache is implemented as a direct-mapped cache built up of one data RAM and one tag RAM. The
number of locations in each RAM is the number of lines in the cache. The width of the data RAM
(cache line size) is the same as the size of the AMBA accesses used to fetch the APV from main mem-
ory. The width and contents of the tag RAM depends on the number of supported groups, cache line
size and number of lines in the cache.

The address used to select a position in the RAMs, called the set address, must havelog2(number of
lines in the cache)bits. The number of address bits taken from the physical address required to
uniquely address one position in the bit vector depends on the cache line size. The number of required
bits for each allowed cache line size is shown in table 604 below.

If the core has support for more than one group, the cache must also be tagged with the group ID. The
number of bits required to uniquely select one group islog2(number of groups).

This means that in order to be able to cache the full bit vectors for all supported groups the cache
address (set address) must havelog2(number of groups) + (required physical address bits)address
bits. The number of required lines in the cache to be able to hold all vectors is:

cache lines = (number of groups) * (220 / (cache line size))

If the cache size is not large enough to hold a copy of each position in the bit vector, part of the phys-
ical address and group will be placed in the cache tag RAM instead. If the number of lines in the
cache allows keeping a cached data of all positions in all bit vectors, the set address and tag data
arrangement shown in table 605 will be used.

For the set address/tag RAM tables below the following values are used:

Table 604.Cache line size vs. physical address bits

Cache line
size in bits

Bits of physical address needed to identify one position depending on page size

4 KiB 8 KiB 16 KiB 32 KiB 64 KiB 128 KiB 256 KiB 512 KiB

32 15 14 13 12 11 10 9 8

64 14 13 12 11 10 9 8 7

128 13 12 11 10 9 8 7 6

256 12 11 10 9 8 7 6 5
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SB = Set address bits = log2(cache line size)
HB = Required number of bits of physical address = See table 604 above.
GB = Required number of bits to select one group =log2(number of groups)

If the number of lines in the cache allows part of the group ID to be part of the set address, the
arrangement will be:

If the number of lines in the cache only allows part of the required physical address to be part of the
set address, the arrangement will be:

In the first arrangement, where(set address bits) = (group ID bits) + (physical address bits), there
will never be a collision in the cache. In the two other arrangements there is not room for all positions
in the bit vector(s). This means that a cached copy for one memory page can be replaced with the bit
vector for another memory page. Since the physical address is used as the set address, accesses from a
master assigned to one group may evict cached bit vector data belonging to another group. This may
not be wanted in systems where interference between groups of masters should be minimized. In
order to minimize inter-group interference, the core can be implemented with support for using as
much of the group ID as possible in the set address, this functionality is called group-set-addressing.

The core has support for group-set-addressing if the CA field in Capability register 0 is non-zero. If
the number of set address bits (cache lines) is large enough to cache all bit vectors, the set address and

Table 605.Set address bits = (group ID bits) + (Physical address bits)
Set address:

31 (HB+BG-1) HB (HB-1) 0

Not present Group ID Physical address

Contents of Tag RAM:

31 0

Not present V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 606.Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB HB HB-1 0

Not present Part of Group ID Physical address

Contents of Tag RAM:

31 0

Not present Part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 607.Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB 0

Not present Low bits of physical address

Contents of Tag RAM:

31 HB-SB 1 0

Not present Group ID High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data
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tag RAM arrangement will be as described by table 605. If the number of set address bits will allow
the whole group ID to be part of the set address, the arrangement will be:

If only part of the group ID can be used for the set address, the arrangement will be:

Group-set-addressing is enabled via the GS field in the core’s Control register.

52.4.2 Constraining the memory area covered by the APV cache

In a typical system, the normal case for an AMBA master core is to perform accesses to main mem-
ory. In order to reduce latency, the protection data for these accesses is ideally cached within the core.
However, main memory is not likely to occupy the full AMBA address range. If accesses outside a
certain access range is expected to be rare, and if it is not critical if these accesses suffer a higher
latency, it can be beneficial to restrict the memory range for which the core caches the Access Protec-
tion Vector. The benefit of this is that the cache size can be reduced while the same hit rate is kept for
the specified memory area, alternatively the hit rate could possibly be increased while keeping the
cache size constant.

The core can be configured at implementation to only cache the bit vector for a specified memory
range. Capability register 1 contains an address and a mask that describes this area. Bit vector data for
the specified memory range will be cached by the core. Bit vector data for accesses made outside the
memory range will not be placed in the cache, and will instead be fetched for memory on each access.
The impact of having a non-zero mask in Capability register 1 is that for each ‘1’ in the mask, one
physical address bit can be removed from the cache set address in the examples given earlier in this
section.

52.4.3 Access Protection Vector cache flush operation

If the contents of a vector is modified the core cache must be flushed by writing to the TLB/Cache
Flush Register. The TLB/Cache Flush register contains fields to flush the entire cache or to flush the
lines belonging to a specified group. In order to flush entries for a specific group, group-set-address-
ing must be implemented and enabled. Performing a group flush without group-set-addressing may
only flush part of the cache and can lead to unexpected behavior.

The core will not propagate any transfers while a cache flush operation is in progress.

Table 608.Group set address: Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB GB-1 0

Not present Low bits of physical address Group ID

Contents of Tag RAM:

31 1 0

Not present High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 609.Group set address: Set address bits < (group ID bits)
Set address:

31 GB-SB-1 0

Not present Low part of Group ID

Contents of Tag RAM:

31 1 0

Not present Physical address High part of group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data
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52.5 IO Memory Management Unit (IOMMU) functionality

The IOMMU functionality of the core provides address translation and access protection on the full 4
GiB AMBA address space. The size of the address range where addresses are translated is specified
by the IOMMU Translation Range (ITR) field in the core’s Control register:

Size of translated address range in MiB = 16 MiB * 2ITR

The maximum allowed value of the ITR field is eight, which means that the IOMMU can provide
address translation to an area of size 16*28 = 4096 MiB, which is the full 32-bit address space. When
ITR is set to eight and a page size of 4 KiB is used, bits 31:12 of the incoming IO address are trans-
lated to physical addresses, using IO Page Tables entries describes below. Bits 11:0 of the incoming
access are propagated through the IOMMU. For each increase in page size one more bit will be
directly propagated through the IOMMU instead of being translated.

If ITR is less then eight the most significant bits of the IO address must match the value of the
TMASK field in Capability register 2. If an access is outside the range specified by TMASK the
access will be inhibited. Table 610 shows the the effect of different ITR values. As an example, with
ITR set to 2, the IOMMU will perform address translation for a range that spans 64 MiB. This range
will be located at offset TMASK[31:26]. Accesses to addresses that do not have their most significant
bits set to match TMASK[31:26] will be inhibited. The table also shows the number of pages within
the decoded range and the memory required to hold the translation information (page tables) in main
memory. Thepgsz value is the value of the PGSZ field in the control register.

52.5.1 IO Page Table Entry

Address translation is performed by looking up translation information in a one-level table present in
main memory. Part of the incoming address is used to index the table that consists of IO Page Table
Entries. The format of an IO Page Table Entry (IOPTE) is shown in table 611 below.

Table 610.Effects of IOMMU Translation Range setting

ITR Size of translated range TMASK bits used Number of pages Size of page tables

0 16 MiB TMASK[31:24] 4096 / 2pgsz 16 / 2pgsz KiB

1 32 MiB TMASK[31:25] 8192 / 2pgsz 32 / 2pgsz KiB

2 64 MiB TMASK[31:26] 16384 / 2pgsz 64 / 2pgszKiB

3 128 MiB TMASK[31:27] 32768 / 2pgsz 128 / 2pgszKiB

4 256 MiB TMASK[31:28] 655536 / 2pgsz 256 / 2pgszKiB

5 512 MiB TMASK[31:29] 131072 / 2pgsz 512 / 2pgsz KiB

6 1024 MiB TMASK[31:30] 262144 / 2pgsz 1 / 2pgsz MiB

7 2048 MiB TMASK[31] 524288 / 2pgsz 2 / 2pgsz MiB

8 4096 MiB TMASK not used 1048576 / 2pgsz 4 / 2pgsz MiB

Table 611.IOMMU Page Table Entry (IOPTE)
31 8 7 6 5 4 3 2 1 0

PPAGE C RESERVED W V R
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When the core has IOMMU protection enabled all, incoming accesses from masters belonging to an
active group, which is not in pass-through mode, will be matched against TMASK. If an access is out-
side the range specified by ITR/TMASK, the access will be inhibited and may receive an AMBA
ERROR response (not applicable when the access is a posted write).

If the incoming access is within the range specified by ITR/TMASK, the core will use the incoming
IO address to index the page table containing the address translation information for the master/IO
address. The core may be implemented with an Translation Lookaside Buffer (TLB) that may hold a
cached copy of the translation information. Otherwise the translation information will be fetched from
main memory. The base address of the page table to use is given by the Group Configuration register
to which the master performing the access is assigned. Please see the register description of the Group
Configuration register for constraints on the page table base address. The core will use bits X:Y to
index the table, where X depends on the value of the ITR field in the core’s Control register, and Y
depends on the page size (Y = 12 + PGSZ field in Control register).

When the core has fetched the translation information (IOPTE) for the accesses page it will check the
IOPTE’s Valid (V) and Writeable (W) fields. If the IOPTE is invalid, the access will be inhibited. If
the Writeable (W) field is unset and the access is a write access, the access will be inhibited. Other-
wise the core will, for a page size of 4 KiB, use the IOPTE field PPAGE, bits 27:8, and bits 11:0 of
the incoming IO address to form the physical address to use when the access is propagated by the core
(physical address: PPAGE[27:8] & IOADDR[11:0]).

If the valid (V) bit of the IOPTE is ‘0’ the core may or may not store the IOPTE in the TLB (if imple-
mented). This is controlled via the SIV field in the core’s Control register.

52.5.2 Prefetch operations and IOMMU protection

During normal bridge operation, and with Access Protection Vector protection, the core determines if
data for an access can be prefetched by looking at the IO address and the System bus plug and play
information. This operation cannot be done without introducing additional delays when the core is
using IOMMU protection. The incoming IO address must first be translated before it can be deter-
mined if the access is to a memory area that can be prefetched. In order to minimize delays the core
makes the assumption that any incoming burst access is to a prefetchable area. The result is that when
using IOMMU protection all burst accesses will result in the core performing a prefetch operation.

52.5.3 Translation Lookaside Buffer operation

The core can be implemented with an internal memory that caches IO Page Table Entries. This mem-
ory is referred to as a Translation Lookaside Buffer (TLB). The TLB size is configurable at imple-
mentation time and depends on a number of parameters that can be read out via Capability registers 0

31:8 Physical Page (PPAGE) - Bits 27:8 of this field corresponds to physical address bits 31:12 of the
page. With a 4 KiB page size, PPAGE[27:8] is concatenated with the incoming IO address bits
[11:0] to form the translated address. For each increase in page size one bit less of PPAGE is used
and one bit more of the incoming IO address is used: this means that with a 16 KiB page size ,
PPAGE[27:10] will be concatenated with the incoming IO address bits [13:0] to form the translated
address.

Bits 31:27 of this field are currently discarded by the IOMMU and are present in the data structure
for forward compatibility with systems using 36-bit AMBA address space.

7 Cacheable (C) - This field is currently not used by the IOMMU

6:3 RESERVED

2 Writeable (W) - If this field is ‘1’ write access is allowed to the page. If this field is ‘0’, only read
accesses are allowed.

1 Valid (V) - If this field is ‘1’ the PTE is valid. If this field is ‘0’, accesses to the page covered by this
PTE will be inhibited.

0 RESERVED

Table 611.IOMMU Page Table Entry (IOPTE)
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and 2. If the core has been implemented with Access Protection Vector functionality and an APV
cache, the RAMs for the APV cache will be shared with the IOMMU TLB.

The TLB is implemented as a direct-mapped cache built up of one data RAM and one tag RAM. The
number of locations in each RAM is the number of entries in the TLB. The width of the data RAM
(entry size) is the same as the size of the AMBA accesses used to fetch page table entries from main
memory. The width and contents of the tag RAM depends on the number of supported groups, entry
size and number of entries in the TLB.

The address used to select a position in the RAMs, called the set address, must havelog2(number of
entries in the TLB)bits. The number of address bits taken from the physical address required to
uniquely address one position in the TLB depends on the entry size. The number of required bits for
each allowed entry size is shown in table 604 below, the values in the third column is the number of
address bits that must be used to accommodate the largest translatable range (maximum value of ITR
field in the core’s Control register). Note that an entry size larger than 32 bits results in an TLB that
holds multiple IOPTEs per entry.

If the core has support for more than one group, the TLB entries must also be tagged with the group
ID. The number of bits required to uniquely select one group islog2(number of groups).

This means that in order to be able to cache the page tables for all supported groups the TLB address
(set address) must havelog2(number of groups) + (required physical address bits)address bits. The
number of required entries in the TLB to be able to hold all vectors is:

TLB entries = (number of groups) * (220 / (entry size))

If the TLB is not large enough to hold a copy of each position in the page table, part of the physical
address and group will be placed in the tag RAM. The core will implement the TLB depending on the
parameters mentioned above. If the number of entries in the TLB allows keeping a copy of all posi-
tions in all page tables, the set address and tag data arrangement shown in table 613 will be used.

For the set address/tag RAM tables below the following values are used:

SB = Set address bits = log2(number of TLB entries)
HB = Required number of bits of physical address = See table 612 above.
GB = Required number of bits to select one group =log2(number of groups)

Table 612.TLB entry size vs. physical address bits

Entry
size in
bits

Entry
size in
IOPTEs

Bits of physical address needed to identify one position depending on page size

4 KiB 8 KiB 16 KiB 32 KiB 64 KiB 128 KiB 256 KiB 512 KiB

32 1 20 19 18 17 16 15 14 13

64 2 19 18 17 16 15 14 13 12

128 4 18 17 16 15 14 13 12 11

256 8 17 16 15 14 13 12 11 10

Table 613.Set address bits = (group ID bits) + (Physical address bits)
Set address:

31 (HB+BG-1) HB (HB-1) 0

Not present Group ID Physical address

Contents of Tag RAM:

31 0

Not present V

0 Valid (V) - Signals that addressed position in cache contains valid data
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If the number of entries in the TLB allows part of the group ID to be part of the set address, the
arrangement will be:

If the number of entries in the TLB only allows part of the required physical address to be part of the
set address, the arrangement will be:

In the first arrangement, where(set address bits) = (group ID bits) + (physical address bits), there
will never be a collision in the TLB. In the two other arrangements there is not room for all entries in
the page table(s). This means that a cached IOPTE for one memory page can be replaced with the
IOPTE for another memory page. Since the physical address is used as the set address, accesses from
a master assigned to one group may evict cached IOPTE’s belonging to another group. This may not
be wanted in systems where interference between groups of masters should be minimized. In order to
minimize inter-group interference, the core can be implemented with support for using as much of the
group ID as possible in the set address, this functionality is called group-set-addressing.

The core has support for group-set-addressing if the IT field in Capability register 0 is non-zero. If the
number of set address bits (TLB entries) is large enough to cache all page tables, the set address and
tag RAM arrangement will be as described by table 613. If the number of set address bits will allow
the whole group ID to be part of the set address, the arrangement will be:

If only part of the group ID can be used for the set address, the arrangement will be:

Table 614.Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB HB HB-1 0

Not present Part of Group ID Physical address

Contents of Tag RAM:

31 0

Not present Part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 615.Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB 0

Not present Low bits of physical address

Contents of Tag RAM:

31 HB-SB 1 0

Not present Group ID High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 616.Group set address: Set address bits < (group ID bits) + (Physical address bits)
Set address:

31 SB (GB-1) 0

Not present Low bits of physi-
cal address

Group ID

Contents of Tag RAM:

31 1 0

Not present High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 617.Group set address: Set address bits < (group ID bits)
Set address:

31 GB-SB-1 0
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Group-set-addressing is enabled via the GS field in the core’s Control register.

52.5.4 TLB flush operation

If the contents of a page table is modified the TLB must be flushed by writing to the TLB/Cache Flush
Register. The TLB/Cache Flush register contains fields to flush the entire TLB or to flush the entries
belonging to a specified group. In order to flush entries for a specific group, group-set-addressing
must be implemented and enabled. Performing a group flush without group-set-addressing may only
flush part of the TLB and can lead to unexpected behavior.

When working in IOMMU mode, the core can be configured to not store a IOPTE in the TLB if the
IOPTE’s valid (V) bit is cleared. This behavior is controller via the SIV field in the core’s Control reg-
ister.

The core will not propagate any transfers while a flush operation is in progress.

52.6 Fault-tolerance

In order to attain fault-tolerance the core should be implemented with inferred memory technology for
the read buffer, write buffer and any FCFS buffer. This will implement the buffers in flip-flops and the
core must then be implemented using techniques such as radiation hardened registers or TMR inser-
tion.

The Access Protection Vector cache and IOMMU TLB can be implemented with the same options as
above or using non-protected memory cells. When using non-protected memory cells the core can be
implemented to use byte-parity to protect entries in the cache/TLB. If an error is detected it will be
processed as a cache/TLB miss and the data will be re-read from main memory. A detected error will
also be reported via the core’s status register and the core also has support for signaling errors via its
statistic output.

Errors can be injected in the Access Protection Vector cache and IOMMU TLB via the Data and Tag
RAM Error Injection registers.

52.7 Statistics

In order to record statistics, a LEON4 Statistics Unit should be connected to the core. The core has the
following statistics outputs:

Not present Low part of group ID

Contents of Tag RAM:

31 1 0

Not present Physical address High part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 618.IOMMU Statistics

Output Description

hit High for one cycle during TLB/cache hit.

miss High for one cycle during TLB/cache miss

pass High for one cycle during passthrough access

accok High for one cycle during access allowed

accerr High for one cycle during access denied

walk High while core is busy performing a table walk or accessing the access protection vector

lookup High while core is performing cache lookup/table walk

perr High for one cycle when core detects a parity error in the APV cache

Table 617.Group set address: Set address bits < (group ID bits)
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52.8 Multi-bus bridge

The core can be instantiated in a version with two AHB master interfaces. These interfaces can be
connected to separate AHB buses. The top-level entity griommu_mb contains additional signals for
the second AHB master interface. Using the griommu_mb entity will enable bus select fields in the
core’s master configuration registers and the LB field in the core’s control register. The bus select
fields in the Master configuration registers allows the user to select which AHB master interface that
should be used for accesses initiated by a specific master. The control register field LB selects which
AHB master interfaces that should be used when the core fetches IOPTEs or APV bit vector data from
memory.

52.9 ASMP support

In some systems there may be a need to have separated instances of software each controlling a group
of masters. In this case, sharing of the IOMMU register interface may not be wanted as it would allow
software to modify the protection settings for a group of masters that belongs to another software
instance. The core can be implemented with ASMP support to support systems where software enti-
ties are separated by address space. In this case, the core’s register interface is mirrored on different 4
KiB pages. Different write protection settings can be set for each mirrored block of registers. This
allows use of a memory management unit to control that software running can write to one, and only
one, subset of registers.

When ASMP support is enabled, the field NARB in Capability register 0 is non-zero. The value of
NARB tells how many ASMP register blocks that are available. Each ASMP register block mirrors
the standard register set described in section 52.10 with the addition that some registers may be write
protected. Table 619 contains a column that shows if a register is writable when accessed from an
ASMP register block. The core’s Control register, Master configuration register(s), Diagnostic cache
registers, the ASMP access control register(s) can never be written via ASMP register block. These
registers are only available in the first register set starting at the core register set base address. ASMP
register blockn is mapped at an offsetn*0x1000 from the core’s register base address.

Software should first set up the IOMMU and assign the masters into groups. Then the ASMP control
registers should be configured to constrain which registers that can be written from each ASMP block.
After this initialization is done, other parts of the software environment can be brought up.

As an example, consider the case where OS A will control masters 0, 1 and 4 while OS B will control
masters 2 and 3. In this case it may be appropriate to map masters 0, 1 and 4 to group 0 and master 2
and 3 to group 1. The ASMP access control registers can then be configured to only allow accesses to
the Group control register for group 0 from ASMP register block 1 and likewise only allow accesses
to the Group control register for group 1 from ASMP register block 2.

OS A will then map in ASMP register block 1 (registers within page located at core base offset +
0x1000) and OS B will then map in ASMP register block 2 (registers within page located at core base
offset + 0x2000). This way OS a will be able to change the base address and the properties of group 0,
containing its masters, without being able to change the protection mechanisms of group 1 belonging
to OS B. Note that since an OS is able to flush the TLB/cache it is able to impact the I/O performance
of masters assigned to other OS instances. Also note that care must be taken when clearing status bits
and setting the mask register that controls interrupt generation.
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52.10 Registers

The core is programmed through registers mapped into AHB I/O address space. All accesses to regis-
ter address space must be made with word (32-bit) accesses.

Table 619.GRIOMMU registers

AHB address offset Register Writable in ASMP block

0x00 Capability register 0 No

0x04 Capability register 1 No

0x08 Capability register 2 No

0x0C Reserved -

0x10 Control register No

0x14 TLB/cache flush register Yes, protected**

0x18 Status register Yes, protected**

0x1C Interrupt mask register Yes, protected**

0x20 AHB Failing Access register No

0x24 - 0x3C Reserved, must not be accessed -

0x40 - 0x7C Master configuration registers.
Master n configuration register is located at offset 0x40 + n*0x4.

No

0x80-0xBC Group control registers.
Group n’s control register is located at offset 0x80 + n*0x4.

Yes, protected**

0xC0 Diagnostic cache access register No

0xC4 - 0xE0 Diagnostic cache access data registers 0 - 7 No

0xE4 Diagnostic cache access tag register No

0xE8 Data RAM error injection register No

0xEC Tag RAM error injection register No

0xF0 - 0xFF Reserved, must not be accessed No

0x100 - 0x13F ASMP access control registers.
The control register for ASMP block n is located at offset
0x100+n*0x4.

No

* Register is duplicated in ASMP register block at offset 0x1000 + register offset. The number of ASMP register blocks is
given by the NARB field in Capability register 0. ASMP register blockn starts at offsetn*0x1000. Register is only writ-
able if allowed by the corresponding ASMP access control register field.

Table 620.GRIOMMU Capability register 0
31 30 29 28 27 24 23 20 19 18 17 16 15 14 13 12 11 9 8 7 4 3 0

A AC CA CP RESERVED NARB CS FT ST I IT IA IP RESERVED MB GRPS MSTS

31 Access Protection Vector (A) - If this bit is ‘1’, the core has support for Access Protection Vector

30 Access Protection Vector Cache (AC) - If this bit is ‘1’, the core has a internal cache for Access Pro-
tection vector lookups.

29 Access Protection Vector Cache Addressing (CA):
0: Core only supports standard addressing, group number is used as tag
1: Core supports using group ID as part of cache set address

28 Access Protection Vector Cache Pipeline (CP) - If this bit is set to ‘1’ the core has a pipeline stage
added on the APV cache’s address. This means one cycle additional latency.

27:24 RESERVED

23:20 ASMP Register Blocks (NARB) - This field contains the number of ASMP register blocks that the
core implements. If this field is non-zero the core has NARB ASMP register blocks with the first
block starting at offset 0x1000 and the last block starting at offset NARB*0x1000.



AEROFLEX GAISLER 511 GRIP

19 Configurable Page Size (CS) - If this bit is ‘1’ the core supports several page sizes and the size is set
via the Control register field PGSZ. If this bit is ‘0’, a fixed page size of 4 KiB is used.

18:17 Fault Tolerance (FT) - “00” - No fault tolerance, “01” - APV cache and/or IOMMU TLB is protected
by parity

16 Statistics (S) - If this field is ‘1’ the core collects statistics

15 IOMMU functionality enable (I) - If this bit is ‘1’, the core has support for IOMMU functionality.

14 IOMMU TLB (IT) - If this bit is ‘1’, the core has an IOMMU Translation Lookaside Buffer (TLB)

13 IOMMU Addressing (IA):
0: Core only supports standard addressing, group number is used as tag
1: Core supports using group ID as part of TLB set address

12 IOMMU TLB Address Pipeline (IP) - If this bit is set to ‘1’ the core has a pipeline stage added on
the TLB’s address. This means one cycle additional latency.

11:9 RESERVED

8 Multi-bus (MB) - Set to 1 if core is connected to two system buses.

7:4 Number of groups (GRPS) - Number of groups that the core has been implemented to support - 1.

3:0 Numbers of masters (MSTS) - Number of masters that the core has been implemented to support - 1.

Reset value: Implementation dependent

Table 621.GRIOMMU Capability register 1
31 20 19 16 15 8 7 5 4 0

CADDR CMASK CTAGBITS CISIZE CLINES

31:20 Access Protection Vector Cacheable Address (CADDR) - If the CMASK field of this register is non-
zero the CADDR and CMASK fields specify the base address of the memory area protected by the
part of the bit vector that can be cached by the core.

19:16 Access Protection Vector Cacheable Mask (CMASK) - Number of ‘1’s in the Access Protection Vec-
tor Cachable mask. If the core is implemented with a Access Protection Vector cache and this value
is non-zero, the CMASK field together with the CADDR field specify a memory area protected by a
part of the bit vector that can be cached by the core. The CMASK value corresponds to the number
of most significant bits of the CADDR field that are matched against the incoming AMBA address
when determining if the protection bits for the memory area should be cached. As an example, if
CMASK is 1 and CADDR is 0x000, the core will cache protection information for the address range
0x00000000 - 0x7FFFFFFF. With the same mask and CADDR = 0x800, the core would cache pro-
tection information for the address range 0x80000000 - 0xFFFFFFFF.

15:8 Access Protection Vector Cache Tag bits (CTAGBITS) - The width in bits of the Access Protection
Vector cache’s tags.

7:5 Access Protection Vector Access size (CSIZE) - This field indicates the AMBA access size used
when accessing the Access Protection Vector in main memory. This is also the cache line size for the
APV cache (if enabled). The values are:
000: 32-bit (4 byte)
001: 64-bit (8 byte)
010: 128-bit (16 byte)
011: 256-bit (32-byte)

4:0 Access Protection Vector Cache Lines (CLINES) - Number of lines in the Access Protection Vector

cache. The number of lines in the cache is 2CLINES.

Reset value: implementation dependent

Table 622.GRIOMMU Capability register 2
31 24 23 20 19 18 17 16 15 8 7 5 4 0

TMASK RESERVED MTYPE TTYPE TTAGBITS ISIZE TLBENT

31:24 Translation Mask (TMASK) - The incoming IO address bits IOADDR[31:24] must match this field,
depending on the setting of the ITR field in the core’s Control register, for an address translation
operation to be performed.

Table 620.GRIOMMU Capability register 0
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23:20 RESERVED

19:18 IOMMU Type (MTYPE) - Shows IOMMU implementation type. This field is always 0, other values
are reserved for future versions of the core. If this field is non-zero, it should trigger a software alert
as future versions of the core may not be backward compatible.

17:16 TLB Type (TTYPE) - Show implementation of Translation Lookaside Buffer. This field is always 0,
other values are reserved for future versions of the core. If this field is non-zero, it should trigger a
software alert as future versions of the core may not be backward compatible.

15:8 TLB Tag bits (TTAGBITS) - The width in bits of the TLB tag.

7:5 IOMMU Access size (ISIZE) - This field indicates the AMBA access size used when accessing page
tables in main memory. This is also the line size for the TLB (if enabled). The values are:
000: 32-bit (4 byte)
001: 64-bit (8 byte)
010: 128-bit (16 byte)
011: 256-bit (32-byte)

4:0 TLB entries (TLBENT) - Number of entries in the TLB. The number of entries is 2TLBENT.

Reset value: implementation dependent

Table 623.GRIOMMU Control register
31 21 20 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PGSZ LB SP ITR DP SIV HPROT AU WP DM GS CE PM EN

31:21 RESERVED

20:18 Page Size (PGSZ) - The value in this field determines the page size mapped by page table entries and
bit vector positions. Valid values are:

000: 4 KiB
001: 8 KiB
010: 16 KiB
011: 32 KiB
100: 64 KiB
101: 128 KiB
110: 256 KiB
111: 512 KiB

This field is only writable if the CS field in Capability register 0 is non-zero.

17 Lookup bus (LB) - The value of this bit controls AHB master interface to use for fetching bit vector
and/or page table entries from memory when the core has been implemented with support for multi-
ple buses (multiple AHB master interfaces). If this field is ‘0’, the first master interface will be used
for vector/table lookups. If this field is ‘1’, the second master interface will be used for lookups.

This field is only writable if the MB field in Capability register 0 is non-zero.

16 SPLIT support (SP) - The value of this bit controls if the core can issue AMBA SPLIT responses to
masters on the IO bus. If this bit is ‘1’ the core will use AMBA SPLIT responses. If this bit is ‘0’, the
core will insert waitstates and not issue AMBA SPLIT responses. This bit is read-only if the core has
been implemented with support for only one response mode. If this bit is writable, software must
make sure that the IO bus is free and that the core is not handling any ongoing accesses before
changing the value of this bit. The core performs rudimentary checks in order to determine if the
slave side is idle before changing SPLIT behavior. Therefore AMBA SPLIT responses may not be
disabled or enabled immediately after this bit is written.

15:12 IOMMU Translation Range (ITR) - This field defines the size of the address range translated by the

core’s IOMMU functionality. The size of the decoded address range is 16 MiB * 2ITR and the
decoded memory area is located on an address with the most significant bits specified by the
TMASK field in Capability register 2, unless ITR = 8 in which case the whole address space is cov-
ered by the translated range.

Table 622.GRIOMMU Capability register 2
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11 Disable Prefetch (DP) - When this bit is ‘1’ the core will not perform any prefetch operations. This
bit is read only if the core has been implemented without support for prefetching data. During nor-
mal operation prefetch of data improves performance and should be enabled (the value of this bit
should be ‘0’). Prefetching may need to be disabled in scenarios where IOMMU protection is
enabled, which leads to a prefetch operation on every incoming burst access, and when the core is
used in bi-directional bridge configurations where dead locks may be resolved by the core dropping
prefetch data.

10 Save Invalid IOPTE (SIV) - If this field is ‘1’ the core will save IOPTEs that have their valid (V) bit
set to ‘0’ if the core has been implemented with a TLB. If this field is ‘0’ the core will not buffer an
IOPTE with valid (V) set to ‘0’ and perform an page table lookup every time the page covered by the
IOPTE is accessed. If the value of this field is changed, a TLB flush must be made to remove any
existing IOPTEs from the core’s internal buffer. Also if this field is set to ‘0’, any diagnostic accesses
to the TLB should not set the IOPTE valid bit to ‘0’ unless the Tag valid bit is also set to ‘0’.

This field is only accessible if the core has support for IOMMU protection and is implemented with
a Translation Lookaside Buffer (TLB).

9:8 HPROT encoding (HPROT) - The value of this field will be assigned to the AMBA AHB HPROT
signal bits 3:2 when the core is fetching protection data from main memory. HPROT(3) signals if the
access is cacheable and HPROT(2) signals if the access is bufferable.

This field is only used when the core has been implemented with support for Access Protection Vec-
tor or IOMMU functionality.

7 Always Update (AU) - If this bit is set to ‘0’ the AHB failing access register will only be updated if
the Access Denied (AD) bit in the Status register is ‘0’ when the access is denied. Otherwise the
AHB failing access register will be updated each time an access is denied, regardless of the Access
Denied (AD) bit’s value.

6 Write Protection only (WP) - If this bit is set to ‘1’ the core will only used the Access Protection
Vector to protect against write accesses. Read accesses will be propagated over the core without any
access restriction checks. This will improve the latency for read operations.

This field has no effect when the core is using IOMMU protection (PM field = “01”). When using
IOMMU protection all accesses to the range determined by TMASK and ITR will be checked
against the page table, unless the access is from a master that is assigned to an inactive group or a
group in pass-through mode.

5 Diagnostic Mode (DM) - If this bit is set to ‘1’ the core’s internal buffers can be accessed via the
Diagnostic interface (see Diagnostic cache access register) when the DE field of the Status register
has been set by the core. Set this bit to ‘0’ to leave Diagnostic mode. While in this mode the core will
not forward any incoming AMBA accesses.

4 Group-Set-addressing (GS) - When this bit is set to ‘1’, the core will use the group number as part of
the Access Protection Vector cache set address. This bit can only be set if fields A and CA, or I and
IA, of Capability register 0 are non-zero.

3 Cache/TLB Enable (CE) - When this bit is set to ‘1’, the core’s internal cache/TLB is enabled. Note
that the core can be implemented without internal cache/TLB. Capability register 0, fields AC and IT
show if the core has internal cache.

2:1 Protection Mode (PM) - This value selects the protection mode to use. “00” selects Group Mode
and/or Access Protection Vector mode (if available). “01” selects IOMMU mode. This field is read
only if the core only has support for one mode setting.

0 Enable (EN) - Core enable. If this bit is set to 1 the core is enabled. If this bit is set to 0 the core is
disabled and in pass-through mode. After writing this bit software should read back the value. The
change has not taken effect before the value of this bit has changed. The bit transition may be
blocked if the core is in diagnostic access mode or otherwise occupied.

Reset value: 0x00000000 if core has support for APV. 0x00000002 if core only supports IOMMU protection.

Table 624.GRIOMMU TLB/cache flush register
31 8 7 4 3 2 1 0

RESERVED FGRP RES GF F

31:1 RESERVED

Table 623.GRIOMMU Control register
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7:4 Flush Group (FGRP) - This field specifies the group to be used for a Group Flush, see GF field
below.

3:2 RESERVED

1 Group Flush (GF) - When this bit is written to ‘1’ the cache entries for the group selected by the
FGRP field will be flushed. More precisely the core will use the FGRP field as (part of the) set
address when performing the flush. This flush option is only available if the core has support for
group set addressing (CA field of Capability register 1 is non-zero). This flush option must only be
used if the GS bit in the Control register is set to ‘1’, otherwise old data may still be marked as valid
in the Access Protection Vector cache or IOMMU TLB. This bit will be reset to ‘0’ when a flush
operation has completed. A flush operation also affects the FL and FC fields in the Status register.

0 Flush (F) - When this bit is written to ‘1’ the core’s internal cache will be flushed. This bit will be
reset to ‘0’ when a flush operation has completed. A flush operation also affects the FL and FC fields
in the Status register.

Reset value: 0x00000000

Table 625.GRIOMMU Status register
31 6 5 4 3 2 1 0

RESERVED PE DE FC FL AD TE

31:6 RESERVED

5 Parity Error (PE) - The core sets this bit to ‘1’ when it detects a parity error in the tag or data RAM
of the APV cache. This field is cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.

4 Diagnostic Mode Enabled (DE) - If this bit is set to ‘1’ the core is in Diagnostic Mode where the
core’s internal buffers can be accessed via the Diagnostic access registers. While in this mode the
core will not forward any incoming AMBA accesses.

3 Flush Completed (FC) - The core sets this bit to ‘1’ when a flush operation completes. This field is
cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.

2 Flush started (FL) - The core sets this bit to ‘1’ when a Flush operation has started. This field is
cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.

1 Access Denied (AD) - The core denied an AMBA access. This field is cleared by writing ‘1’ to this
position, writes of ‘0’ have no effect.

0 Translation Error (TE) - The core received an AMBA ERROR response while accessing the bit vec-
tor or page tables in memory. This also leads to the incoming AMBA access being inhibited.
Depending on the status of the Control register’s AU field and this register’s AD field this may also
lead to an update of the AHB Failing Access register.

Reset value: 0x00000000

Table 626.GRIOMMU Interrupt mask register
31 6 5 4 3 2 1 0

RESERVED PEI R FCI FLI ADI TEI

31:6 RESERVED

5 Parity Error Interrupt (PEI) - If this bit is set to ‘1’ an interrupt will be generated when the PE bit in
the Status register transitions from ‘0’ to ‘1’.

4 RESERVED

3 Flush Completed Interrupt (FCI) - If this bit is set to ‘1’ an interrupt will be generated when the FC
bit in the Status register transitions from ‘0’ to ‘1’.

2 Flush Started Interrupt (FLI) - If this bit is set to ‘1’ an interrupt will be generated when the FL bit in
the Status register transitions from ‘0’ to ‘1’..

1 Access Denied Interrupt (ADI) - If this bit is set to ‘1’ an interrupt will be generated when the AD bit
in the Status register transitions from ‘0’ to ‘1’.

Table 624.GRIOMMU TLB/cache flush register
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0 Translation Error Interrupt (TEI) - If this bit is set to ‘1’ an interrupt will be generated when the TE
bit in the Status register transitions from ‘0’ to ‘1’.

Reset value: 0x00000000

Table 627.GRIOMMU AHB failing access register
31 5 4 3 2 1 0

FADDR[31:5] FW FMASTER

31:5 Failing Address (FADDR[31:5]) - Bits 31:5 of IO address in access that was inhibited by the core.
This field is updated depending on the value of the Control register AU field and the Status register
AD field.

4 Failing Write (FW) - If this bit is set to ‘1’ the failed access was a write access, otherwise the failed
access was a read access. This field is updated depending on the value of the Control register AU
field and the Status register AD field.

3:0 Failing Master (FMASTER) - Index of the master that initiated the failed access. This field is
updated depending on the value of the Control register AU field and the Status register AD field.

Reset value: 0x00000000

Table 628.GRIOMMU Master configuration register(s)
31 24 23 12 11 5 4 3 0

VENDOR DEVICE RESERVED BS GROUP

31: 24 Vendor ID (VENDOR) - GRLIB Plug’n’play Vendor ID of master

23: 12 Device ID (DEVICE) - GRLIB Plug’n’play Device ID of master

11: 5 RESERVED

4 Bus select for master (BS) - Master n’s bus select register is located at register address offset 0x40 +
n*0x4. This field specifies the the bus to use for accesses initiated by AHB master n. This field is
only available if the MB field in Capability register 0 is non-zero.

3:0 Group assignment for master - Master n’s group assignment field is located at register address offset
0x40 + n*0x4. This field specifies the group to which a master is assigned.

Reset value: 0x00000000

Table 629.GRIOMMU Group control register(s)
31 1 0

BASE[31:2+SIZE] P AG

31: 2 Base address (BASE) - Group n’s control register is located at offset 0x80 + n*0x4. This field con-
tains the base address of the data structure for the group.

The number of bits writeable in the data structure base address depends on the access size used to
fetch entries in the Access Protection Vector and/or the IOMMU page table. The access size is given
in the ISIZE and CSIZE Capability register fields.

This field is only writable if the core has been implemented with support for Access Protection Vec-
tor and/or IOMMU functionality.

Table 626.GRIOMMU Interrupt mask register
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1 Pass-through (P) - If this bit is set to ‘1’ and the group is active (see bit 0 below) the core will pass-
through all accesses made by master in this group and not use the address specified by BASE to per-
form look-ups in main memory. Note that this also means that the access will pass through untrans-
lated when the core is using IOMMU protection (even if the access is outside the translated range
defined by TMASK in Capability register 2).

If this bit is set to ‘0’, the core will use the contents in its cache, or in main memory, to perform
checks and possibly address translation on incoming accesses.

If the core has been implemented without support for Access Protection Vector and IOMMU, this
field is disabled.

0 Active Group (AG) - Indicates if the group is active. If this bit is set to ‘0’, all accesses made by mas-
ters assigned to this group will be blocked.

If the core has been implemented without support for Access Protection Vector and IOMMU,
accesses will be propagated if this bit is set to ‘1’. If the core has been implemented with support for
Access Protection Vector and/or IOMMU the core will check the P field of this register and possibly
also the in-memory data structure before allowing or blocking the access.

Reset value: 0x00000000

Table 630.GRIOMMU Diagnostic cache access register
31 30 29 22 21 20 19 18 0

DA RW RESERVED DP TP R SETADDR

31 Diagnostic Access (DA) - When this bit is set to ‘1’ the core will perform a diagnostic operation to
the cache address specified by the SETADDR field. When the operation has finished this bit will be
reset to ‘0’.

30 Read/Write (RW) - If this bit is ‘1’ and the A field is set to ‘1’ the core will perform a read operation
to the cache. The result will be available in the Diagnostic cache access tag and data register(s). If
this bit is set to ‘0’ and the A field is set to ‘1’, the core will write the contents of the Diagnostic
cache access tag and data registers to the internal cache.

29:22 RESERVED

21 Data Parity error (DP) - This bit is set to ‘1’ if a parity error has been detected in the word read from
the cache’s data RAM. This bit can be set even if no diagnostic cache access has been made and it
can also be set after a cache write operation. This bit is read-only.

20 Tag Parity error (TP) - This bit is set to ‘1’ if a parity error has been detected in the word read from
the cache’s tag RAM. This bit can be set even if no diagnostic cache access has been made and it can
also be set after a cache write operation. This bit is read-only.

19 RESERVED

18:0 Cache Set Address (SETADDR) - Set address to use for diagnostic cache access. When a read oper-
ation has been performed, this field should not be changed until all wanted data has been read from
the Diagnostic cache access data and tag registers. Changing this field invalidates the contents of the
data and tag registers.

* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set
Reset value: 0b0000000000UU0UUUUUUUUUUUUUUUUUUU, where U is undefined

Table 631.GRIOMMU Diagnostic cache access data register 0 - 7
31 0

CDATAn

31:0 Cache data word n (CDATAn) - The core has 8 Diagnostic cache access data registers. Diagnostic
cache access data register n holds data bits [31+32*n:32*n] in the cache line.

* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set
Reset value: Undefined

Table 629.GRIOMMU Group control register(s)
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Table 632.GRIOMMU Diagnostic cache access tag register
31 0

TAG V

31:1 Cache tag (TAG) - The size of the tag depends on cache size. The contents of the tag depends on
cache size and addressing settings.

0 Valid (V) - Valid bit of tag

* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set
Reset value: Undefined

Table 633.GRIOMMU Data RAM error injection register
31 0

DPERRINJ

31:0 Data RAM Parity Error Injection (DPERRINJ) - Bit DPERRINJ[n] in this register is XOR:ed with
the parity bit for data bits [7+8*n:8*n] in the data RAM.

* This register can only be accessed if the core has an internal cache and the FT field in Capability register 0 is non-zero
Reset value: 0x00000000

Table 634.GRIOMMU Tag RAM error injection register
31 0

TPERRINJ

0 Tag RAM Parity Error Injection (TPERRINJ) - Bit TPERRINJ[n] in this register is XOR:ed with the
parity bit for tag bits [7+8*n:8*n] in the tag RAM.

* This register can only be accessed if the core has an internal cache and the FT field in Capability register 0 is non-zero
Reset value: 0x00000000

Table 635.GRIOMMU ASMP access control register(s)
31 19 18 17 16 15 0

RESERVED FC SC MC GRPACCSZCTRL

31: 19 RESERVED

18 Flush register access control (FC) - If this bit is set to ‘1’ in the ASMP control register at offset
0x100 + n*0x4 then the TLB/cache flush register in ASMP register block n is writable. Otherwise
writes to the TLB/cache flush register in ASMP register block n will be inhibited.

17 Status register access control (SC) - If this bit is set to ‘1’ in the ASMP control register at offset
0x100 + n*0x4 then the Status register in ASMP register block n is writable. Otherwise writes to the
Status register in ASMP register block n will be inhibited.

16 Mask register access control (MC) - If this bit is set to ‘1’ in the ASMP control register at offset
0x100 + n*0x4 then the Master register in ASMP register block n is writable. Otherwise writes to the
Mask register in ASMP register block n will be inhibited.

15:0 Group control register access control (GRPACCSZCTRL) - ASMP register block n’s group access
control field is located at register address offset 0x100 + n*0x4. This field specifies which of the
Group control registers that are writable from an ASMP register block. If GRPACCSZCTRL[i] in
the ASMP access control register at offset 0x100 + n*0x4 is set to ‘1’ then Group control register i is
writable from ASMP register block n.

Reset value: 0x00000000
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52.11 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x04F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

If implemented, the core’s second AHB master interface has 0x01 (Aeroflex Gaisler) and device iden-
tifier 0x010.

52.12 Implementation

52.12.1 Technology mapping

The core has two technology mapping genericsmemtechand fcfsmtech.memtechselects which mem-
ory technology that will be used to implement the FIFO memories.fcfsmtechselects the memory
technology to be used to implement the First-come, first-served buffer, if FCFS is enaled.

52.12.2 RAM usage

The core instantiates one or severalsyncram_2pblocks from the technology mapping library (TECH-
MAP). If prefetching is enabled max(mstmaccsz, slvaccsz)/32syncram_2pblock(s) with organization
(max(rburst,iburst)-max(mstmaccsz, slvaccsz)/32) x 32 is used to implement read FIFO
(max(rburst,iburst) is the size of the read FIFO in 32-bit words). max(mstmaccsz, slvaccsz)/32
syncram_2pblock(s) with organization(wburst -max(mstmaccsz, slvaccsz)/32) x 32, is always used
to implement the write FIFO (wherewburst is the size of the write FIFO in 32-bit words).

If the core has support for first-come, first-served ordering then onefcfsx 4 syncram_2pblock will be
instantiated, using the technology specified by the VHDL genericfcfsmtech.

If the core has an Access Protection Vector cache and/or IOMMU TLB, the cache/TLB will be imple-
mented using onesyncramft block for the tag RAM and onesyncramft block for the data RAM.

52.13 Configuration options

Table 636 shows the configuration options of the core (VHDL generics).

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default

memtech Memory technology

iohsindex Slave I/F AHB index on IO bus 0 to NAHBMST-1 0

syshmindex Master I/F AHB index on System bus 0 to NAHBMST-1 0

syshmindex2 Master I/F AHB index for second AHB interface. Only
available if the entity griommu_mb is instantiated.

0 to NAHBMST-1 0

syshsindex Index for register slave AHB I/F connected to same bus
as core Master I/F

0 to NAHBMST-1 0

syshmaddr ADDR field of AHB slave BAR 0 on system bus 0 - 16#FFF# 0

syshmask MASK field of AHB slave BAR 0 on system bus. The
requied value of this generic depends on the setting of
generic narb (see below).

0 - 16#FFF# 16#FFF#

syshirq Interrupt line to use for IOMMU interrupts 1 - NAHBIRQ-1 1

dir 0 - clock frequency on the master bus is lower than or
equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than or
equal to the frequency on the slave bus

(for VHDL genericffact = 1 the value of dir does not
matter)

0 - 1 0
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ffact Frequency scaling factor between AHB clocks on master
and slave buses.

1 - 15 2

slv Slave bridge. Used in bi-directional bridge configuration
whereslv is set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge (slv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.

This generic must only be set to 1 for a bridge where the
frequency of the bus connecting the master interface is
higher or equal to the frequency of the AHB bus con-
necting to the bridge’s slave interface. Otherwise a race
condition during access collisions may cause the bridge
to deadlock.

0 - 1 0

pfen Prefetch enable. Enables read FIFO. 0 - 1 0

irqsync Interrupt forwarding. Forward interrupts from slave
interface to master interface and vice versa.
0 - no interrupt forwarding, 1 - forward interrupts 1 - 15,
2 - forward interrupts 0 - 31.
Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in
a bi-directional AHB/AHB bridge.

0 - 2 0

wburst Length of write bursts in 32-bit words. Determines write
FIFO size and write burst address boundary. If the
wburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generic
must be set so that the buffer can contain two of the max-
imum sized accesses that the bridge can handle.

2 - 32 8

iburst Instruction fetch burst length. This value is only used if
the genericibrsten is set to 1. Determines the length of
prefetching instruction read bursts on the master side.
The maximum of (iburst,rburst) determines the size of
the core’s read buffer FIFO.

4 - 8 8

rburst Incremental read burst length. Determines the maximum
length of incremental read burst of unspecified length
(INCR) on the master interface. The maximum ofrburst
andiburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8 the
bridge will not perform read bursts over a 8x4=32 byte
boundary.

This generic must be set so that the buffer can contain
two of the maximum sized accesses that the bridge can
handle.

For systems where AHB masters perform fixed length
burst (INCRx , WRAPx)rburst should not be less than
the length of the longest fixed length burst.

4 - 32 8

bar0 Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BAR0) on the slave
interface. The generic has the same bit layout as bank
address registers with bits [19:18] suppressed (use func-
tions ahb2ahb_membar and ahb2ahb_iobar in
gaisler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0

bar2 Address area 2 (BAR2) 0 - 1073741823 0

bar3 Address area 3 (BAR2) 0 - 1073741823 0

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default
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sbus The number of the AHB bus to which the slave interface
is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 0

ioarea Address of the I/O area containing the configuration area
for AHB bus connected to the bridge’s master interface.
This address appears in the bridge’s slave interface user-
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the bus
connected to the bridge’s master interface, the I/O area
must be mapped on one of the bridge’s BARs.

If this generic is set to 0, some tools, such as Aeroflex
Gaisler’s GRMON debug monitor, will not perform
Plug’n’Play scanning over the bridge.

0 - 16#FFF# 0

ibrsten Instruction fetch burst enable. If set, the bridge will per-
form bursts ofiburst length for opcode access
(HPROT[0] = ‘0’), otherwise bursts ofrburst length will
be used for both data and opcode accesses.

0 - 1 0

lckdac Locked access error detection and correction. Locked
accesses may lead to deadlock if a locked access is made
while an ongoing read access has received a SPLIT
response. The value of lckdac determines how the core
handles this scenario:

0: Core will deadlock
1: Core will issue an AMBA ERROR response to the
locked access
2: Core will allow both accesses to complete.

If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made
simultaneously in both directions. Withlckdac set to 0
the core will deadlock. Withlckdac set to a non-zero
value the slave bridge will issue an ERROR response to
the incoming locked access.

0 - 2 0

slvmaccsz The maximum size of accesses that will be made to the
bridge’s slave interface. This value must equalmst-
maccsz unlessrdcomb /= 0 andwrcomb /= 0.

32 - 256 32

mstmaccsz The maximum size of accesses that will be performed by
the bridge’s master interface. This value must equalmst-
maccsz unlessrdcomb /= 0 andwrcomb /= 0.

32 - 256 32

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default
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rdcomb Read combining. If this generic is set to a non-zero value
the core will use the master interface’s maximum AHB
access size when prefetching data and allow data to be
read out using any other access size supported by the
slave interface.

If slvmaccsz > 32 and mstmaccsz > 32 and an incoming
single access, or access to a non-prefetchable area, is
larger than the size supported by the master interface the
bridge will perform a series of small accesses in order to
fetch all the data. If this generic is set to 2 the core will
use a burst of small fetches. If this generic is set to 1 the
bridge will not use a burst unless the incoming access
was a burst.

Read combining is only supported for single accesses
and incremental bursts of unspecified length.

0 - 2 0

wrcomb Write combining. If this generic is set to a non-zero
value the core may assemble several small write accesses
(that are part of a burst) into one or more larger accesses
or assemble one or more accesses into several smaller
accesses. The settings are as follows:

0: No write combining

1: Combine if burst can be preserved

2: Combine if burst can be preserved and allow single
accesses to be converted to bursts (only applicable if slv-
maccsz > 32)

Only supported for single accesses and incremental
bursts of unspecified length

0 - 2 0

combmask Read/write combining mask. This generic determines
which ranges that the core can perform read/write com-
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmask is
treated as a 16-bit vector with LSB bit (right-most) indi-
cating address 0x0 - 0x10000000. Making an access to
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb = 0 and wrcomb = 0. However, combmask is not
taken into account when the core performs a prefetch
operation (see pfen generic). When a prefetch operation
is initiated, the core will always use the maximum sup-
ported access size (when rdcomb /= 0).

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types

2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.
1: Support all types of bursts
0: Only support incremental bursts of unspecified length

See section 52.2.7 for more information.

When allbrst is enabled, the core’s read buffer (size set
via rburst/iburst generics) must have at least 16 slots.

0 - 2 0

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default
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ifctrlen Interface control enable. When this generic is set to 1 the
input signalsifctrl.mstifen andifctrl.slvifen can be used
to force the AMBA slave respectively master interface
into an idle state. This functionality is intended to be
used when the clock of one interface has been gated-off
and any stimuli on one side of the bridge should not be
propagated to the interface on the other side of the
bridge.

When this generic is set to 0, the ifctrl.* input signals are
unused.

0 - 1 0

fcfs First-come, first-served operation. When this generic is
set to a non-zero value, the core will keep track of the
order of incoming accesses and handle the requests in
the same order. If this generic is set to zero the bridge
will not preserve the order and leave this up to bus arbi-
tration. If FCFS is enabled the value of this generic must
be higher or equal to the number of masters that may
perform accesses over the bridge.

0 - NAHBMST 0

fcfsmtech Memory technology to use for FCFS buffer. When
VHDL genericfcfs is set to a non-zero value, the core
will instantiate a 4 bit xfcfs buffer to keep track of the
incoming master indexes. This generic decides the mem-
ory technology to use for the buffer.

0 - NTECH 0 (inferred)

scantest Enable scan support 0 - 1 0

split Use AMBA SPLIT responses. When this generic is set to
1 the core will issue AMBA SPLIT responses. When this
generic is set to 0 the core will insert waitstates instead
and may also issue AMBA RETRY responses. If this
generic is set to 0, thefcfs generic must also be set to 0,
otherwise a simulation failure will be asserted.

0 - 1 1

dynsplit Dynamic SPLIT responses. If this generic is non-zero
the Control register field SP will be writable. This allows
software to control if the core should use AMBA SPLIT
responses or waitstates on the IO bus. The VHDL
genericsplit must be set to 1 if this generic is set to 1.

0 - 1 0

nummst Number of masters connected to the bus that the core’s
slave interface connects to.

1 - NAHBMST-1 1

numgrp Number of groups 1 - NAHBMST-1 1

stat Enable statistics outputs 0 - 1 0

apv Include support for Access Protection Vector (APV).
Setting this generic to 1 includes support.

0 - 1 1

apvc_en Access Protection Vector cache. 0: disabled, 1: enabled. 0 - 1 0

apvc_ways Number of ways in Access Protection Vector cache 1 - 1 1

apvc_lines Number of lines in each way of the Access Protection
vector cache. The total size of the data cache in bytes
will be apvc_ways * tbw_accsz/8 * apvc_lines. This
value must be a power of two.

If the core is implemented with an IOMMU TLB, the
maximum value of this generic and VHDL generic
tlb_num determines the number of lines in the cache.

16

apvc_tech Access Protection Vector cache memory technology.
This generic decides the technology setting for the
cache’s tag and data RAM.

0 - NTECH 0 (inferred)

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default



AEROFLEX GAISLER 523 GRIP

apvc_gseta Allow use of group ID as part of cache set address. This
allows cache addressing scheme 2 to be used. The value
0 disables the use of group ID as part of the cache set
address and 1 enables the functionality. If the core is
implemented with an IOMMU TLB and VHDL generic
tlb_gseta is set to non-zero value, this will also enable
apvc_gseta.

This generic may only be set to a non-zero value if
VHDL genericnumgrp > 1.

0 - 1 0

apvc_caddr If genericapvc_cmask is non-zero this generic specifies
the base address of the memory area that the core will
cache protection information for.The area is specified in
the same way as addresses for AHB slaves. To cache
protection information for the block 0x40000000 -
0x7FFFFFFF, set this generic to 0x400 andapvc_cmask
to 0xC00.

0 - 16#FFF# 0

apvc_cmask Specifies size of memory block for which protection
information will be cached by the core. If this generic is
zero the core will cache protection information for the
full AMBA address range. If this generic is 0x800 the
core will cache information for half the AMBA address
range, the base address for the cacheable area is specified
by apvc_caddr.

0 - 16#FFF# 0

apvc_pipe Insert pipelining registers on APV cache.

The master -> group -> cache path may become critical
in a design. If there are timing problem on the tag or
cache RAM address inputs, set this generic to 1 and suf-
fer one cycle in additional penalty on cache accesses.

If the core is implemented with an IOMMU TLB and
VHDL generictlb_pipeis set to non-zero value, this will
also enableapvc_pipe.

0 - 1 0

iommu Enable IOMMU functionality 0 - 1 0

iommutype Selects type of IOMMU functionality. Set to 0 0 - 1 0

tlb_num Number of entries in the IOMMU translation lookaside
buffer (TLB). A value of zero here implements the core
without a TLB. The width of an entry is determined
through the VHDL generic tbw_accsz. The total size of
the TLB in bytes will be tbw_accsz/8 * tlb_num. This
value must be a power of two.

If the core has been implemented with an APV cache,
the maximum value of this generic and VHDL generic
apvc_lines determines the number of entries in the TLB.

0 - 64 0

tlb_type Selects TLB implementation. Set to 0. 0 - 1 0

tlb_tech TLB memory technology. This generic decides the tech-
nology setting to use for implementing the TLB. In the
current version of the bridge this generic and VHDL
genericapvc_tech must have the same value.

0 - NTECH 0 (inferred)

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default
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tlb_gseta Allow use of group ID as part of TLB set address. This
allows cache addressing scheme 2 to be used. The value
0 disables the use of group ID as part of the TLB set
address and 1 enables the functionality. If the core is
implemented with an APV cache and VHDL generic
apvc_gseta is set to non-zero value, this will also enable
tlb_gseta.

This generic may only be set to a non-zero value if
VHDL genericnumgrp > 1.

0 - 1 0

tlb_pipe Insert pipelining registers on TLB address.

The master -> group -> TLB path may become critical in
a design. If there are timing problem on the tag or cache
RAM address inputs, set this generic to 1 and suffer one
cycle in additional penalty on cache accesses.

If the core is implemented with an APV cache and
VHDL genericapvc_pipe is set to non-zero value, this
will also enabletlb_pipe.

0 - 1 0

tmask Translation mask. Specifies the value that the most sig-
nificant bits of the IO address must have for an address to
be translated. Bits 7:0 of this value specified
TMASK[31:24]. The default value 0xff is recommended.
However, this may not work well if the IO bus has a
GRLIB plug’n’play area.

Note that tmask must specify an address range that is
covered by one of the core’s memory bars. Otherwise the
core will not be selected by the AHB bus controller when
the tmask area is accessed.

0 - 16#ff# 16#ff#

tbw_accsz AMBA access size to use when fetching entries of the
Access Protection Vector and/or the IOMMU page table.
This value also sets the Access Protection Vector cache
line size and the TLB entry size. This value must not
exceed the maximum access size for the AHB master
interface.

32 -mstmaccsz 32

dpagesz Support for dynamic page size. If this generic is set to 1
the core will support selecting the page size via the Con-
trol register. If this generic is set to 0, the page size is
fixed to 4 KiB.

0 - 1 0

ft Fault tolerance. This setting determines if the APV cache
and/or TLB tag and data RAMs should be protected
against faults. Possible values are:
0 - disabled, 1 - byte parity

0 - 1 0

narb Number of ASMP register blocks. The core will be
implemented with narb ASMP register blocks. the
required syshmask settings for different narb values are:
narb 0 : hmask 0xfff, narb 1 : hmask 0xfe, narb 2 -3 :
hmask 0xfc, narb 4-7 : hmask 0xf80, narb 8 - 15 : hmask
0xf00

multiirq Enable interrupt propagation for second AHB master
interface. This generic is only available if the the entity
griommu_mb is instantiated. If this generic is set to ‘1’,
interrupt propagation, as configured via the irqsync
generic, will also be done for the second AHB master
interface.

0 - 1 0

Table 636.Configuration options (VHDL generics)

Generic Function Allowed range Default
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52.14 Signal descriptions

Table 637 shows the interface signals of the core (VHDL ports).

Table 637.Signal descriptions (VHDL ports)

Signal name Field Type Function Active

RST Input Reset Low

HCLKSYS Input AHB system bus clock -

HCLKIO Input AHB IO bus clock -

IO_AHBSI * Input AHB slave input signals -

IO_AHBSO * Output AHB slave output signals -

IO_AHBPNP * Input AHB master output vector signals (on io/slave i/f
side). Used to decode plug’n’play vendor/device
ID of masters so that these values can be visible
in the Master control register(s).

-

SYS_AHBMI * Input AHB master input signals -

SYS_AHBMO * Output AHB master output signals -

SYS_AHBPNP * Input AHB slave input vector signals (on system/mas-
ter i/f side). Used to decode cachability and
prefetchability Plug&Play information on bus
connected to the bridge’s master interface.

-

SYS_AHBMI2 * Input AHB master input signals, second interface.
Only available on griommu_mb entity.

-

SYS_AHBMO2 * Output AHB master output signals, second interface.
Only available on griommu_mb entity.

-

SYS_AHBPNP2 * Input AHB slave input vector signals (on system/mas-
ter i/f side). Used to decode cachability and
prefetchability Plug&Play information on bus
connected to the bridge’s second master inter-
face. Only available on griommu_mb entity.

-

SYS_AHBSI * Input AHB slave input signals -

SYS_AHBSO * Output AHB slave output signals -

WLK_AHBMI * Input AHB master input signals -

WLK_AHBMO * Output AHB master output signals -

LCKI slck
blck
mlck

Input Used in systems with multiple AHB/AHB
bridges (e.g. bi-directional AHB/AHB bridge) to
detect deadlock conditions. Tie to “000” in sys-
tems with only uni-directional AHB/AHB bus.

High

LCKO slck
blck
mlck

Output Indicates possible deadlock condition High

STATO

(clocked by
HCLKSYS)

hit Output High for one cycle during TLB/cache hit. High

miss Output High for one cycle during TLB/cache miss High

pass Output High for one cycle during passthrough access High

accok Output High for one cycle during access allowed High

accerr Output High for one cycle during access OK High

walk Output High while core is busy performing a table walk
or accessing the access protection vector

High

lookup Output High while core is performing cache lookup/
table walk

High

perr Output High for one cycle when core detects a parity
error in the APV cache

High
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52.15 Library dependencies

Table 638 shows the libraries used when instantiating the core (VHDL libraries).

52.16 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.iommu.all;

entity griommu_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

architecture rtl of griommu_ex is

 -- AMBA signals, system bus
  signal proc_ahbsi       : ahb_slv_in_type;
  signal proc_ahbso       : ahb_slv_out_vector;
  signal proc_ahbmi       : ahb_mst_in_type;
  signal proc_ahbmo       : ahb_mst_out_vector;

  -- AMBA signals, IO bus
  signal io_ahbsi  : ahb_slv_in_type;
  signal io_ahbso  : ahb_slv_out_vector;

IFCTRL mstifen Input Enable master interface. This input signal is
unused if the VHDL genericifctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface.

High

slvifen Input Enable slave interface. This input signal is
unused if the VHDL genericifctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
slave interface, otherwise the interface will
always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interface
to the core’s AMBA master interface.

High

* see GRLIB IP Library User’s Manual

Table 638.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration

Table 637.Signal descriptions (VHDL ports)

Signal name Field Type Function Active
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  signal io_ahbmi  : ahb_mst_in_type;
  signal io_ahbmo  : ahb_mst_out_vector;

 signal nolock           : griommu_ctrl_type;
  signal noifctrl         : griommu_ifctrl_type;
  signal dbgifctrl        : griommu_ifctrl_type;
  signal griommu_stato    : griommu_stat_type;

begin

nolock <= griommu_ctrl_none;
noifctrl <= griommu_ifctrl_none

-- Instantiate clock generators and AHBCTRL cores here
....
....
-- GRIOMMU
iommu: griommu
    generic map (
      memtech     => memtech,
      iohsindex   => 0,
      syshmindex  => 4,
      syshsindex  => 4,
      syshaddr    => 16#200#,
      syshmask    => 16#FFE#,
      syshirq     => 1,
      slv         => 0,
      dir         => 1,
      ffact       => 1,
      pfen        => 1,
      wburst      => 8,
      iburst      => 8,
      rburst      => 8,
      irqsync     => 0, -- No interrupt synchronization
      bar0        => ahb2ahb_membar(16#000#, '0', '0', 16#800#),
      bar1        => ahb2ahb_membar(16#800#, '0', '0', 16#800#),
      sbus        => 1,
      mbus        => 0,
      ioarea      => 16#FFF#,
      ibrsten     => 0,
      lckdac      => 0,
      slvmaccsz   => 32,  -- Maximum allowed access size by masters on io bus
      mstmaccsz   => 128, -- Maximum allowed access size on system bus
      rdcomb      => 2,
      wrcomb      => 2B,
      allbrst     => 0,
      ifctrlen    => 0,
      fcfs        => IO_NAHBM*CFG_IOMMU_FCFS,
      fcfsmtech   => 0,
      scantest    => scantest,
      split       => CFG_IOMMU_FCFS,
      nummst      => IO_NAHBM, -- Number of masters to support
      numgrp      => CFG_IOMMU_NUMGRP,
      stat        => CFG_IOMMU_STAT,
      apv         => CFG_IOMMU_APV,
      apv_accsz   => CFG_IOMMU_APVACCSZ,
      apvc_en     => CFG_IOMMU_APVCEN,

apvc_ways   => 1,                 -- Only valid value
      apvc_lines  => CFG_IOMMU_APVCLINES,
      apvc_tech   => CFG_IOMMU_APVCTECH,
      apvc_gseta  => CFG_IOMMU_APVCGSETA,
      apvc_caddr  => CFG_IOMMU_APVCCADDR,
      apvc_cmask  => CFG_IOMMU_APVCCMASK,
      apvc_pipe   => CFG_IOMMU_APVCPIPE,
      iommu       => CFG_IOMMU_IOMMU,
      iommutype   => CFG_IOMMU_IOMMUTYPE,
      tlb_num     => CFG_IOMMU_TLBNUM,
      tlb_type    => CFG_IOMMU_TLBTYPE,
      tlb_tech    => CFG_IOMMU_TLBTECH,
      tlb_gseta   => CFG_IOMMU_TLBGSETA,
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      tlb_pipe    => CFG_IOMMU_TLBPIPE,
      tmask       => 16#ff#,
      tbw_accsz   => CFG_IOMMU_TBWACCSZ,
      ft          => CFG_IOMMU_FT)
    port map (
      rstn        => rstn,
      hclksys     => clkm,
      hclkio      => clkm,
      io_ahbsi    => io_ahbsi,
      io_ahbso    => io_ahbso(0),

 io_ahbpnp  => io_ahbmo(IO_NAHBM-1 downto 0),
      sys_ahbmi   => sys_ahbmi,
      sys_ahbmo   => sys_ahbmo(4),
      sys_ahbpnp  => sys_ahbso,
      sys_ahbsi   => io_ahbsi,
      sys_ahbso   => io_ahbso(4),
      lcki        => nolock,
      lcko        => open,
      stato       => griommu_stato,
      ifctrl      => noifctrl);

end;
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53 GRPULSE - General Purpose Input Output

53.1 Overview

The General Purpose Input Output interface is assumed to operate in an AMBA bus system where the
APB bus is present. The AMBA APB bus is used for control and status handling.

The General Purpose Input Output interface provides a configurable number of channels. Each chan-
nel is individually programmed as input or output. Additionally, a configurable number of the chan-
nels are also programmable as pulse command outputs. The default reset configuration for each
channel is as input. The default reset value each channel is logical zero.

The pulse command outputs have a common counter for establishing the pulse command length. The
pulse command length defines the logical one (active) part of the pulse. It is possible to select which
of the channels shall generate a pulse command. The pulse command outputs are generated simulta-
neously in phase with each other, and with the same length (or duration). It is not possible to generate
pulse commands out of phase with each other.

Each channel can generate a separate internal interrupt. Each interrupt is individually programmed as
enabled or disabled, as active high or active low level sensitive, or as rising edge or falling edge sensi-
tive.

53.1.1 Function

The core implements the following functions:

• Input

• Output

• Output pulse commands

• Input interrupts

• Status and monitoring

53.1.2 Interfaces

The core provides the following external and internal interfaces:

• Discrete input and output interface

• AMBA APB slave interface, with sideband signals as per [GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information
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53.2 Registers

The core is programmed through registers mapped into APB address space.

53.2.1 Input Register [GpioIN] R

23-0: IN Input Data

Note that only bits nchannel-1 to 0 are implemented.

53.2.2 Output Register [GpioOUT] R/W

23-0: OUT Output Data

All bits are cleared to 0 at reset.

Note that only bits nchannel-1 to 0 are implemented.

53.2.3 Direction Register [GpioDIR] R/W

23-0: DIR Direction:
0b=input,
1b=output

All bits are cleared to 0 at reset.

Note that only bits nchannel-1 to 0 are implemented.

Table 639.GRPULSE registers

APB address offset Register

16#000# Input Register

16#004# Output Register

16#008# Direction Register

16#00C# Interrupt Mask Register

16#010# Interrupt Polarity Register

16#014# Interrupt Edge Register

16#018# Pulse Register

16#01C# Pulse Counter Register

Table 640.Input Register

31 30 29 28 27 26 25 24 23 0

IN

Table 641.Output Register

31 30 29 28 27 26 25 24 23 0

OUT

Table 642.Direction Register

31 30 29 28 27 26 25 24 23 0

DIR
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53.2.4 Pulse Register [GpioPULSE] R/W

23-0: PULSE Pulse enable:
0b=output,
1b=pulse command output

All bits are cleared to 0 at reset.

Only channels configured as outputs are possible to enable as command pulse outputs.

Note that only bits npulse-1 to 0 are implemented.

53.2.5 Pulse Counter Register [GpioCNTR] R/W

23-0: CNTR Pulse counter value

All bits are cleared to 0 at reset.

The pulse counter is decremented each clock period, and does not wrap after reaching zero.

Command pulse channels, with the corresponding output data and pulse enable bits set, are (asserted)
while the pulse counter is greater than zero.

Setting CNTR to 0 does not give a pulse.

Setting CNTR to 1 does give a pulse with of 1 Clk period.

Setting CNTR to 255 does give a pulse with of 255 Clk periods.

Note that only bits cntrwidth-1 to 0 need be implemented.

53.2.6 Interrupt Mask Register [GpioMASK] R/W

23-16: MASK Interrupt enable, 0b=disable, 1b=enable

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

53.2.7 Interrupt Polarity Register [GpioPOL] R/W

23-16: POL Interrupt polarity, 0b=active low or falling edge, 1b=active high or rising edge

Table 643.Pulse Register

31 30 29 28 27 26 25 24 23 0

PULSE

Table 644.Pulse Counter Register

31 30 29 28 27 26 25 24 23 0

CNTR

Table 645.Interrupt Mask Register

31 24 23 16 15 0

MASK

Table 646.Interrupt Polarity Register

31 24 23 16 15 0

POL
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Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

53.2.8 Interrupt Edge Register [GpioEDGE] R/W

23-16: EDGE Interrupt edge or level, 0b=level, 1b=edge

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

53.3 Operation

53.3.1 Interrupt

Two interrupts are implemented by the interface:

Index:Name:Description:

0 PULSEPulse command completed

31:0 IRQ Filtered input interrupt

The PULSE interrupt is configured by means of thepirq VHDL generic.

The IRQ interrupts are configured by means of theimaskand ioffsetVHDL generics, whereimask
enables individually the input interrupts, andioffsetadds an offset to the resulting index on the inter-
rupt bus.

53.3.2 Reset

After a reset the values of the output signals are as follows:

Signal:Value after reset:

GPIOO.Dout[31:0]de-asserted

GPIOO.OEn[31:0]de-asserted

53.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:

• GPIOI.Din[31:0]

53.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x037. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 647.Interrupt Edge Register

31 24 23 16 15 0

EDGE
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53.5 Configuration options

Table 648 shows the configuration options of the core (VHDL generics).

53.6 Signal descriptions

Table 649 shows the interface signals of the core (VHDL ports).

53.7 Signal definitions and reset values

The signals and their reset values are described in table 650.

Table 648.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRPULSE. 0 - NAHBIRQ-1 1

nchannel Number of input/outputs 1 - 32 24

npulse Number of pulses 1 - 32 8

imask Interrupt mask 0 - 16#FFFFFFFF# 16#FF00#

ioffset Interrupt offset 0-32 8

invertpulse Invert pulse output when set 1 - 32 0

cntrwidth Pulse counter width 4 to 32 20

oepol Output enable polarity 0, 1 1

Table 649.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPIOI * Input -

GPIOO * Output -

* see GRLIB IP Library User’s Manual

Table 650.Signal definitions and reset values

Signal name Type Function Active Reset value

gpio[] Input/Output General purpose input output - Tri-state
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53.8 Timing

The timing waveforms and timing parameters are shown in figure 157 and are defined in table 651.

53.9 Library dependencies

Table 652 shows the libraries used when instantiating the core (VHDL libraries).

53.10 Instantiation

This example shows how the core can be instantiated.

TBD

Table 651.Timing parameters

Name Parameter Reference edge Min Max Unit

tGRPULSE0 clock to output delay risingclk edge - TBD ns

tGRPULSE1 clock to non-tri-state delay risingclk edge TBD - ns

tGRPULSE2 clock to tri-state delay risingclk edge - TBD ns

tGRPULSE3 input to clock hold risingclk edge TBD - ns

tGRPULSE4 input to clock setup risingclk edge TBD - ns

Table 652.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, Components Signal and component declarations

Figure 157. Timing waveforms

tGRPULSE0gpio[ ]

clk

tGRPULSE0

tGRPULSE1

gpio[ ]

tGRPULSE2

tGRPULSE3gpio[ ] tGRPULSE4

(output)

(output)

(input)
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54 GRPWM - Pulse Width Modulation Generator

54.1 Overview

GRPWM is a pulse width modulation (PWM) generator that supports several outputs, with different
frequencies. The core is configured through a set of APB registers, described in section 54.3. The core
supports both asymmetric and symmetric PWM generation. Each of the PWM outputs can be config-
ured to be either a single PWM signal or a pair of PWM signals (where the two signals are each oth-
ers’ inverse), with configurable amount of dead band time in between them. The core also supports
programming of the output polarity, setting the outputs to fixed values, and configurable interrupt
schemes. Hardware support to simplify the generation of a PWM signal that emulate an arbitrary
repetitive waveform is also included.

54.2 Operation

54.2.1 System clock scaling

In order to support a wide range of system clock and PWM frequencies the core includes programma-
ble clock scalers. Each scaler is clocked by the system clock and decrement on each clock cycle.
When a scaler underflows it is reloaded with the value of its reload register and a tick is generated.
This tick can then be used to increment (or decrement) one or more PWM counters. The reload
value(s) of the scaler(s) can be read and written through the APB register calledScaler reload regis-
ter, described in section 54.3. The number of system clock scalers is configurable through the VHDL
genericnscalers and the width of the scaler(s) is determined by the VHDL genericsbits.

54.2.2 Asymmetric and symmetric PWM generation

An asymmetric PWM is a pulse signal that is inactive at the beginning of its period and after a certain
amount of time goes active, and then stays active for the rest of the period. A symmetric PWM is a
pulse signal that is inactive for a certain amount of time at the beginning of the period and a certain
amount of time at the end of the period, and stays active in between. The two inactive time periods are
normally, but not necessarily, equally long.

For the core to generate a PWM, independent of whether asymmetric or symmetric method is used,
software need to do the following (also see section 54.3 for more detailed description of register inter-
face):

• Enable the core by writing theen bit in Core control register.

• Configure the scaler (see section 54.2.1) and set the PWM period in thePWM period register.

• Write thePWM compare registerwith the value at which the PWM’s counter should match and
switch the outputs.

• If dead band time should be generated, write the value at which the current PWM’s dead band
time counter should match to thePWM dead band compare register. Also set thedbenbit in the
PWM control register to 1. See section 54.2.4 for information on dead band time.

• Set the meth bit in PWM control register to either asymmetric och symmetric.

• Set the polarity of the PWM output be setting thepol bit in thePWM control register.

• If the PWM output should be paired with its inverse then set thepair bit in thePWM control reg-
ister to 1, otherwise set it to 0. Note that each PWM always has two ouputs, but if thepair bit is
set to 0 then the second output is constantly inactive.

• Program the interrupt, see section 54.2.5.

• Enable the PWM generation by writing theen bit in PWM control register to 1.

• If software wants the PWM output(s) to assume fix value(s) it can write thefix bits in the PWM
control register appropriately.
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Specific configuration required for symmetric PWM if dual compare mode should be used:

• If the core should update the PWM’s compare register twice every PWM period, then set the
dcomp bit in thePWM control register to a 1.

• If the dcompbit in the PWM control registeris set, and it is desired that the two inactive time
periods are not of equal length, software needs to continuously update thePWM compare regis-
ter with new values. Since the core updates its internal register at the start of and middle of the
PWM period, software need to update thePWM compare registersometime during the first half
of the period.

Note that the core’s internal period register is updated from thePWM period registerat the start of
every period, both for asymmetric and symmetric PWM generation.

54.2.3 Waveform PWM generation

That, which in this document is referred to as awaveform PWMis not a PWM generated in a different
way than the asymmetric or symmetric methods described above. In fact a waveform PWM is either
generated asymmetrically or symmetrically. The difference is that when the compare registers are
loaded with new values they are read from an internal RAM instead of thePWM compare register.
The advantage with this is that if software wants to, for example, generate a PWM signals that emu-
lates a sine wave, it can load a number of compare values into the RAM before starting the PWM gen-
eration. Once started, the core will read the RAM, increasing the address at every compare match, and
generate the same pattern over and over without the need for software intervention. Note that any pat-
tern that is loaded into the RAM is generated, the core is not limited to a sine wave. This feature is
supported if thewpwmbit in Capability register 2is set to 1. The core only support one waveform
PWM and it is always the PWM with the highest index. The index is determined by the VHDL
genericnpwm. If for examplenpwm= 4, then it is only PWM four that can be put in waveform mode.
For details on how to configure the waveform mode and read/write the RAM please see the descrip-
tion of theWaveform configuration register, Waveform RAM, word X registers, andPWM control reg-
ister in section 54.3.

54.2.4 Dead band time

It is often desired to have a delay between when one of the PWM signals of a PWM pair goes inactive
and when the other signal goes active. This delay is called dead band time. By default the core does
not generate any dead band time, but can be configured to do so by setting thedbenbit in thePWM
control registerto 0b1. When dead band time is enabled the core will start a counter each time a PWM
pair switch its outputs. The output going inactive is not delayed while the output going active is
delayed until the counter matches the value in thePWM dead band compare register. To support a
wide range of applications the amount of dead band time inserted is programmable. The number of
bits used in thePWM dead band compare registeris configurable through the VHDL genericdbbits,
and also a four bit system clock scaler can be enabled for each PWM’s dead band counter by setting
thedbscaler VHDL generic to 1.

54.2.5 Interrupts

Interrupts can programmed individually for each PWM to be generated at PWM compare match, at
PWM period match, or not generated at all. This is programmed in each PWM’sPWM control regis-
ter. Each PWM also has a 6-bit interrupt counter that can be used to scale down the frequency at
which the interrupts occur. When an interrupt is generated the bit in theInterrupt pending registerfor
the PWM in question is set. The bits in theInterrupt pending registerstay set until software clears
them by writing 1 to them. Through thesepirqandnpwmVHDL generics the core supports several
different interrupt numbers, this is described in section54.6.

When an interrupt is generated, or when the interrupt scaler counter is increased, an output tick is gen-
erated on the core’stick output signal. The output tick bit has the same index as the PWM in question.
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54.3 Registers

The core is programmed through registers mapped into APB address space.

Table 653.GRPWM registers

APB address offset Register

0x00 Core control register

0x04 Scaler reload register

0x08 Interrupt pending register

0x0C Capability register 1

0x10 Capability register 2

0x14* Waveform configuration registers

0x18 - 0x1C Reserved, always zero.

0x20** PWM period register

0x24** PWM compare register

0x28** PWM dead band compare register

0x2C** PWM control register

0x8000*** Waveform RAM, word 0

0x8004*** Waveform RAM, word 1

... ...

0xFFFC*** Waveform RAM, word 8191

* This register is only implemented if the wpwm bit (bit 0) inCapability register 2 is set to 1.

** This register is implemented once for every PWM (value ofnpwm VHDL generic decides the number of registers),
with an offset of 0x10 from the previous PWM’s register. The functionality is the same for each PWM.

*** The implementation of this register depends on if thewpwm bit (bit 0) inCapability register 2 is set to 1 and if the
waveform RAM is large enough (the value of the fieldwabits in Capability register 2 reports the number of address bits -
1 that is used for the waveform RAM).

Table 654.Core control register
31 x+13 x+12 12 11 10 8 7 1 0

R noup R scalersel R en

31:x+13 Reserved, always zero. x is the value of bits 2:0 inCapability register 1

12+x:12 No update bits for each PWM. x is the value of bits 2:0 inCapability register 1.Bit 12 is for the first PWM,
bit 13 for the second etc. If a bit is set to 0b1 then that PWM’s internal period register, compare register,
and dead band compare registers are not updated from the corresponding APB registers. These bits can be
used by software if it wants to change more than one of the values and it is required that all values change
in the same PWM period. It can also be used to synhronize the use of new values for different PWMs.
Reset value 0b0..0.

11 Reserved, always zero.

10:8 System clock scaler select bits. These bits determine which of the implemented system clock scalers’
reload value that can be read/written from theScaler reload register.These bits are only present if the
nscalers generic is greater than 1. Reset value is 0b000

7:1 Reserved, always zero.

0 Core enable bit. 0b0 = Core is disabled, no operations are performed and all outputs are disabled. 0b1 =
Core is enabled, PWM outputs can be generated. Reset value is 0b0.

Table 655.Scaler reload register
31 sbits sbits-1 0

R reload
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31:sbits Reserved, always zero. If sbits = 32 then this field is not present. (sbits is the value of thesbits
generic)

(sbits-1):0 The value of this field is used to reload the system clock scaler when it underflows. If the core is con-
figured with more than one scaler (nscalersgeneric greater than 1) then thescalerselbits in theCore
control register determine which of the scalers that is read/written. Reset value is 0b1..1 (all ones).

Table 656.Interrupt pending register
31 npwm npwm-1 0

R irq pending

31:npwm Reserved, always zero.

(npwm-1):0 Interrup pending bits for the PWM(s). When an interrupt event for a specific PWM occurs the core
sets the corresponding bit in the interrupt pending register and generates an interrupt. Software can
read this register to see which PWM that generated the interrupt. The bits are cleared by writing 1 to
them. Reset value is 0b0..0 (all zeroes).

Table 657.Capability register 1
31 29 28 27 26 25 24 23 22 21 20 16 15 13 12 8 7 3 2 0

R def-
pol

dcm
ode

sepirq R sym
pwm

asyp
wm

dbsc
aler

dbbits nscalers sbits pbits npwm

31:29 Reserved, always zero.

28 0 = Default polarity is active low (outputs are high after reset/power-up). 1 = Default polarity is active high
(outputs are low after reset/power-up).

27 0 = Dual compare mode not implemented. 1 = Dual compare mode implemented.

26:25 Reports interrupt configuration. Value ofsepirq VHDL generic. Read only.

24 Reserved, always zero.

23 0 = Symmetric PWM generation is not implemented. 1 = Symmetric PWM generation is implemented. Value
of sympwmVHDL generic. Read only.

22 0 = Asymmetric PWM generation is not implemented. 1 = Asymmetric PWM generation is implemented.
Value ofasympwmVHDL generic. Read only.

21 0 = Dead band time scaler(s) is not implemented. 1 = Dead band time scaler(s) is implemented. Value of
dbscalerVHDL generic. Read only.

20:16 Reports number of bits, -1, for the PWM’s dead band time counters. Value of thedbbitsVHDL generic - 1.
Read only.

15:13 Reports number of implemented scalers, -1. Value of thenscalers VHDL generic - 1. Read only.

12:
8

Reports number of bits for the scalers, -1. Value of thesbitsVHDL generic - 1. Read only.

7:3 Reports number of bits for the PWM counters, -1. Value of thepbitsVHDL generic - 1. Read only.

2:0 Reports number of implemented PWMs. Value of thenpwmVHDL generic - 1. Read only.

Table 658.Capability register 2
31 11 10 9 6 5 1 0

R wsync wabits wdbits wpwm

31:11 Reserved, always zero

10 1 if Waveform PWM synch signal generation is implemented, 0 if not. Value of VHDL generic
wsync. Read only

9:6 Reports the number of address bits - 1 used for the waveform RAM. Value is log2(wdepth) - 1,
wherewdepth is the VHDL genericwdepth.Read only.

5:1 Reports number of bits -1 for each word in the waveform RAM. Value of VHDL genericwbits - 1.
Read only

0 1 if waveform PWM generation is implemented, 0 if not. Value of VHDL genericwavepwm. Read
only

Table 655.Scaler reload register
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Table 659.Waveform configuration register
31 30 29 28 wabits

+17
wabits

+16
16 15 wabits

+1
wabits 0

wsynccfg wsen R wsynccomp R wstopaddr

31:30 These bits are used to configure at which point in the PWM period matching thewsynccomp field (see
description below) that thewsyncouput will be set high. 0b00 = The wsync ouput will be set at the start
of the PWM period. 0b01 = The output will be set at the first compare match. 0b10 = If themeth bit in
thePWM Control Registeris set to one (symmetric) for the waveform PWM, then the output will be set
at the middle of the PWM period. 0b11 = If themeth bit is set to one for the waveform PWM, then the
output will be set at the second compare match.

29 Enables/disables the waveform sync signal. This bit is only present if thewsyncbit in Capability register
2 is set to 1. Reset value is 0b0

28:wabits+1
7

Reserved, always zero. wabits is the value of thewabitsfield in Capability register 2.Note that this field
is not present if wabits is 12.

16+wabits:1
6

wabits is the value of thewabits field inCapability register 2.The number of words in the waveform
RAM is the same as the maximum number of PWM periods that will occur before the waveform is
restarted. The value of this field is used as an offset into the waveform PWM. A counter is increased
every PWM period and when the counter matches this value thewsyncoutput of the core will be set to 1
sometime during that period. These bits are only present if thewsyncbit in Capability register 2is set to
1. Reset value is 0b0..0.

15:wabits+1 Reserved, always zero.

wabits:0 The value of this field is used by the core to wrap when accessing the waveform RAM. wabits is the
value of thewabitsfield in Capability register 2. This field is reset to 0b1..1 (all ones) so that by default
the core reads the whole RAM. If software wants to put a waveform in the RAM that does not fill the
whole RAM it should set these bits to the address where the last waveform PWM compare value will be
stored.

Table 660.PWM period register
31 pbits pbits-1 0

R per

31:pbits Reserved, always zero. If pbits = 32 then this field is not present. (pbits is the value of thepbits
generic)

(pbits-1):0 When the PWM counter reaches this value a PWM period has passed. Depending on the method
used to generate the PWM the output could then be switched. When this register is written the actual
PWM period value used inside the core is not updated immediately, instead a shadow register is used
to hold the new value until a new PWM period starts. Reset value 0b0..0 (all zeroes).

Table 661.PWM compare register
31 pbits pbits-1 0

R comp

31:pbits Reserved, always zero. If pbits = 32 then this field is not present. (pbits is the value of thepbits
generic)

(pbits-1):0 When the PWM counter reaches this value the PWM output is switched. Depending on the method
used to generate the PWM this register is used once or twice during each PWM period. When this
register is written the actual PWM compare value used inside the core is not updated immediately,
instead a shadow register is used to hold the new value until a new PWM period starts. Reset value
0b0..0 (all zeroes).

Table 662.PWM dead band compare register
31 dbbits dbbits-1 0

R dbcomp
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31:dbbits Reserved, always zero. If dbbits = 32 then this field is not present. (dbbits is the value of thedbbits
generic)

(dbbits-1):0 The dead band time has passed once the dead band counter reach the value of this field. When this
register is written the actual compare value used inside the core is not updated immediately, instead a
shadow register is used to hold the new value until a new PWM period starts. Reset value 0b0..0 (all
zeroes).

Table 663.PWM control register
31 27 26 25 22 21 20 15 14 13 12 10 9 8 7 6 5 3 2 1 0

R flip dbscaler dbe
n

irqscaler irqt irqe
n

scalersel wen dcen R met
h

fix pair pol en

31:27 Reserved, always zero.

26 Output flip bit. When this bit is set to 0b1 the PWM outputs are flipped.

25:22 Dead band scaler. These bits are used to scale the system clock when generating dead band time. This
field is only present if thedbscalergeneric is set to 1. When these bits are written the dead band scaler
register inside the core is not updated immediately. Instead these bits are written to a reload register
which updates the actual scaler when it underflows. This is done in order to prevent the dead band scaler
register to change during the actual dead band time. Reset value is 0b0..0 (all zeroes).

21 Dead band enable. 0b0 = Dead band time generation is disabled, no dead band time will be inserted when
the PWM output switch from deactive to active. 0b1 = Dead band time will be inserted when the PWM
output switch from deactive to active. Reset value is 0b0.

20:15 Interrupt scaler. Determines how many compare/period matches that need to occur before an interrupt is
generated. All zeroes means that an interrupt will occur every compare/period match, a one means that
an interrupt will occur every second match etc. Note that when generating a symmetric PWM two com-
pare matches occur during a PWM period but when generating an asymmetric PWM only one compare
match occur during a period. Reset value is 0b0..0 (all zeroes).

14 Interrupt type. 0b0 = Generate interrupt on PWM period match. 0b1 = Generate interrupt on PWM com-
pare match. Reset value is 0b0.

13 Interrupt enable/disable bit. 0b0 = Interrupt is disabled. 0b1 = Interrupt is enabled. Reset value is 0b0.

12:10 Scaler select bits. These bits are used to select which of the system clock scalers that will be used when
generating the current PWM. This field is only present when thenscalersgeneric is greater than 1. These
bits can only be set if the PWM is disabled, i.e.en bit (see below) set to 0b0. Reset value is 0b000.

9 Waveform PWM enable. This bit can only be set if the current PWM is the PWM with the highest index
(determined by the genericnpwm) and if thewavepwm field inCapability register 2 is set to 1. Also the
PWM need to be disabled, i.e.en bit (see below) set to 0b0. When this bit is set the core will reload the
internal PWM compare registers with values from the waveform RAM instead of values from thePWM
compare register. Reset value is 0b0.

8 Dual compare mode enable. If this bit is set to 0b1 and themethbit (see below) is set to 0b1 (symmetric)
then the core will update its internal PWM compare register twice every PWM period, once when the
counter is zero and once when a period match occur and the counter starts counting downwards again. In
this way it is possible to have two different compare values, one when counter is counting upwards and
one when counter is counting downwards. If this bit is 0b0 the compare register is only updated when the
counter is zero. This bit has no effect if an asymmetric PWM is generated. Reset value is 0b0. This bit is
only present if thedcmode bit in theCapability register is set.

7 Reserved, always zero.

6 PWM generation method select bit. This bit selects if an asymmetric or symmetric PWM will be gener-
ated, where 0b0 = asymmetric and 0b1 = symmetric. . The asymmetric and symmetric methods are only
available if the genericsasympwm andsympwm respectively are set to 1. This bit can only be set if the
PWM is disabled, i.e.enbit (see below) set to 0b0. The core prevents software from setting this bit to an
invalid value. Reset value is 0b0 if asymmetric PWM is supported otherwise 0b1.

5:3 PWM fix value select bits. These bits can be used to set the PWM output to a fix value. If bit 3 is set to
0b1 then bit 4 decides what value the PWM output will have. If thepair bit (see below) is set to 0b1
while bit 3 is set to 0b1 as well then bit 5 determines what value the complement output will have. Reset
value is 0b000.

Table 662.PWM dead band compare register
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54.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x04A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

54.5 RAM usage

The core maps all usage of RAM on thesyncram(or syncramftif ft generic is not set to 0) component
from the technology mapping library (TECHMAP). RAM is only used if the core is configured with
support for generation of a waveform PWM (wavepwmgeneric set to 1). The size of the instantiated
RAM is determined by thewbitsandwdepthgenerics.wdepthis the number of words that the RAM
can hold, andwbits is the number of bits in each word. Fault tolerance - byte parity DMR or TMR -
can be added to the RAM by setting theft generic to 1 or 2. Note that theft generic need to be set to 0
if the core is used together with the GPL version of GRLIB, since that version does not support any
fault tolerance.

54.6 Configuration options

Table 665 shows the configuration options of the core (VHDL generics).

2 PWM pair bit. If this bit is set to 0b1 a complement output for this PWM will be generated, creating a
PWM pair instead of a single PWM. The complement output will be the first ouput’s inverse, with the
exception that dead band time might be added when the values switch from deactive to active. Reset
value is 0b1.

1 PWM polarity select bit. 0b0 = PWM is active low, 0b1 = PWM is active high. This bit can only be set if
the PWM is disabled, i.e.enbit (see below) set to 0b0. Reset value equalsdefpolbit in Capability Regis-
ter 1.

0 PWM enable/disable bit. 0b0 = PWM is disabled. 0b1 = PWM is enabled. When this bit is set to 1 (from
0) and thewen bit (see bit 9 above) is set the core’s internal address counter for the waveform RAM is
reset. Reset value is 0b0.

Table 664.Waveform RAM, word X
31 wbits+1 wbits 0

R waveform data

31:wbits+1 Reserved, always zero. wbits is the value of thewdbits field inCapability register 2.Note
that this field is not present if wbits = 31.

wbits:0 wbits is the value of the wdbits field inCapability register 2. Data in the waveform RAM at
the address which the current register maps to can be read/written through these bits. This
register can only be read/written if either thewenbit or enbit in the associated PWM’s PWM
control register are set to 0.

Table 665.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. Need to be set to 16#F00#
or smaller if the genericwavepwm is set to 1.

0 - 16#FFF# 16#F00#

pirq APB irq number. 0 - NAHBIRQ-1 0

memtech Memory technology used for waveform buffer. This
generic has no impact ifwavepwm is 0.

0 - NTECH inferred

npwm Number of PWM outputs. 1 - 8 3

pbits Number of bits used for each PWM. 1 - 32 16

Table 663.PWM control register
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sbits Number of bits in the system clock scaler(s). 1 - 32 16

nscalers Number of system clock scalers. 1 - 8 1

dbbits Number of bits used for the dead band configuration for
each PWM.

1 - 32 8

dbscaler Decides if a scaler is implemeted for the dead band con-
figuration for each PWM. 1 = A four bit system clock
scaler is implemented for each PWM. 0 = No scaling of
the system clock when calculating the dead band time is
implemented.

0 - 1 0

asympwm Decides if assymetric PWM generation is implemented.
This generic can not be set to 0 if thesympwmgeneric is
set to 0 as well.

0 - 1 1

sympwm Decides if symmetric PWM generation is implemented.
This generic can not be set to 0 if theasympwm generic
is set to 0 as well.

0 - 1 1

dcmode Enables dual compare mode. Core then supports updates
of the PWM’s compare registers twice during every
(symmetric) PWM period. This generic has no effect if
sympwm is set to 0.

0 - 1 0

wavepwm Decides if the core implements support for generating a
waveform PWM. If this generic is set to 1 then a RAM
block of sizewdepth*wbits bits will be instantiated.

0 - 1 1

wbits The number of bits in each of the wdepth words in the
internal RAM that holds the waveform. This generic has
no impact ifwavepwm is 0. This generic can not be
larger than thepbits generic.

1 - 32 8

wdepth The number ofwbits wide words that need to fit in the
internal buffer holding the waveform. Ifwdepth is not a
power of two then the actual number of words that will
fit in the buffer is the closest power of two abovewdepth.
This generic has no impact ifwavepwm is 0.

1 - 8192 512

wsync If this generic is set the core supports the generation of a
synchronization signal. The synchronization signal can
be configured to go active any time during the waveform
PWM. This generic has no impact ifwavepwm is 0.

0 - 1 0

sepirq 0 = One irq number (value ofpirq generic) is used for all
PWMs. 1 = Each PWM has it’s own irq number, starting
with the value ofpirq and counting up topirq+(npwm-1).
2 = The interrupt configuration depend on thenpwm
generic in the following way:

If npwm < 3, each PWM has its own irq (pirq and possi-
bly pirq+1). If npwm= 3 the PWMs share irq (pirq). If 3
< npwm< 6 the first three PWMs share irq (pirq) and the
remaining PWM(s) have their own irq (pirq+1 and possi-
bly pirq+2). If npwm>= 6 the first three PWMs share irq
numberpirq, the second three PWMs share irq number
pirq+1, and (if implemented) the last two PWMs have
their own irq (pirq+2 andpirq+3).

0 - 2 0

ft This generic determines if fault tolerance should be
added to the RAM that holds the waveform PWM. This
generic has no impact ifwavepwmis 0. 0 = no fault toler-
ance, 1 = Byte parity DMR, 2 = TMR. Note that this
generic need to be set to 0 if the core is used together
with the GPL verison of GRLIB, since that version does
not include any fault tolerance.

0 - 2 0

Table 665.Configuration options

Generic name Function Allowed range Default
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54.7 Signal descriptions

Table 666 shows the interface signals of the core (VHDL ports).

54.8 Signal definitions and reset values

The signals and their reset values are described in table 667.

defpol This generic sets the default polarity of the PWM out-
puts. 0 = Active low polarity, outputs are high after reset/
power-up. 1 = Active high polarity, outputs are low after
reset/power-up.

0 - 1 1

Table 666.Signal descriptions

Signal name Field Type Function Active

rst N/A Input Reset Logical 0

clk N/A Input Clock -

apbi * Input APB slave input signals -

apbo * Output APB slave output signals -

o pwm(x:0)** Output PWM signals ***

wavesync**** Output Waveform PWM synchronization signal Logical 1

tick(y:0)***** Output PWM synchronization tick outputs Logical 1

* see GRLIB IP Library User’s Manual

** The width depends on core configuration in the following way: x = <number of PWMs>*2-1 (<number of PWMs> =
value of VHDL genericnpwm)

*** Depends on core configuration.

**** Signal is only driven if the waveform PWM and and waveform sync functionality are implemented (VHDL generics
wavepwm andwsync need to be set to 1).

***** The width depends on core configuration in the following way: y = <number of PWMs>-1 (<number of PWMs> =
value of VHDL genericnpwm)

Table 667.Signal definitions and reset values

Signal name Type Function Active Reset value

pwm(x:0)* Output PWM signals ** **

wavesync*** Output Optional synchronization signal Logical 1 Logical 0

tick(y:0)**** Output PWM synchronization tick outputs Logical 1 Logical 0

* The width depends on core configuration in the following way: x = <number of PWMs>*2-1 (<number of PWMs> =
value of VHDL genericnpwm)

** Depends on core configuration.

*** Signal is only driven if the waveform PWM and and waveform sync functionality are implemented (VHDL generics
wavepwm andwsync need to be set to 1).

**** The width depends on core configuration in the following way: y = <number of PWMs>-1 (<number of PWMs> =
value of VHDL genericnpwm)

Table 665.Configuration options

Generic name Function Allowed range Default
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54.9 Library dependencies

Table 668 shows the libraries used when instantiating the core (VHDL libraries).

54.10 Timing

The timing waveforms and timing parameters are shown in figure 158 and are defined in table 669.

54.11 Instantiation

This example shows how the core can be instantiated. The instantiated core has all its generics, except
pindex, paddr, and pirq at their default values. The impact of the generics can be seen in table 665.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.pwm.all;

entity grpwm_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

pwm : out std_logic_vector(5 downto 0)
    );
end;

architecture rtl of grpwm_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;

Table 668.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PWM Signals, component Component declaration

TECHMAP GENCOMP Constants, components Components etc. for technology mapping.

Table 669.Timing parameters

Name Parameter Reference edge Min Max Unit

tGRPWM0 clock to output delay risingclk edge 0 20 ns

tGRPWM1 clock to non-tri-state delay risingclk edge - - ns

tGRPWM2 clock to tri-state delay risingclk edge - - ns

Figure 158. Timing waveforms
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  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- GRPWM signals
signal pwm : grpwm_out_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- GRPWM core
grpwm0 : grpwm

generic map (pindex => 10, paddr => 10, pirq => 10)
port map (rstn, clk, apbi, apbo(10), pwm);

-- Pads for GRPWM core
pwm_pad : outpadv generic map (tech => padtech, width => 6)

port map (pwmo, pwm.pwm);

end;
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55 GRSPW - SpaceWire codec with AHB host Interface and RMAP target

55.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-ST-50-12C) with the protocol identification extension
(ECSS-E-ST-50-51C). The optional Remote Memory Access Protocol (RMAP) target implements the
ECSS standard (ECSS-E-ST-50-52C).

The core is configured through a set of registers accessed through an APB interface. Data is trans-
ferred through DMA channels using an AHB master interface.

Currently, there is one DMA channel but the core can easily be extended to use separate DMA chan-
nels for specific protocols. The core can also be configured to have either one or two ports.

There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports. The receiver
clock can be twice as fast and the transmitter clock four times as fast as the system clock whose fre-
quency should be at least 10 MHz.

The core only supports byte addressed 32-bit big-endian host systems.

55.2 Operation

55.2.1 Overview

The main sub-blocks of the core are the link-interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 159.

The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB
master interface and the APB interface. The link interface provides FIFO interfaces to the DMA
engines. These FIFOs are used to transfer N-Chars between the AMBA and SpaceWire domains dur-
ing reception and transmission.

The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed

Figure 159. Block diagram
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on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter.

The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10. The controlled parts are clock-generation, DMA engines, RMAP target
and the link interface.

The link interface, DMA engines, RMAP target and AMBA interface are described in section 55.3,
55.4, 55.6 and 55.7 respectively.

55.2.2 Protocol support

The core only accepts packets with a destination address corresponding to the one set in the node
address register. Packets with address mismatch will be silently discarded (except in promiscuous
mode which is covered in section 55.4.10). The node address register is initialized to the default
address 254 during reset. It can then be changed to other values by writing to the register.

The core has support for the protocol ID specified in ECSS-E-ST-50-51C. It is used for identifying
RMAP commands that should be received by the RMAP target. Other packets are stored to the DMA
channel. This is only applicable if the RMAP target is present and enabled. When the RMAP target is
not present or disabled all the bytes after the address are treated as normal cargo.

RMAP commands are identified using the protocol ID (0x01) and the instruction field. They are han-
dled separately from other packets if the hardware RMAP target is enabled. When enabled, all RMAP
commands are processed, executed and replied in hardware. RMAP replies received are always stored
to the DMA channel. If the RMAP target is disabled, all packets are stored to the DMA channel. More
information on the RMAP protocol support is found in section 55.6.

RMAP packets arriving with the extended protocol ID (0x000001) are stored to the DMA channel
which means that the hardware RMAP target will not work if the incoming RMAP packets use the
extended protocol ID. Note also that packets with the reserved extended protocol identifier (ID =
0x000000) are not ignored by the core. It is up to the client receiving the packets to ignore them.

When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They arenotautomatically added by the core.

Figure 160 shows the packet types supported by the core. The core also allows reception and trans-
mission with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

55.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 159.

55.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM in the host domain handles the exchange level.

Figure 160. The SpaceWire packet types supported by the GRSPW.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP

Addr D0 Dm-2..D4D3D2D1 Dm-1 EOP



AEROFLEX GAISLER 550 GRIP

The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching
the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.

The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.

Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 55.3.5).

When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value.

N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are cred-
its available. NULLs are sent when no other character transmission is requested or the FSM is in a
state where no other transmissions are allowed.

The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

55.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.

This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 55.8.1. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.

The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 161.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most
of the signal and character levels of the SpaceWire standard is handled in the transmitter. External
LVDS drivers are needed for the data and strobe signals.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 161. Schematic of the link interface transmitter.
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A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

55.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream on the data
and strobe signals. It is also located in a separate clock domain which runs on a clock generated from
the received data and strobe signals. More information on the clock-generation can be found in sec-
tion 55.8.1.

The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the system clock domain because no receiver clock is available when disconnected.

Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 162. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.

There are no signals going directly from the transmitter clock domain to the receiver clock domain
and vice versa. All the synchronization is done to the system clock.

55.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.

One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
55.3.2. The inactive port is driven with zero on both data and strobe.

Both receivers will always be active but only the active port’s interface signals (see figure 162) will
be propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.

When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches.

55.3.5 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out

Receiver Clock Domain Host Clock Domain
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Got Time-code
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Got NChar
Time-code[7:0]
NChar[7:0]

Figure 162. Schematic of the link interface receiver.
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register field. There are also two control register bits which enable the time receiver and transmitter
respectively.

Each Time-code sent from the core is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero.

Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.

The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes.

The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.

A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.

The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.

The control bits of the Time-code are always stored to the time-ctrl register when a Time-code is
received whose time-count is one more than the nodes current time-counter register. The time-ctrl reg-
ister can be read through the APB interface. The same register is used during time-code transmissions.

It is possible to have both the time-transmission and reception functions enabled at the same time.

55.4 Receiver DMA engine

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels. Currently there is only one receive DMA channel available but the core has been written so
that additional channels can be easily added if needed.

55.4.1 Basic functionality

The receiver DMA engine reads N-Chars from the N-Char FIFO and stores them to a DMA channel.
Reception is based on descriptors located in a consecutive area in memory that hold pointers to buff-
ers where packets should be stored. When a packet arrives at the core it reads a descriptor from mem-
ory and stores the packet to the memory area pointed to by the descriptor. Then it stores status to the
same descriptor and increments the descriptor pointer to the next one.

55.4.2 Setting up the core for reception

A few registers need to be initialized before reception can take place. First the link interface need to
be put in the run state before any data can be sent. The DMA channel has a maximum length register
which sets the maximum size of packet that can be received to this channel. Larger packets are trun-
cated and the excessive part is spilled. If this happens an indication will be given in the status field of
the descriptor. The minimum value for the receiver maximum length field is 4 and the value can only
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be incremented in steps of four bytes. If the maximum length is set to zero the receiver willnot func-
tion correctly.

The node address register needs to be set to hold the address of this SpaceWire node. Packets received
with the incorrect address are discarded. Finally, the descriptor table and control register must be ini-
tialized. This will be described in the two following sections.

55.4.3 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1 kbytes aligned address. It is also limited to be 1 kbytes
in size which means the maximum number of descriptors is 128.

The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap automatically by setting a bit in the descriptors. The idea is that the
selector should be initialized to 0 (start of the descriptor area) but it can also be written with another 8
bytes aligned value to start somewhere in the middle of the area. It will still wrap to the beginning of
the area.

If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the rxac-
tive bit for the channel is cleared it is safe to update the descriptor table register. When this is finished
and descriptors are enabled the receiver enable bit can be set again.

55.4.4 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.

A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for this to happen.

The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If therxunalignedor rmapVHDL generic is set to 1 this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

Table 670.GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.

30 Data CRC (DC) - Unused. 1 if a CRC error was detected for the data and 0 otherwise.

29 Header CRC (HC) - Unused. 1 if a CRC error was detected for the header and 0 otherwise.
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55.4.5 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 55.9). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

55.4.6 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded. If the receiver is
enabled the next state is entered where the rxdescav bit is checked. This bit indicates whether there are
active descriptors or not and should be set by the external application using the DMA channel each
time descriptors are enabled as mentioned above. If the rxdescav bit is ‘0’ and the nospill bit is ‘0’ the
packets will be discarded. If nospill is one the core waits until rxdescav is set.

When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.

The receiver can be disabled at any time and will cause all packets received afterwards to be dis-
carded. If a packet is currently received when the receiver is disabled the reception will still be fin-
ished. The rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but no
more descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads a
disabled descriptor.

55.4.7 Address recognition and packet handling

When the receiver N-Char FIFO is not empty, N-Chars are read by the receiver DMA engine. The first
character is interpreted as the logical address which is compared to the node address register. If it does
not match, the complete packet is discarded (up to and including the next EOP/EEP). If the address
matches the packet will or will not be received to the DMA channel depending on the conditions men-
tioned in the previous section. If received, the complete packet including address and protocol ID but

28 EEP termination (EP) - This packet ended with an Error End of Packet character.

27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the
receive interrupt enable bit in the DMA channel control register is set.

26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor
table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 671.GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.

Table 670.GRSPW receive descriptor word 0 (address offset 0x0)
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excluding EOP/EEP is stored to the address indicated in the descriptor, otherwise the complete packet
is discarded.

If the address matches the next action taken depends on whether RMAP is enabled or not. If RMAP is
disabled all packets are stored to the DMA channel and depending on the conditions mentioned in the
previous section, the packet will be received or not. If the packet is received the complete packet
including address and protocol ID but excluding EOP/EEP is stored to the address indicated in the
descriptor, otherwise the complete packet is discarded.

If RMAP is enabled the protocol ID and 3rd byte in the packet is first checked before any decisions
are made. If incoming packet is an RMAP packet (ID = 0x01) and the command type field is 01b the
packet is processed by the RMAP command handler which is described in section 55.6. Otherwise the
packet is processed by the DMA engine as when RMAP is disabled.

At least 2 non EOP/EEP N-Chars need to be received for a packet to be stored to the DMA channel. If
it is an RMAP packet 3 N-Chars are needed since the command byte determines where the packet is
processed. Packets smaller than the minimum size are discarded.

55.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event as mentioned in section
55.4.4.

RMAP CRC logic is included in the implementation if thermapcrcor rmapVHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.

The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted

If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.

If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

55.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
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ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.

If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

55.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the DMA channel
regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/eep N-
Chars received will be stored to the DMA channel. The rxmaxlength register is still checked and
packets exceeding this size will be truncated.

RMAP commands will still be handled by the RMAP target when promiscuous mode is enabled if the
rmapen bit is set. If it is cleared, RMAP commands will also be stored to the DMA channel.

55.5 Transmitter DMA engine

The transmitter DMA engine handles transmission of data from the DMA channel to the SpaceWire
network. There is one DMA channel available but the core has been written so that additional DMA
channels can be easily added if needed.

55.5.1 Basic functionality

The transmit DMA engine reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

55.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register
should be written with a one which triggers the transmission. These steps will be covered in more
detail in the next sections.

55.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 55.4.

To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.

The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.

The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the core when
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the CRC logic is available (rmapor rmapcrcVHDL generic set to 1). The header CRC will be calcu-
lated from the data fetched from the header pointer and the data CRC is generated from data fetched
from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC bytes
field is set to the number of bytes in the beginning of the header field that should not be included in
the CRC calculation. The CRCs are sent even if the corresponding length is zero.

When both header and data length are zero no packet is sent not even an EOP.

55.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 672.GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED

17 Append data CRC (DC) - Unused. Append CRC calculated according to the RMAP specification
after the data sent from the data pointer. The CRC covers all the bytes from this pointer. A null
CRC will be sent if the length of the data field is zero.

16 Append header CRC (HC) - Unused. Append CRC calculated according to the RMAP specification
after the data sent from the header pointer. The CRC covers all bytes from this pointer except a num-
ber of bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the
header length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.

14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and
the transmitter interrupt enable bit in the DMA control register is set.

13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one
in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Unused. Sets the number of bytes in the beginning of the header
which should not be included in the CRC calculation. This is necessary when using path addressing
since one or more bytes in the beginning of the packet might be discarded before the packet reaches
its destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 673.GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.

Table 674.GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN
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55.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indi-
cated are read and transmitted. When a transmission has finished, status will be written to the first
field of the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was
requested it will also be generated. Then a new descriptor is read and if enabled a new transmission
starts, otherwise the transmit enable bit is cleared and nothing will happen until it is enabled again.

55.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1 kbytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.

The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

55.5.7 Error handling

Abort Tx

The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.

AHB error

When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.

If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).

31: 24 RESERVED

23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both
data- and header-lengths are set to zero no packet will be sent.

Table 675.GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.

Table 674.GRSPW transmit descriptor word 2 (address offset 0x8)
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The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active dur-
ing the AHB error until the error state is cleared and the unit is enabled again.

Link error

When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the core will automatically try to connect again provided that the link-start bit is asserted and the link-
disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the transmitter
DMA engine will wait for the link to enter run-state and start a new transmission immediately when
possible if packets are pending. Otherwise the transmitter will be disabled when a link error occurs
during the transmission of the current packet and no more packets will be transmitted until it is
enabled again.

55.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target which is enabled with a VHDL generic. This
section describes the basics of the RMAP protocol and the target implementation.

55.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three
operations write, read and read-modify-write. These operations are posted operations which means
that a source does not wait for an acknowledge or reply. It also implies that any number of operations
can be outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-
outs must be implemented in the user application which sends the commands. Data payloads of up to
16 Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify
data before executing an operation. A complete description of the protocol is found in the RMAP
standard.

55.6.2 Implementation

The core includes a taget for RMAP commands which processes all incoming packets with protocol
ID = 0x01 and type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b. When such a packet is
detected it is not stored to the DMA channel, instead it is passed to the RMAP receiver.

The core implements all three commands defined in the standard with some restrictions. First of all
the optional error code 12 is not implemented and support is only provided for 32-bit big-endian sys-
tems. This means that the first byte received is the msb in a word. The command handler will not
receive RMAP packets using the extended protocol ID which are always dumped to the DMA chan-
nel.

The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.

Packets with a mismatching destination logical address are never passed to the RMAP target. There is
a user accessible destination key register which is compared to destination key field in incoming pack-
ets. If there is a mismatch and a reply has been requested the error code in the reply is set to 3. Replies
are sent if and only if the ack field is set to ‘1’.
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Detection of all error codes except code 12 is supported. When a failure occurs during a bus access the
error code is set to 1 (General Error). There is predetermined order in which error-codes are set in the
case of multiple errors in the core. It is shown in table 676.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mission. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.

Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

55.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 B and the address must be
aligned to the size. That is 1 B writes can be done to any address, 2 B must be halfword aligned, 3 B
are not allowed and 4 B writes must be word aligned. Since there will always be only one AHB oper-
ation performed for each RMAP verified write command the incrementing address bit can be set to
any value.

Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

55.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

Table 676.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error

1 2 Unused RMAP packet type or command code

2 3 Invalid destination key

3 9 Verify buffer overrun

4 11 RMW data length error

5 10 Authorization failure

6* 1 General Error (AHB errors during non-verified writes)

7 5/7 Early EOP / EEP (if early)

8 4 Invalid Data CRC

9 1 General Error (AHB errors during verified writes or RMW)

10 7 EEP

11 6 Cargo Too Large

*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
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55.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

55.6.6 Control

The RMAP command handler mostly runs in the background without any external intervention, but
there are a few control possibilities.

There is an enable bit in the control register of the core which can be used to completely disable the
RMAP command handler. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead
they are all stored to the DMA channel.

There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the command handler stores replies in a
buffer with more than one entry several commands can be processed even if no replies are sent. Data
for read replies is read when the reply is sent and thus writes coming after the read might have been
performed already if there was congestion in the transmitter. To avoid this the RMAP buffer disable
bit can be set to force the command handler to only use one buffer which prevents this situation.

The last control option for the command handler is the possibility to set the destination key which is
found in a separate register.
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Table 677.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single
address

Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent with
error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.
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55.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 55.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.

The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.

1 1 - - - - Unused Stored to DMA-channel.

Table 677.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
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The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If the
rmap or rxunalignedVHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

55.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

55.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.

The AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspec-
ified length (HBURST = 0x001) if VHDL generics rmap and rxunaligned are disabled. The AHB
accesses can be of size byte, halfword and word (HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and
halfword accesses are always NONSEQ. Note that read accesses are always word accesses (HSIZE =
0x010), which can result in destructive read.

The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.

The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.

If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).

BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

55.8 Synthesis and hardware

55.8.1 Clock-generation

Figure 163 shows the clock recovery scheme for the receiver. Data and strobe are coupled directly
from their pads to an xor gate which generates the clock. The output from the xor is then connected to
a clock network. The specific type of clock network depends on the technology used. The xor gate is
actually all that logically belongs to the Rx clock recovery module in figure 163.

The clock output drives all flip-flops in the receiver module found in figure 159. The data signal
which is used for generating the clock is also coupled to the data inputs of several flip-flops clocked
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by the Rx clock as seen in figure 163. Care must be taken so that the delay from the data and strobe
signals through the clock network are longer than the delay to the data input + setup time.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state.

There is an input signal called clkdiv10 which sets the clock divisor value during initialization and the
reset value for the user accessible clock divisor register. The user register value will be used in run-
state. The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock division is
wanted, the clock divisor should be set to 0.

Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

55.8.2 Timers

There are two timers in the core: one for generating the 6.4/12.8 us periods and one for disconnect
timing. They run on the system (AMBA) clock and the frequency must be at least 10 MHz to guaran-
tee disconnect timing limits.

There are two user accessible registers which are used to the set the number of clock cycles used for
the timeout periods. These registers are described in section 55.9.

The reset value for the timer registers can be set in two different ways selected by the usegen VHDL
generic. If usegen is set to 1, the sysfreq VHDL generic is used to generate reset values for the discon-
nect, 6.4 us and 12.8 us timers. Otherwise, the input signals dcrstval and timerrstval will be used as
reset values. If the system clock frequency is 10 MHz or above the disconnect time will be within the
limits specified in the SpaceWire standard.

55.8.3 Synchronization

The VHDL generic nsync selects how many synchronization registers are used between clock
domains. The default is one and should be used when maximum performance is needed. It allows the
transmitter to be clocked 4 times faster than the system clock and the receiver 2 times faster. These are
theoretical values without consideration for clock skew and jitter. Note also that the receiver clocks
data at both negative and positive edges. Thus, the bitrate is twice as high as the clock-rate.

The synchronization limits the Tx and Rx clocks to be at most 4 and 2 times faster than the system
clock. But it might not be possible to achieve such high clock rates for the Tx and Rx clocks for all
technologies.

The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses has a completely

D

S

D

D

Q

Q

Figure 163. The clocking scheme for the receiver. The clock is
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asynchronous reset. To make sure that nothing bad happens the is a synchronous reset guard which
prevents any signals from being assigned before all registers have their reset signals released.

55.8.4 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through theft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless theft VHDL generic is 0.

55.8.5 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock.

The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the GRSPW of
which all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths.

In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing con-
siderations between the clock domains and these constraints will also propagate to the place and route
tool.

The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.

55.8.6 Technology mapping

The core has three generics for technology mapping:tech, techfifoandmemtech. Techselects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations.Techfifoselects whethermemtechshould
be used to select the technology for the FIFO memories (the RMAP buffer is not affected by the this
generic) or if they should be inferred.Techandmemtechcan be set to any value from 0 to NTECH as
defined in the GRLIB.TECH package.

55.8.7 RAM usage

The core maps all RAM memories on the syncram_2p component if theft generic is 0 and to the
syncram_2pft component for other values. The syncrams are located in the technology mapping
library (TECHMAP). The organization of the different memories are described below. If techfifo and/
or memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will
be used depending on the tool and technology. The number of flip-flops used issyncram depth x syn-
cram widthfor all the different memories. The receiver AHB FIFO with fifosize 32 will for example
use 1024 flips-flops.

Receiver ahb FIFO

The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 678 shows the syncram organization for the allowed con-
figurations.
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Transmitter ahb FIFO

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 679 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO

The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 680 shows the syncram organization for the allowed con-
figurations.

RMAP buffer

The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 681 shows the syncram organization for the
allowed configurations.

Table 678.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 679.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 680.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization

16 16x9

32 32x9

64 64x9

Table 681.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization

2 64x8

4 128x8

8 256x8
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55.9 Registers

The core is programmed through registers mapped into APB address space.

Table 682.GRSPW registers

APB address offset Register

0x0 Control

0x4 Status/Interrupt-source

0x8 Node address

0xC Clock divisor

0x10 Destination key

0x14 Time

0x18 Timer and Disconnect

0x20 DMA channel 1 control/status

0x24 DMA channel 1 rx maximum length

0x28 DMA channel 1 transmit descriptor table address.

0x2C DMA channel 1 receive descriptor table address.

Table 683.GRSPW control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC PO RESERVED PS NP RD RE RESERVED TR TT LI TQ RS PM TI IE AS LS LD

31 RMAP available (RA) - Set to one if the RMAP command handler is available. Only readable.

30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-
able.

29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.

28: 27 RESERVED

26 Number of ports (PO) - The number of available SpaceWire ports minus one. Only readable.

25: 22 RESERVED

21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-
nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the
active port. Instead, it is automatically selected by checking the activity on the respective receive
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’ if the RMAP command
handler is not available. If available the reset value is set to the value of the rmapen input signal.
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19: 18 RESERVED

17 RMAP buffer disable (RD) - Unused. If set only one RMAP buffer is used. This ensures that all
RMAP commands will be executed consecutively. Only available if the rmap VHDL generic is set to
1. Reset value: ‘0’.

16 RMAP Enable (RE) - Unused. Enable RMAP command handler. Only available if rmap VHDL
generic is set to 1. Reset value: ‘1’.

15: 12 RESERVED

11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.

10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.

9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.

8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.

7 RESERVED

6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.

5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.

4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer
counter and the new value is transmitted after the current character is transferred. A tick can also be
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one or both of bit 8 to 9 is set and its cor-
responding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Reset value: ‘0’ if the
RMAP command handler is not available. If available the reset value is set to the value of the
rmapen input signal.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’.

0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.

Table 684.GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA WE PE DE ER CE TO

31: 24 RESERVED

23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 =
Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.

20: 10 RESERVED

9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-
bers refer to the index number of the data and strobe signals. Only available if the ports generic is set
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one.
Reset value: ‘0’.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field,
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

6 Write synchronization Error (WE) - A synchronization problem has occurred when receiving N-
Chars. Cleared when written with a one. Reset value: ‘0’.

5 RESERVED

4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.

3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset
value: ‘0’.

2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.

1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.

0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared
when written with a one. Reset value: ‘0’.

Table 683.GRSPW control register



AEROFLEX GAISLER 570 GRIP

Table 685.GRSPW node address register
31 8 7 0

RESERVED NODEADDR

31: 8 RESERVED

7: 0 Node address (NODEADDR) - 8-bit node address used for node identification on the SpaceWire
network. Reset value: 254 (taken from the nodeaddr VHDL generic when /= 255, else from the
rmapnodeaddr input signal)

Table 686.GRSPW clock divisor register
31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

31: 16 RESERVED

15: 8 Clock divisor startup (CLKDIVSTART) - 8-bit Clock divisor value used for the clock-divider
during startup (link-interface is in other states than run). The actual divisor value is Clock Divi-
sor register + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - 8-bit Clock divisor value used for the clock-divider when the
link-interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value:
clkdiv10 input signal.

Table 687.GRSPW destination key
31 8 7 0

RESERVED DESTKEY

31: 8 RESERVED

7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is
set to 1. Reset value: 0 (taken from the deskey VHDL generic)

Table 688.GRSPW time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

31: 8 RESERVED

7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code result-
ing from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.

5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each
tick-in and the incremented value is transmitted. The register can also be written directly but the
written value will not be transmitted. Received time-counter values are also stored in this register.
Reset value: ‘0’.

Table 689.GRSPW timer and disconnect register.
31 22 21 12 11 0

RESERVED DISCONNECT TIMER64

31: 22 RESERVED
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21: 12 Disconnect (DISCONNECT) - Used to generate the 850 ns disconnect time period. The disconnect
period is the number is the number of clock cycles in the disconnect register + 3. So to get a 850 ns
period, the smallest number of clock cycles that is greater than or equal to 850 ns should be calcu-
lated and this values - 3 should be stored in the register. Reset value is set with VHDL generics or
with input signals depending on the value of the usegen VHDL generic.

11: 0 6.4 us timer (TIMER64) - Used to generate the 6.4 and 12.8 us time periods. Should be set to the
smallest number of clock cycles that is greater than or equal to 6.4 us. Reset value is set with VHDL
generics or with input signals depending on the value of the usegen VHDL generic.

Table 690.GRSPW dma control register
31 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE RESERVED NS RD RX AT RA TA PR PS AI RI TI RE TE

31: 17 RESERVED

16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be
transmitted until the transmitter is enabled again. Reset value: ‘0’.

15: 13 RESERVED

12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active
descriptors. If set, the GRSPW will wait for a descriptor to be activated.

11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-
tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’.
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node.
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received.
This happens both if the packet is terminated by an EEP or EOP. Not reset.

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The
interrupt is generated regardless of whether the transmission was successful or not. Not reset.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table.
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled.
Reset value: ‘0’.

Table 691.GRSPW RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

Table 689.GRSPW timer and disconnect register.
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55.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x1F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 25 RESERVED

24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2
are writable. Bits 1 - 0 are always 0. Not reset.

Table 692.GRSPW transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and
eventually wrap to zero again. Reset value: 0.

3: 0 RESERVED

Table 693.GRSPW receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 691.GRSPW RX maximum length register.
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55.11 Configuration options

Table 694 shows the configuration options of the core (VHDL generics).

55.12 Signal descriptions

Table 695 shows the interface signals of the core (VHDL ports). As indicated in the table the core
consists of two different entities, called GRSPW and GRSPW_PHY. The GRSPW entity is the main
part and includes most core’s functionality, while the GRSPW_PHY only handles the receiver clock

Table 694.Configuration options

Generic Function Allowed range Default

tech Technology for clock buffers 0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0

sysfreq Frequency of clock input “clk” in kHz. - 10000

usegen Use values calculated from sysfreq generic as reset values
for 6.4 us timer and disconnect timer.

0 - 1 1

nsync Number of synchronization registers.

Warning: Value 2 only to be used when bit rate is equal or
less than the system clock frequency.

1 - 2 1

rmap Include hardware RMAP target. RMAP CRC logic will
also be added.

If set to 2 the core will only implement the RMAP target,
provide a limited APB interface, enable time code recep-
tion and its interrupt.

0 - 2 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-Char
fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not
select a buffer, instead i connects the input directly to the
output (synthesis tools may still infer a buffer). 1 selects
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4

ft Enable fault-tolerance against SEU errors 0 - 2 0

scantest Enable support for scan test 0 - 1 0

techfifo Implement FIFO with RAM cells (1) or flip-flops (0) 0 - 1 1

netlist Use netlist rather then RTL code 0 - 1 0

ports Sets the number of ports 1 - 2 1

memtech Technology for RAM blocks 0 - NTECH inferred

nodeaddr Sets the reset value for the core’s node address.
Value 255 enables rmapnodeaddr input instead.

0 - 254
255

254

destkey Sets the reset value for the core’s destination key. 0 - 255 0
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generation and the lower parts of the PHY layer. One GRSPW_PHY entity is used per port. See sec-
tion 55.16 for information on how to interface GRSPW with GRSPW_PHY.

Table 695. Signal descriptions

Entity Signal name Field Type Function Active

GRSPW RST N/A Input Reset Low

CLK N/A Input Clock -

RXCLK[1:0] N/A Input Receiver clock. One clock per port. -

TXCLK N/A Input Transmitter default run-state clock -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SWNI D[1:0] Input Data input synchronous to RXCLK (ris-
ing edge). One bit per port.

-

ND[9:0] Input Data input synchronous to RXCLK (fall-
ing edge). Five bits per port.

TICKIN Input Time counter tick input High

CLKDIV10 Input Clock divisor value used during initial-
ization and as reset value for the clock
divisor register

-

RMAPEN Input Reset value for the rmapen control regis-
ter bit

-

RMAPNODEADDR Input Reset value for nodeaddr register bits
when nodeaddr VHDL generic /= 255

-

DCRSTVAL Input Reset value for disconnect timer. Used if
usegen VHDL generic is set to 0.

-

TIMERRSTVAL Input Reset value for 6.4 us timer. Used if use-
gen VHDL generic is set to 0.

-

DCONNECT[3:0] Input Disconnect strobes. Two bits per port.

SWNO D[1:0] Output SpaceWire data output. One bit per port. -

S[1:0] Output SpaceWire strobe output. One bit per
port.

-

TICKOUT Output Time counter tick output High

LINKDIS Output Linkdisabled status High

RMAPACT Output RMAP command processing active High

RXRST Output Receiver reset. Low
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55.13 Signal definitions and reset values

The signals and their reset values are described in table 696.

55.14 Timing

The timing waveforms and timing parameters are shown in figure 164 and are defined in table 697.

The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 165 and
are defined in table 698.

GRSPW_PHY RXRST N/A Input Receiver reset. Low

DI N/A Input SpaceWire data input. -

SI N/A Input SpaceWire strobe input. -

RXCLKO N/A Output Receiver clock recovered from data and
strobe input.

-

DO N/A Ouput Recovered data, synchronous to
RXCLKO (rising edge).

-

NDO[4:0] N/A Ouput Recovered data, synchronous to
RXCLKO (falling edge)

-

DCON-
NECT[1:0]

N/A Ouput Disconnect strobe signals. -

TESTEN N/A Input Scan test enable High

TESTCLK N/A Input Scan test clock. Used inside the
GRSPW_PHY entity instead of recov-
ered RXCLK when TESTEN is active.

-

* see GRLIB IP Library User’s Manual

Table 696.Signal definitions and reset values

Signal name Type Function Active Reset value

spw_clk Input Transmitter default run-state clock Rising edge -

spw_rxd Input, LVDS Data input, positive High -

spw_rxdn Input, LVDS Data input, negative Low -

spw_rxs Input, LVDS Strobe input, positive High -

spw_rxsn Input, LVDS Strobe input, negative Low -

spw_txd Output, LVDS Data output, positive High Logical 0

spw_txdn Output, LVDS Data output, negative Low Logical 1

spw_txs Output, LVDS Strobe output, positive High Logical 0

spw_txsn Output, LVDS Strobe output, negative Low Logical 1

Table 695. Signal descriptions

Entity Signal name Field Type Function Active
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Table 697.Timing parameters

Name Parameter Reference edge Min Max Unit

tSPW0 transmit clock period - 20 - ns

tSPW1 clock to output delay risingspw_clk edge 0 20 ns

tSPW2 input to clock hold - - - not applicable

tSPW3 input to clock setup - - - not applicable

tSPW4 output data bit period - - clk periods

- tSPW0 -5 tSPW0
+5

ns

tSPW5 input data bit period - 20 - ns

tSPW6 data & strobe edge separation - 10 - ns

tSPW7 data & strobe output skew - - 5 ns

Figure 164. Timing waveforms
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55.15 Library dependencies

Table 699 shows libraries used when instantiating the core (VHDL libraries).

55.16 Instantiation

This example shows how the core can be instantiated.

Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.

The GRSPW in the example is a 2-port core configured with non-ft memories of size 4, 64 and 8
entries for AHB FIFOs, N-Char FIFO and RMAP buffers respectively. The system frequency (clk) is
40 MHz and the transmitter frequency (txclk) is 20 MHz.

The memory technology is inferred which means that the synthesis tool will select the appropriate
components. The rx clk buffer uses a hardwired clock.

The hardware RMAP command handler is enabled which also automatically enables rxunaligned and
rmapcrc. Finally, the DMA channel interrupt line is 2 and the number of synchronization registers is
1.

Table 698.Skew and jitter timing parameters

Name Parameter Reference edge Min Max Unit

tskew skew between data and strobe - - TBD ns

tjitter jitter on data or strobe - - TBD ns

tds minimum separation between
data and strobe edges

- TBD - ns

tdclk delay from edge of data or strobe
to the receiver flip-flop

- - TBD ns

thold hold timer on receiver flip-flop - TBD - ns

tui unit interval (bit period) - TBD - ns

Table 699.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPACEWIRE Signals, component Component and record declarations.

Figure 165. Skew and jitter timing waveforms
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library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- spacewire signals
di :  in  std_logic_vector(1 downto 0);

 si :  in  std_logic_vector(1 downto 0);
 do :  out std_logic_vector(1 downto 0);
 so :  out std_logic_vector(1 downto 0)

    );
end;

architecture rtl of spacewire_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- Spacewire signals
  signal swni : grspw_in_type;
  signal swno : grspw_out_type;

signal rxclk : std_logic_vector(1 downto 0);

begin

  -- AMBA Components are instantiated here
  ...

  -- GRSPW
 sw0 : grspw

generic map (tech => inferred, hindex => 5, pindex => 7, paddr => 7, nsync => 1,
rmap => 1, rxunaligned => 0, rmapcrc => 0, rxclkbuftype => 0, sysfreq => 40000,
pirq => 2, fifosize1 => 4, fifosize2 => 64, rmapbufs => 8, ft => 0, ports => 2)

  port map (rstn, clk, rxclk, apbi, apbo(7), ahbmi, ahbmo(5), swni, swno);

phy0 : grspw_phy
generic map (tech => inferred, rxclkbuftype => 0, scantest => 0)
port map (rxrst => swno.rxrst, di => di(0), si => si(0),

rxclko => rxclk(0), do => swni.d(0), ndo => swni.nd(4 downto 0),
dconnect => swni.dconnect(1 downto 0));

phy1 : grspw_phy
generic map (tech => inferred, rxclkbuftype => 0)
port map (rxrst => swno.rxrst, di => di(1), si => si(1),

rxclko => rxclk(1), do => swni.d(1), ndo => swni.nd(9 downto 5),
dconnect => swni.dconnect(3 downto 2));

swni.rmapen <= ‘1’;
swni.clkdiv10 <= “00000001”;
swni.tickin  <= ‘0’;
do(0) <= swno.d(0);
so(0)  <= swno.s(0);

 do(1) <= swno.d(1);
so(1)  <= swno.s(1);

end;
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55.17 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.

These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

55.17.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int destkey, int nospill, int timetxen, int
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Table 700.The spwvars struct

Field Description Allowed range

regs Pointer to the GRSPW -

nospill The nospill value used for the core. 0 - 1

rmap Indicates whether the core is configured with RMAP. Set by
spw_init.

0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support.
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support.
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255

nodeaddr The node address value used for the core. 0 - 255

destkey The destination key value used for the core. 0 - 255

rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431

rxpnt Pointer to the next receiver descriptor. 0 - 127

rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127

txpnt Pointer to the next transmitter descriptor. 0 - 63

txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63

timetxen The timetxen value used for this core. 0 - 1

timerxen The timerxen value used for this core. 0 - 1

txd Pointer to the transmitter descriptor table. -

rxd Pointer to the receiver descriptor table -
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Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the
SpaceWire core.

int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Table 701.Return values for spw_setparam

Value Description

0 The function completed successfully

1 One or more of the parameters had an illegal value

Table 702.Parameters for spw_setparam

Parameter Description Allowed range

nodeaddr Sets the node address value of the struct spw passed to the function. 0-255

clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255

destkey Sets the destination key of the struct spw passed to the function. 0-255

nospill Sets the nospill value of the struct spw passed to the function. 0 - 1

timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1

timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1

rxmaxlen Sets the receiver maximum length field of the struct spw passed to
the function.

0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with
the struct passed to the function.

0 - 232-1

Table 703.Return values for spw_init

Value Description

0 The function completed successfully

1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 704.Parameters for spw_init

Parameter Description Allowed range

spw The spwvars struct associated with the GRSPW core that should be
initialized.

-
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Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

Table 705.Return values for spw_txdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 706.Parameters for spw_txdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 707.Return values for spw_rxdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 708.Parameters for spw_rxdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-
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void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct.

Table 709.Parameters for spw_disable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 710.Parameters for spw_enable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 711.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 712.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 713.Return values for spw_setclockdiv

Value Description

0 The function completed successfully

1 The new clock divisor value is illegal.
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int spw_set_nodeadr(struct spwvars *spw);

Sets the node address register with the node address value stored in the spwvars struct.

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct.

int spw_tx(int crc, int skipcrcsize, int hsize, char *hbuf, int dsize, char *dbuf, struct
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0.

Table 714.Parameters for spw_setclockdiv

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 715.Return values for spw_set_nodeadr

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 716.Parameters for spw_set_nodeadr

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 717.Return values for spw_set_rxmaxlength

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 718.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 719.Return values for spw_tx

Value Description

0 The function completed successfully

1 There are no free transmit descriptors currently available

2 There was illegal parameters passed to the function
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int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0.

int spw_checkrx(int *size, struct rxstatus *rxs, struct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero.

Table 720.Parameters for spw_tx

Parameter Description Allowed range

crc Set to one to append RMAP CRC after the header and data fields.
Only available if hardware CRC is available in the core.

0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255

hbuf Pointer to the header data -

dsize The size of the data field in bytes 0 - 224-1

dbuf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should transmit the packet

-

Table 721.Return values for spw_rx

Value Description

0 The function completed successfully

1 There are no free receive descriptors currently available

Table 722.Parameters for spw_rx

Parameter Description Allowed range

buf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should receive the packet

-

Table 723.Return values for spw_checkrx

Value Description

0 No packet has been received

1 A packet has been received

Table 724.Parameters for spw_checkrx

Parameter Description Allowed range

size When the function returns 1 this variable holds the number of bytes
received

-

rxs When the function returns 1 this variable holds status information -

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-
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int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero.

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received.

Table 725.The rxstatus struct

Field Description Allowed range

truncated Packet was truncated 0 - 1

dcrcerr Data CRC error bit was set. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 726.Return values for spw_checktx

Value Description

0 No packet has been transmitted

1 A packet has been correctly transmitted

2 A packet has been incorrectly transmitted

Table 727.Parameters for spw_checktx

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 728.Parameters for send time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 729.Return values for check_time

Value Description

0 No time-code has been received

1 A new time-code has been received

Table 730.Parameters for check_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-
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int get_time(struct spwvars *spw);

Get the current time counter value.

void spw_reset(struct spwvars *spw);

Resets the GRSPW.

void spw_rmapen(struct spwvars *spw);

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw);

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw);

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 731.Return values for get_time

Value Description

0 - 63 Returns the current time counter value

Table 732.Parameters for get_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 733.Parameters for spw_reset

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be reset

-

Table 734.Parameters for spw_rmapen

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 735.Parameters for spw_rmapdis

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 736.Return values for spw_setdestkey

Value Description

0 The function completed successfully

1 The destination key parameter in the spwvars struct contains an illegal value
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55.17.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.

int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr, int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct.

Table 737.Parameters for spw_setdestkey

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set.

-

Table 738.Return values for build_rmap_hdr

Value Description

0 The function completed successfully

1 One or more of the parameters contained illegal values

Table 739.Parameters for build_rmap_hdr

Parameter Description Allowed range

pkt Pointer to a rmap_pkt struct which contains the data from which the
header should be built

hdr Pointer to the buffer where the header will be built

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-
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Table 740.rmap_pkt struct fields

Field Description Allowed Range

type Selects the type of packet to build. writecmd, readcmd,
rmwcmd, writerep, readrep,
rmwrep

verify Selects whether the data should be verified before writing yes, no

ack Selects whether an acknowledge should be sent yes, no

incr Selects whether the address should be incremented or not yes, no

destaddr Sets the destination address 0 - 255

destkey Sets the destination key 0 - 255

srcaddr Sets the source address 0 - 255

tid Sets the transaction identifier field 0 - 65535

addr Sets the address of the operation to be performed. The extended
address field is currently always set to 0.

0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1

status Sets the status field 0 - 11

dstspalen Number of source path address bytes to insert before the destination
address

0 - 228

dstspa Pointer to memory holding the destination path address bytes -

srcspalen Number of source path address bytes to insert in a command. For a
reply these bytes are placed before the return address

0 - 12

srcspa Pointer to memory holding the source path address bytes -
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55.18 Appendix A Clarifications of the GRSPW implementation of the standard

6.3.1 page 9 RMAP draft F

"The user application at destination will be informed that there was an error

 in the data transferred. The source will be informed of the data error if the

 acknowledge bit in the command has been set."

We view the RMAP command handler as both protocol parser and user application. All commands
are parsed in the first stage and various (internal) status bits are set. The next step (which can be
viewed as the user application) will make the decision of how to act upon the received command from
these bits. Therefore, the various errors that can occur are not externally observable.

If an error occurs when the command handler is accessing the AHB bus through the DMA interface
errors will be externally observable using the AHB status register in GRLIB.

6.3.6 page 13 RMAP draft F

“The Write Command packet arrives at the destination and its header is found to be in error. This fact
is added to the error statistics in the destination node.”

This text does not state how and if these statistics should be observable. At the moment the error han-
dling is internal to the RMAP command handler and therefore no statistics are internally observable.
A counter for this particular error might be added in the future.

6.3.6 page 15 RMAP draft F

"These various errors will be reported to the user application running on the

destination node (Write Data Error Indication)."

Again the RMAP command handler is the user application and all these errors are handled internally.

6.5.6 page 31 RMAP draft F

"The source user application, in fact immediately rejects this as an authorisation

failure as the command is trying to RMW an area of protected memory."

It should probably be destination user application instead of source. It is unclear what immediately
means. Should it be rejected before any accesses are done on the bus and thus requiring the RMAP
command handler to include a complete bus decoding. The GRSPW does (probably) not comply to
this paragraph at the moment. If a bus error occurs a general error code will be returned.

6.5.6 page 32

"If the header of the RMW reply packet is received intact but the data field is

corrupted as indicated by an incorrect data field length (too long or too short)

or by a CRC error, then an error can be flagged to the application immediately

(RMW Data Failure) without having to wait for an application timeout."
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This is not applicable to the GRSPW since it does not handle replies. However this is practically an
unnecessary comment since it is not specified in the standard in which manner received replies are
indicated to the higher layers.
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56 GRSPW2 - SpaceWire codec with AHB host Interface and RMAP target

56.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-ST-50-12C) with the protocol identification extension
(ECSS-E-ST-50-51C). The optional Remote Memory Access Protocol (RMAP) target implements the
ECSS standard (ECSS-E-ST-50-52C).

The SpaceWire interface is configured through a set of registers accessed through an APB interface.
Data is transferred through DMA channels using an AHB master interface. The number of DMA
channels is configurable from one to four.

The core can also be configured with two SpaceWire ports with manual or automatic switching
between them.

There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports.

The core only supports byte addressed 32-bit big-endian host systems. Transmitter outputs can be
either Single Data Rate (SDR) or Double Data Rate (DDR). The receiver can be connected either to
an Aeroflex SpaceWire transceiver or recover the data itself using a self-clocking scheme or sampling
(SDR or DDR).

56.2 Operation

56.2.1 Overview

The main sub-blocks of the core are the link interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 166.

The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The PHY block provides a common interface for the receiver
to the four different data recovery schemes and is external to this core. A short description is found in
section 56.3.5. The complete documentation is found in the GRSPW2_PHY section. The AMBA
interface consists of the DMA engines, the AHB master interface and the APB interface. The link
interface provides FIFO interfaces to the DMA engines. These FIFOs are used to transfer N-Chars
between the AMBA and SpaceWire domains during reception and transmission.

Figure 166. Block diagram
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The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed
on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter.

The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10.

The link interface, DMA engines, RMAP target and AMBA interface are described in section 56.3,
56.4, 56.6 and 56.7 respectively.

56.2.2 Protocol support

The core only accepts packets with a valid destination address in the first received byte. Packets with
address mismatch will be silently discarded (except in promiscuous mode which is covered in section
56.4.10).

The second byte is sometimes interpreted as a protocol ID a desrcibed hereafter. The RMAP protocol
(ID=0x1) is the only protocol handled separately in hardware while other packets are stored to a DMA
channel. If the RMAP target is present and enabled all RMAP commands will be processed, executed
and replied automatically in hardware. Otherwise RMAP commands are stored to a DMA channel in
the same way as other packets. RMAP replies are always stored to a DMA channel. More information
on the RMAP protocol support is found in section 56.6. When the RMAP target is not present or dis-
abled, there is no need to include a protocol ID in the packets and the data can start immediately after
the address.

All packets arriving with the extended protocol ID (0x00) are stored to a DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the core. It is up to the client receiving the packets to ignore them.

When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They arenotautomatically added by the core.

Figure 167 shows the packet types accepted by the core. The core also allows reception and transmis-
sion with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

56.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 166.

56.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM handles the exchange level.

The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching

Figure 167. The SpaceWire packet types supported by the core.
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the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.

The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.

Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 56.3.6).

When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value.

N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are cred-
its available. NULLs are sent when no other character transmission is requested or the FSM is in a
state where no other transmissions are allowed.

The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

56.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.

This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 56.8.1. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.

The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 168.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most
of the signal and character levels of the SpaceWire standard is handled in the transmitter. External
LVDS drivers are needed for the data and strobe signals. The outputs can be configured as either sin-
gle- or double data rate. The latter increases maximum bitrate significantly but is not available for all
techonologies.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 168. Schematic of the link interface transmitter.
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A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

56.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream recovered
from the data and strobe signals by the PHY module which presents it as a data and data-valid signal.
Both the receiver and PHY are located in a separate clock domain which runs on a clock generated by
the PHY. More information on the clock-generation can be found in section 56.8.1.

The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the tx clock domain because no receiver clock is available when disconnected.

Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 169. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.

56.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.

One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
56.3.2. The inactive port is driven with zero on both data and strobe.

Both receivers will always be active but only the active port’s interface signals (see figure 169) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.

When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches.

56.3.5 Receiver PHY

The receiver supports four different input data recovery schemes: self-clocking (xor), sampling SDR,
sampling DDR and the Aeroflex SpaceWire transceiver. These four recovery types are handled in the
PHY module and data is presented to the receiver as a data and data-valid signal. This part of the
receiver must often be constrained and placing it in a separate module makes this process easier with

Receiver Clock Domain Host Clock Domain

Receiver

D

DV

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 169. Schematic of the link interface receiver.

Got EEP
Got EOP
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the most common synthesis tools. The input type is selected using a VHDL generic. More informa-
tion about the PHY can be found in the GRSPW2_PHY section of the grip manual.

56.3.6 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out
register field. There are also two control register bits which enable the time receiver and transmitter
respectively.

Each Time-code sent from the grspw is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero.

Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.

The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes.

The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.

A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.

The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.

The control bits of the Time-code are stored to the time-ctrl register when a Time-code is received
whose time-count is one more than the nodes current time-counter register. The time-ctrl register can
be read through the APB interface. The same register is used during time-code transmissions.

It is possible to have both the time-transmission and reception functions enabled at the same time.

56.4 Receiver DMA channels

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels.

56.4.1 Address comparison and channel selection

Packets are received to different channels based on the address and whether a channel is enabled or
not. When the receiver N-Char FIFO contains one or more characters, N-Chars are read by the
receiver DMA engine. The first character is interpreted as the logical address and is compared with
the addresses of each channel starting from 0. The packet will be stored to the first channel with an
matching address. The complete packet including address and protocol ID but excluding EOP/EEP is
stored to the memory address pointed to by the descriptors (explained later in this section) of the
channel.
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Each SpaceWire address register has a corresponding mask register. Only bits at an index containing a
zero in the corresponding mask register are compared. This way a DMA channel can accept a range of
addresses. There is a default address register which is used for address checking in all implemented
DMA channels that do not have separate addressing enabled and for RMAP commands in the RMAP
target. With separate addressing enabled the DMA channels’ own address/mask register pair is used
instead.

If an RMAP command is received it is only handled by the target if the default address register
(including mask) matches the received address. Otherwise the packet will be stored to a DMA channel
if one or more of them has a matching address. If the address does not match neither the default
address nor one of the DMA channels’ separate register, the packet is still handled by the RMAP tar-
get if enabled since it has to return the invalid address error code. The packet is only discarded (up to
and including the next EOP/EEP) if an address match cannot be found and the RMAP target is dis-
abled.

Packets, other than RMAP commands, that do not match neither the default address register nor the
DMA channels’ address register will be discarded. Figure 170 shows a flowchart of packet reception.

At least 2 non EOP/EEP N-Chars needs to be received for a packet to be stored to the DMA channel
unless the promiscuous mode is enabled in which case 1 N-Char is enough. If it is an RMAP packet
with hardware RMAP enabled 3 N-Chars are needed since the command byte determines where the
packet is processed. Packets smaller than these sizes are discarded.
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56.4.2 Basic functionality of a channel

Reception is based on descriptors located in a consecutive area in memory that hold pointers to buff-
ers where packets should be stored. When a packet arrives at the core the channel which should
receive it is first determined as described in the previous section. A descriptor is then read from the
channels’ descriptor area and the packet is stored to the memory area pointed to by the descriptor.
Lastly, status is stored to the same descriptor and increments the descriptor pointer to the next one.
The following sections will describe DMA channel reception in more detail.

56.4.3 Setting up the core for reception

A few registers need to be initialized before reception to a channel can take place. First the link inter-
face need to be put in the run state before any data can be sent. The DMA channel has a maximum
length register which sets the maximum packet size in bytes that can be received to this channel.
Larger packets are truncated and the excessive part is spilled. If this happens an indication will be
given in the status field of the descriptor. The minimum value for the receiver maximum length field is
4 and the value can only be incremented in steps of four bytes up to the maximum value 33554428. If
the maximum length is set to zero the receiver willnot function correctly.

Either the default address register or the channel specific address register (the accompanying mask
register must also be set) needs to be set to hold the address used by the channel. A control bit in the
DMA channel control register determines whether the channel should use default address and mask
registers for address comparison or the channel’s own registers. Using the default register the same
address range is accepted as for other channels with default addressing and the RMAP target while the
separate address provides the channel its own range. If all channels use the default registers they will
accept the same address range and the enabled channel with the lowest number will receive the
packet.

Finally, the descriptor table and control register must be initialized. This will be described in the two
following sections.

56.4.4 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1024 bytes aligned address. It is also limited to be 1024
bytes in size which means the maximum number of descriptors is 128 since the descriptor size is 8
bytes.

The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap at a specific descriptor before the upper limit by setting the wrap bit in
the descriptor. The idea is that the selector should be initialized to 0 (start of the descriptor area) but it
can also be written with another 8 bytes aligned value to start somewhere in the middle of the area. It
will still wrap to the beginning of the area.

If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the rxac-
tive bit for the channel is cleared it is safe to update the descriptor table register. When this is finished
and descriptors are enabled the receiver enable bit can be set again.

56.4.5 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
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A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for an interrupt to be gen-
erated.

The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

56.4.6 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 56.9). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

56.4.7 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded if the packet’s
address does not fall into the range of another DMA channel. If the receiver is enabled and the address

Table 741.GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.

30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.

29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.

28 EEP termination (EP) - This packet ended with an Error End of Packet character.

27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the
receive interrupt enable bit in the DMA channel control register is set.

26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor
table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 742.GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.
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falls into the accepted address range, the next state is entered where the rxdescav bit is checked. This
bit indicates whether there are active descriptors or not and should be set by the external application
using the DMA channel each time descriptors are enabled as mentioned above. If the rxdescav bit is
‘0’ and the nospill bit is ‘0’ the packets will be discarded. If nospill is one the grspw waits until rxdes-
cav is set and the characters are kept in the N-Char fifo during this time. If the fifo becomes full fur-
ther N-char transmissions are inhibited by stopping the transmission of FCTs.

When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.

The receiver can be disabled at any time and will stop packets from being received to this channel. If
a packet is currently received when the receiver is disabled the reception will still be finished. The
rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but no more
descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads a dis-
abled descriptor.

56.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event.

RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.

The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted

If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.

If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

56.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
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when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.

If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

56.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the first DMA channel
enabled regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/
eep N-Chars received will be stored to the DMA channel. The rxmaxlength register is still checked
and packets exceeding this size will be truncated.

RMAP commands will still be handled by it when promiscuous mode is enabled if the rmapen bit is
set. If it is cleared, RMAP commands will also be stored to a DMA channel.

56.5 Transmitter DMA channels

The transmitter DMA engine handles transmission of data from the DMA channels to the SpaceWire
network. Each receive channel has a corresponding transmit channel which means there can be up to
4 transmit channels. It is however only necessary to use a separate transmit channel for each receive
channel if there are also separate entities controlling the transmissions. The use of a single channel
with multiple controlling entities would cause them to corrupt each other’s transmissions. A single
channel is more efficient and should be used when possible.

Multiple transmit channels with pending transmissions are arbitrated in a round-robin fashion.

56.5.1 Basic functionality of a channel

A transmit DMA channel reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

56.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register is
written with a one which triggers the transmission. These steps will be covered in more detail in the
next sections.

56.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 56.4. The maximum size is 1024 bytes as for the receiver but since the
descriptor size is 16 bytes the number of descriptors is 64.

To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
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The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.

The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the GRSPW
when the CRC logic is available (rmapor rmapcrcVHDL generic set to 1). The header CRC will be
calculated from the data fetched from the header pointer and the data CRC is generated from data
fetched from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC
bytes field is set to the number of bytes in the beginning of the header field that should not be included
in the CRC calculation.

The CRCs are sent even if the corresponding length is zero, but when both lengths are zero no packet
is sent not even an EOP.

56.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 743.GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED

17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the
data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header
length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.

14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and
the transmitter interrupt enable bit in the DMA control register is set.

13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one
in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary when using path addressing since
one or more bytes in the beginning of the packet might be discarded before the packet reaches its
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.
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56.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indi-
cated are read and transmitted. When a transmission has finished, status will be written to the first
field of the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was
requested it will also be generated. Then a new descriptor is read and if enabled a new transmission
starts, otherwise the transmit enable bit is cleared and nothing will happen until it is enabled again.

56.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1024 bytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.

The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

56.5.7 Error handling

Abort Tx

The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this

Table 744.GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.

Table 745.GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED

23: 0 Data length (DATALEN) - Length in bytes of data part of packet. If set to zero, no data will be sent.
If both data- and header-lengths are set to zero no packet will be sent.

Table 746.GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.
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will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.

AHB error

When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.

If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).

The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active dur-
ing the AHB error until the error state is cleared and the unit is enabled again.

Link error

When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the grspw will automatically try to connect again provided that the link-start bit is asserted and the
link-disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the trans-
mitter DMA engine will wait for the link to enter run-state and start a new transmission immediately
when possible if packets are pending. Otherwise the transmitter will be disabled when a link error
occurs during the transmission of the current packet and no more packets will be transmitted until it is
enabled again immediately when possible if packets are pending.

56.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target which is enabled with a VHDL generic. This
section describes the basics of the RMAP protocol and the target implementation.

56.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three
operations write, read and read-modify-write. These operations are posted operations which means
that a source does not wait for an acknowledge or reply. It also implies that any number of operations
can be outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-
outs must be implemented in the user application which sends the commands. Data payloads of up to
16 Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify
data before executing an operation. A complete description of the protocol is found in the RMAP
standard.

56.6.2 Implementation

The core includes a target for RMAP commands which processes all incoming packets with protocol
ID = 0x01, type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b and an address falling in
the range set by the default address and mask register. When such a packet is detected it is not stored
to the DMA channel, instead it is passed to the RMAP receiver.
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The core implements all three commands defined in the standard with some restrictions. Support is
only provided for 32-bit big-endian systems. This means that the first byte received is the msb in a
word. The target will not receive RMAP packets using the extended protocol ID which are always
dumped to the DMA channel.

The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.

There is a user accessible destination key register which is compared to destination key field in incom-
ing packets. If there is a mismatch and a reply has been requested the error code in the reply is set to
3. Replies are sent if and only if the ack field is set to ‘1’.

When a failure occurs during a bus access the error code is set to 1 (General Error). There is predeter-
mined order in which error-codes are set in the case of multiple errors in the core. It is shown in table
747.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mitting. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.

Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

56.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 bytes and the address must
be aligned to the size. That is 1 byte writes can be done to any address, 2 bytes must be halfword
aligned, 3 bytes are not allowed and 4 bytes writes must be word aligned. Since there will always be
only on AHB operation performed for each RMAP verified write command the incrementing address
bit can be set to any value.

Table 747.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error

1 12 Invalid destination logical address

2 2 Unused RMAP packet type or command code

3 3 Invalid destination key

4 9 Verify buffer overrun

5 11 RMW data length error

6 10 Authorization failure

7* 1 General Error (AHB errors during non-verified writes)

8 5/7 Early EOP / EEP (if early)

9 4 Invalid Data CRC

10 1 General Error (AHB errors during verified writes or RMW)

11 7 EEP

12 6 Cargo Too Large

*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
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Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

56.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

56.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

56.6.6 Control

The RMAP target mostly runs in the background without any external intervention, but there are a few
control possibilities.

There is an enable bit in the control register of the core which can be used to completely disable the
RMAP target. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead they are all
stored to the DMA channel.

There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the target stores replies in a buffer with more
than one entry several commands can be processed even if no replies are sent. Data for read replies is
read when the reply is sent and thus writes coming after the read might have been performed already
if there was congestion in the transmitter. To avoid this the RMAP buffer disable bit can be set to force
the target to only use one buffer which prevents this situation.

The last control option for the target is the possibility to set the destination key which is found in a
separate register.
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Table 748.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single
address

Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent with
error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.
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56.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 56.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.

The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.

1 1 - - - - Unused Stored to DMA-channel.

Table 748.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
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The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If the
rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

56.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

56.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.

The AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspec-
ified length (HBURST = 0x001) if VHDL generics rmap and rxunaligned are disabled. The AHB
accesses can be of size byte, halfword and word (HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and
halfword accesses are always NONSEQ. Note that read accesses are always word accesses (HSIZE =
0x010), which can result in destructive read.

The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.

The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.

If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).

BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

56.8 Synthesis and hardware

56.8.1 Clock-generation

The receiver module found in figure 166 should be clocked with a clock generated by the grspw2_phy
module. See the example instantiation in this section and the grspw2_phy section of the grip manual
for more information on how to connect this clock.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state.

There is an input signal called clkdiv10 which sets the reset values for the user accessible clock divi-
sor registers. There is one register value which is used during initialisation and one which is used in
run-state The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock divi-
sion is wanted, the clock divisor should be set to 0.

Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
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so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

56.8.2 Timers

There are two timers in the grspw: one for generating the 6.4/12.8 us periods and one for disconnect
timing.

The timeout periods are generated from the tx clock whose frequency must be at least 10 MHz to
guarantee disconnect timing limits. The same clock divisor is used as for the tx clock during initialisa-
tion so it must be set correctly for the link timing to work.

56.8.3 Synchronization

The transmitter and receiver bit rates can be eight times higher than the system clock frequency. This
includes a large margin for clock skew and jitter so it might be possible to run at even higher rate dif-
ferences. Note also that the receiver clocks data at both negative and positive edges for the input
modes 0 and 1 so the bitrate is twice the clock frequency. There is no direct relationship between
bitrate and frequency for the sampling modes.

The clock synchronization is just one limiting factor for the clock frequency, it might for example not
be possible to achieve the highest possible frequency for certain technologies.

The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses a completely asyn-
chronous reset. To make sure that nothing bad happens the is a synchronous reset guard which pre-
vents any signals from being assigned before all registers have their reset signals released.

In the sampling modes this asynchronous reset can be removed if both the receiver and transmitter
runs on the same clock. In that case set the RXTX_SAMECLK generic to 1.

56.8.4 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through theft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless theft VHDL generic is 0.

56.8.5 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock.

The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the core of which
all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths.

In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing con-
siderations between the clock domains and these constraints will also propagate to the place and route
tool.

The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.
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56.8.6 Technology mapping

The core has three generics for technology mapping:tech, techfifoandmemtech. Techselects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations.Techfifoselects whethermemtechshould
be used to select the technology for the FIFO memories (the RMAP buffer is not affected by the this
generic) or if they should be inferred.Techandmemtechcan be set to any value from 0 to NTECH as
defined in the GRLIB.TECH package.

56.8.7 RAM usage

The core maps all RAM memories on the syncram_2p component if theft generic is 0 and to the
syncram_2pft component for other values. The syncrams are located in the technology mapping
library (TECHMAP). The organization of the different memories are described below. If techfifo and/
or memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will
be used depending on the tool and technology. The number of flip-flops used issyncram depth x syn-
cram widthfor all the different memories. The receiver AHB FIFO with fifosize 32 will for example
use 1024 flips-flops.

Receiver ahb FIFO

The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 749 shows the syncram organization for the allowed con-
figurations.

Transmitter ahb FIFO

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 750 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO

Table 749.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 750.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32
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The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 751 shows the syncram organization for the allowed con-
figurations.

RMAP buffer

The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 752 shows the syncram organization for the
allowed configurations.

56.9 Registers

The core is programmed through registers mapped into APB address space.

Table 751.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization

16 16x9

32 32x9

64 64x9

Table 752.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization

2 64x8

4 128x8

8 256x8

Table 753.GRSPW registers

APB address offset Register

0x0 Control

0x4 Status/Interrupt-source

0x8 Node address

0xC Clock divisor

0x10 Destination key

0x14 Time

0x20 DMA channel 1 control/status

0x24 DMA channel 1 rx maximum length

0x28 DMA channel 1 transmit descriptor table address.

0x2C DMA channel 1 receive descriptor table address.

0x30 DMA channel 1 address register

0x34 Unused

0x38 Unused

0x3C Unused

0x40 - 0x5C DMA channel 2 registers

0x60 - 0x7C DMA channel 3 registers

0x80 - 0x9C DMA channel 4 registers
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Table 754.GRSPW control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC NCH PO RESERVED PS NP RD RE RESERVED TR TT LI TQ RS PM TI IE AS LS LD

31 RMAP available (RA) - Set to one if the RMAP target is available. Only readable.

30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-
able.

29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.

28: 27 Number of DMA channels (NCH) - The number of available DMA channels minus one (Number of
channels = NCH+1).

26 Number of ports (PO) - The number of available SpaceWire ports minus one.

25: 23 RESERVED

22 Loop-back enable. The value of this bit is driven on the swno.loobpack output.

21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-
nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the
active port. Instead, it is automatically selected by checking the activity on the respective receive
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’ if the RMAP command
handler is not available. If available the reset value is set to the value of the rmapen input signal.

19: 18 RESERVED

17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-
mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1. Reset
value: ‘0’.

16 RMAP Enable (RE) - Enable RMAP target. Only available if rmap VHDL generic is set to 1. Reset
value: ‘1’.

15: 12 RESERVED

11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.

10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.

9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.

8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.

7 RESERVED

6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.

5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.

4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer
counter and the new value is transmitted after the current character is transferred. A tick can also be
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one of bit 8 to 10 is set and its corre-
sponding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Reset value: ‘0’ if the
RMAP target is not available. If available the reset value is set to the value of the rmapen input sig-
nal.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’.

0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.
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Table 755.GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA PE DE ER CE TO

31: 24 RESERVED

23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 =
Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.

20: 10 RESERVED

9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-
bers refer to the index number of the data and strobe signals. Only available if the ports generic is set
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one.
Reset value: ‘0’.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field,
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

6: 5 RESERVED

4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.

3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset
value: ‘0’.

2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.

1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.

0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared
when written with a one. Reset value: ‘0’.

Table 756.GRSPW default address register
31 16 15 8 7 0

RESERVED DEFMASK DEFADDR

31: 8 RESERVED

15: 8 Default mask (DEFMASK) - Default mask used for node identification on the SpaceWire network.
This field is used for masking the address before comparison. Both the received address and the
DEFADDR field are anded with the inverse of DEFMASK before the address check.

7: 0 Default address (DEFADDR) - Default address used for node identification on the SpaceWire net-
work. Reset value: 254 (taken from the nodeaddr VHDL generic when /= 255, else from the rmapn-
odeaddr input signal)

Table 757.GRSPW clock divisor register
31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

31: 16 RESERVED

15: 8 Clock divisor startup (CLKDIVSTART) - Clock divisor value used for the clock-divider during
startup (link-interface is in other states than run). The actual divisor value is Clock Divisor regis-
ter + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - Clock divisor value used for the clock-divider when the link-
interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value:
clkdiv10 input signal.
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Table 758.GRSPW destination key
31 8 7 0

RESERVED DESTKEY

31: 8 RESERVED

7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is
set to 1. Reset value: 0. (taken from the deskey VHDL generic)

Table 759.GRSPW time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

31: 8 RESERVED

7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code result-
ing from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.

5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each
tick-in and the incremented value is transmitted. The register can also be written directly but the
written value will not be transmitted. Received time-counter values are also stored in this register.
Reset value: ‘0’.

Table 760.GRSPW DMA control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE SP SA EN NS RD RX AT RA TA PR PS AI RI TI RE TE

31: 17 RESERVED

16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be
transmitted until the transmitter is enabled again. Reset value: ‘0’.

15 Strip pid (SP) - Remove the pid byte (second byte) of each packet. The address byte (first byte) will
also be removed when this bit is set independent of the SA bit. Reset value: ‘0’.

14 Strip addr (SA) - Remove the addr byte (first byte) of each packet. Reset value: ‘0’.

13 Enable addr (EN) - Enable separate node address for this channel. Reset value: ‘0’.

12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active
descriptors. If set, the GRSPW will wait for a descriptor to be activated.

11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-
tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’.
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node.
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received.
This happens both if the packet is terminated by an EEP or EOP. Not reset.
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2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The
interrupt is generated regardless of whether the transmission was successful or not. Not reset.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table.
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled.
Reset value: ‘0’.

Table 761.GRSPW RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

31: 25 RESERVED

24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2
are writable. Bits 1 - 0 are always 0. Not reset.

Table 762.GRSPW transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and
eventually wrap to zero again. Reset value: 0.

3: 0 RESERVED

Table 763.GRSPW receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 764.GRSPW DMA channel address register
31 16 15 8 7 0

RESERVED MASK ADDR

31: 8 RESERVED

Table 760.GRSPW DMA control register
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56.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x29. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

15: 8 Mask (MASK) - Mask used for node identification on the SpaceWire network. This field is used for
masking the address before comparison. Both the received address and the ADDR field are anded
with the inverse of MASK before the address check.

7: 0 Address (ADDR) - Address used for node identification on the SpaceWire network for the corre-
sponding dma channel when the EN bit in the DMA control register is set. Reset value: 254.

Table 764.GRSPW DMA channel address register
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56.11 Configuration options
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Table 765 shows the configuration options of the core (VHDL generics).

Table 765.Configuration options

Generic Function Allowed range Default

tech Selects technology for transmitter DDR registers (if
output_type=1) and enables a reset of additional registers
for ASIC technologies.

0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0

rmap Include hardware RMAP target. RMAP CRC logic will
also be added.

If set to 2 the core will only implement the RMAP target,
provide a limited APB interface, enable time code recep-
tion and its interrupt.

0 - 2 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-Char
fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not
select a buffer, instead i connects the input directly to the
output (synthesis tools may still infer a buffer). 1 selects
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4

ft Enable fault-tolerance against SEU errors 0 - 2 0

scantest Enables scantest support 0 - 1 0

techfifo Enables technology specific RAM blocks selected with
memtech. When disabled the memtech generic will have
no effect.

0 - 1 1

ports Sets the number of ports 1 - 2 1

dmachan Sets the number of DMA channels 1 - 4 1

memtech Selects technology for RAM blocks. 0 - NTECH DEFMEMTECH

input_type Select receiver type. 0=self clocking (xor), 1 = interface
for aeroflex spacewire transceiver, 2 = single data rate sam-
pling, 3 and 4 = double data rate sampling.

0 - 4 0

output_type Select transmitter type. 0 = single data rate, 1 = double
data rate, 2 = unused

0 - 2 0

rxtx_sameclk Set to one if the same clock net is connected to both the
receiver and transmitter (which means this feature is only
applicable when the receiver uses sampling). This will
remove some unnecessary synchronization registers.

0 - 1 0

netlist Select presynthesized netlist instead of synthesizing from
source. When enabled the specific netlist is selected with
the tech generic.

0 - 1 0

nodeaddr Sets the reset value for the core’s node address.
Value 255 enables rmapnodeaddr input instead.

0 - 254
255

254

destkey Sets the reset value for the core’s destination key. 0 - 255 0
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56.12 Signal descriptions

Table 766 shows the interface signals of the core (VHDL ports).

Table 766. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

RXCLK0 N/A Input Receiver clock for port 0. -

RXCLK1 N/A Input Receiver clock for port 1. Unused if the VHDL
ports generic is 2.

-

TXCLK N/A Input Transmitter default run-state clock -

TXCLKN N/A Input Transmitter inverted default run-state clock.
Only used in DDR transmitter mode for technol-
ogies not supporting local generation of inverted
clock.

-

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SWNI D Input Data input -

DV Input Data valid -

S Input Strobe input -

DCONNECT Input Disconnect

TICKIN Input Time counter tick input. Increments internal
time-counter and transmits the new value.

High

TICKINRAW Input Raw tick input. Send time-code from timein
input.

High

TIMEIN Input The time value sent when tickinraw is asserted.

CLKDIV10 Input Clock divisor value used during initialization and
as reset value for the clock divisor register

-

RMAPEN Input Reset value for the rmapen control register bit -

RMAPNODEADDR Input Reset value for nodeaddr register bits when
nodeaddr VHDL generic /= 255

-

DCRSTVAL Input Disconnect timeout reset value. Unused for
GRSPW2.

-

TIMERRSTVAL Input Timer reset value. Unused for GRSPW2. -
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56.13 Library dependencies

Table 767 shows libraries used when instantiating the core (VHDL libraries).

56.14 Instantiation

This example shows how the core can be instantiated.

Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.

The core in the example is configured with non-ft memories of size 4, 64 and 8 entries for AHB
FIFOs, N-Char FIFO and RMAP buffers respectively.

The memory technology is inferred which means that the synthesis tool will select the appropriate
components.

The hardware RMAP target is enabled which also automatically enables rxunaligned and rmapcrc.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is

SWNO D Output Data output -

S Output Strobe output -

TICKOUT Output Time counter tick output. Asserted when a valid
time-code has been received.

High

TICKOUTRAW Output Tick out which is always set when a time-code is
received.

High

TIMEOUT Output Contains the received time-code when tickinraw
is asserted.

TICKINDONE Output Asserted when a time-code has been accepted for
transmission when tickinraw is asserted. Tickin-
raw must be deasserted the same clock cycle as
tickindone is asserted.

High

RXDAV Output Asserted each cycle a character has been receved
on the SpaceWire link.

High

RXDATAOUT Output Contains the received character when rxdav is
asserted.

LINKDIS Output Asserted when the link is disabled High

LOOPBACK Output Reflects the value of the loopback bit on
GRSPW2 control register. Can be use to control
on-chip loop-back for test purposes.

High

* see GRLIB IP Library User’s Manual

Table 767.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPACEWIRE Signals, component Component and record declarations.

Table 766. Signal descriptions

Signal name Field Type Function Active
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  port (
    clk   : in  std_ulogic;
    rstn          : in  std_ulogic;

    -- spacewire signals
    spw_rxdp      : in  std_ulogic;
    spw_rxdn      : in  std_ulogic;
    spw_rxsp      : in  std_ulogic;
    spw_rxsn      : in  std_ulogic;
    spw_txdp      : out std_ulogic;
    spw_txdn      : out std_ulogic;
    spw_txsp      : out std_ulogic;
    spw_txsn      : out std_ulogic;

    spw_rxtxclk   : in  std_ulogic;
    spw_rxclkn   : in  std_ulogic
    );
end;

architecture rtl of spacewire_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- Spacewire signals
  signal swni      : grspw_in_type;
  signal swno      : grspw_out_type;
  signal dtmp  : std_ulogic;
  signal stmp      : std_ulogic;
  signal rxclko    : std_ulogic;
begin

  -- AMBA Components are instantiated here

  spw_phy0 : grspw2_phy
    generic map(
      scantest   => 0,
      tech       => 0,
      input_type => 3)
    port map(
      rstn       => rstn,
      rxclki     => spw_rxtxclk,
      rxclkin    => spw_rxclkn,
      nrxclki    => spw_rxtxclk,
      di         => dtmp,
      si         => stmp,
      do         => swni.d(1 downto 0),
      dov        => swni.dv(1 downto 0),
      dconnect   => swni.dconnect(1 downto 0),
      rxclko     => rxclko);

  spw_rxclk  <= rxclko & rxclko;

  sw0 : grspw2
  generic map(
    tech         => 0,
    hindex       => 0,
    pindex       => 10,
    paddr        => 10,
    pirq         => 10,
    ports        => 1,
    dmachan      => 1,
    rmap         => 1,
    rmapcrc      => 1,
    fifosize1    => 32,
    fifosize2    => 32,
    rxunaligned  => 1,
    rmapbufs     => 4,
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    output_type  => 1,
    input_type   => 3,
    rxtx_sameclk => 1)
  port map(rstn, clkm, rxclko, rxclko, spw_rxtxclk, spw_rxtxclk, ahbmi,
       ahbmo(0), apbi, apbo(10), swni, swno);

  swni.tickin <= ’0’; swni.rmapen <= ’1’;
  swni.clkdiv10 <= conv_std_logic_vector(SPW_TX_FREQ_KHZ/10000-1, 8);

  spw_rxd_pad : inpad_ds generic map (padtech, lvds, x25v)
    port map (spw_rxdp, spw_rxdn, dtmp);
  spw_rxs_pad : inpad_ds generic map (padtech, lvds, x25v)
    port map (spw_rxsp, spw_rxsn, stmp);
  spw_txd_pad : outpad_ds generic map (padtech, lvds, x25v)
    port map (spw_txdp, spw_txdn, swno.d(0), gnd(0));
  spw_txs_pad : outpad_ds generic map (padtech, lvds, x25v)
    port map (spw_txsp, spw_txsn, swno.s(0), gnd(0));
  ...

56.15 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.

These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

56.15.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
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the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int destkey, int nospill, int timetxen, int
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the
SpaceWire core.

Table 768.The spwvars struct

Field Description Allowed range

regs Pointer to the GRSPW -

nospill The nospill value used for the core. 0 - 1

rmap Indicates whether the core is configured with RMAP. Set by
spw_init.

0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support.
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support.
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255

nodeaddr The node address value used for the core. 0 - 255

destkey The destination key value used for the core. 0 - 255

rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431

rxpnt Pointer to the next receiver descriptor. 0 - 127

rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127

txpnt Pointer to the next transmitter descriptor. 0 - 63

txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63

timetxen The timetxen value used for this core. 0 - 1

timerxen The timerxen value used for this core. 0 - 1

txd Pointer to the transmitter descriptor table. -

rxd Pointer to the receiver descriptor table -

Table 769.Return values for spw_setparam

Value Description

0 The function completed successfully

1 One or more of the parameters had an illegal value
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int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

Table 770.Parameters for spw_setparam

Parameter Description Allowed range

nodeaddr Sets the node address value of the struct spw passed to the function. 0-255

clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255

destkey Sets the destination key of the struct spw passed to the function. 0-255

nospill Sets the nospill value of the struct spw passed to the function. 0 - 1

timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1

timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1

rxmaxlen Sets the receiver maximum length field of the struct spw passed to
the function.

0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with
the struct passed to the function.

0 - 232-1

Table 771.Return values for spw_init

Value Description

0 The function completed successfully

1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 772.Parameters for spw_init

Parameter Description Allowed range

spw The spwvars struct associated with the GRSPW core that should be
initialized.

-

Table 773.Return values for spw_txdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly
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int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

Table 774.Parameters for spw_txdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 775.Return values for spw_rxdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 776.Parameters for spw_rxdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 777.Parameters for spw_disable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-
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void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct.

int spw_set_nodeadr(struct spwvars *spw);

Table 778.Parameters for spw_enable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 779.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 780.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 781.Return values for spw_setclockdiv

Value Description

0 The function completed successfully

1 The new clock divisor value is illegal.

Table 782.Parameters for spw_setclockdiv

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-
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Sets the node address register with the node address value stored in the spwvars struct.

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct.

int spw_tx(int crc, int skipcrcsize, int hsize, char *hbuf, int dsize, char *dbuf, struct
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0.

Table 783.Return values for spw_set_nodeadr

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 784.Parameters for spw_set_nodeadr

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 785.Return values for spw_set_rxmaxlength

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 786.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 787.Return values for spw_tx

Value Description

0 The function completed successfully

1 There are no free transmit descriptors currently available

2 There was illegal parameters passed to the function
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int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0.

int spw_checkrx(int *size, struct rxstatus *rxs, struct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero.

Table 788.Parameters for spw_tx

Parameter Description Allowed range

crc Set to one to append RMAP CRC after the header and data fields.
Only available if hardware CRC is available in the core.

0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255

hbuf Pointer to the header data -

dsize The size of the data field in bytes 0 - 224-1

dbuf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should transmit the packet

-

Table 789.Return values for spw_rx

Value Description

0 The function completed successfully

1 There are no free receive descriptors currently available

Table 790.Parameters for spw_rx

Parameter Description Allowed range

buf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should receive the packet

-

Table 791.Return values for spw_checkrx

Value Description

0 No packet has been received

1 A packet has been received

Table 792.Parameters for spw_checkrx

Parameter Description Allowed range

size When the function returns 1 this variable holds the number of bytes
received

-

rxs When the function returns 1 this variable holds status information -

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-
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int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero.

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received.

Table 793.The rxstatus struct

Field Description Allowed range

truncated Packet was truncated 0 - 1

dcrcerr Data CRC error bit was set. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 794.Return values for spw_checktx

Value Description

0 No packet has been transmitted

1 A packet has been correctly transmitted

2 A packet has been incorrectly transmitted

Table 795.Parameters for spw_checktx

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 796.Parameters for send time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 797.Return values for check_time

Value Description

0 No time-code has been received

1 A new time-code has been received

Table 798.Parameters for check_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-
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int get_time(struct spwvars *spw);

Get the current time counter value.

void spw_reset(struct spwvars *spw);

Resets the GRSPW.

void spw_rmapen(struct spwvars *spw);

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw);

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw);

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 799.Return values for get_time

Value Description

0 - 63 Returns the current time counter value

Table 800.Parameters for get_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 801.Parameters for spw_reset

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be reset

-

Table 802.Parameters for spw_rmapen

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 803.Parameters for spw_rmapdis

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 804.Return values for spw_setdestkey

Value Description

0 The function completed successfully

1 The destination key parameter in the spwvars struct contains an illegal value
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56.15.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.

int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr, int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct.

Table 805.Parameters for spw_setdestkey

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set.

-

Table 806.Return values for build_rmap_hdr

Value Description

0 The function completed successfully

1 One or more of the parameters contained illegal values

Table 807.Parameters for build_rmap_hdr

Parameter Description Allowed range

pkt Pointer to a rmap_pkt struct which contains the data from which the
header should be built

hdr Pointer to the buffer where the header will be built

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-
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Table 808.rmap_pkt struct fields

Field Description Allowed Range

type Selects the type of packet to build. writecmd, readcmd,
rmwcmd, writerep, readrep,
rmwrep

verify Selects whether the data should be verified before writing yes, no

ack Selects whether an acknowledge should be sent yes, no

incr Selects whether the address should be incremented or not yes, no

destaddr Sets the destination address 0 - 255

destkey Sets the destination key 0 - 255

srcaddr Sets the source address 0 - 255

tid Sets the transaction identifier field 0 - 65535

addr Sets the address of the operation to be performed. The extended
address field is currently always set to 0.

0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1

status Sets the status field 0 - 11

dstspalen Number of source path address bytes to insert before the destination
address

0 - 228

dstspa Pointer to memory holding the destination path address bytes -

srcspalen Number of source path address bytes to insert in a command. For a
reply these bytes are placed before the return address

0 - 12

srcspa Pointer to memory holding the source path address bytes -
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57 GRSYSMON - AMBA Wrapper for Xilinx System Monitor

57.1 Overview

The core provides an AMBA AHB interface to the Xilinx System Monitor present in Virtex-5 FPGAs.
All Xilinx System Monitor registers are mapped into AMBA address space. The core also includes
functionality for generating interrupts triggered by System Monitor outputs, and allows triggering of
conversion start via a separate register interface.

57.2 Operation

57.2.1 Operational model

The core has two I/O areas that can be accessed via the AMBA bus; the core configuration area and
the System Monitor register area.

57.2.2 Configuration area

The configuration area, accessed via AHB I/O bank 0, contains two registers that provide status infor-
mation and allow the user to generate interrupts from the Xilinx System Monitor’s outputs. Write
accesses to the configuration area have no AHB wait state and read accesses have one wait state. To
ensure correct operation, only word (32-bit) sized accesses should be made to the configuration area.

57.2.3 System Monitor register area

The System Monitor register area is located in AHB I/O bank 1 and provides a direct-mapping to the
System Monitor’s Dynamic Reconfiguration Port. The System Monitor’s first register is located at
address offset 0x00000000 in this area.

Since the System Monitor documentation defines its addresses using half-word addressing, and
AMBA uses byte-addressing, the addresses in the System Monitor documentation should be multi-
plied to get the correct offset in AMBA memory space. If the Configuration register bit WAL is ‘0’ the
address in System Monitor documentation should be multiplied by two to get the address mapped by
the AMBA wrapper. A System Monitor register with address n is at AMBA offset 2*n. If the Config-
uration register bit WAL is ‘1’, all registers start at a word boundary and the address in the System
Monitor documentation should be multiplied by four to get the address mapped in AMBA address
space. In this case, a System Monitor register with address n is at AMBA offset 4*n.

The wrapper always makes a single register access as the result of an access to the System Monitor
register area. The size of the AMBA access is not checked and to ensure correct operation the mapped
area should only be accessed using half-word (16-bit) accesses.

Figure 171. Block diagram
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If the core has been implemented with AMBA split support, it will issue a SPLIT response to all
accesses made to the mapped System Monitor registers. If the core is implemented without AMBA
SPLIT support, wait states will be inserted until the System Monitor signals completion of a register
access.

For a description of the System Monitor’s capabilities and configuration, please refer to the Xilinx
Virtex-5 FPGA System Monitor User Guide.

57.3 Registers

The core is programmed through registers mapped into AHB address space.

Table 809.GRSYSMON registers

AHB address offset Register

0x00 Configuration register

0x04 Status register

Table 810.GRSYSMON Configuration register
31 31 13 12 11 9 8 7 6 5 4 3 2 1 0

WAL RESERVED OT_IEN ALM_IEN RESERVED CON-
VST

EOS_
IEN

EOC_
IEN

BUSY_
IEN

JB_IEN JL_IEN JM_IEN

31 Word aligned registers (WAL) - If this bit is set to ‘1’ each System Monitor memory mapped register
start at a word boundary.

30 :13 RESERVED

12 Over temperature Interrupt Enable (OT_IEN) - If this bit is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

11:9 Alarm Interrupt Enable (ALM_IEN) - If a bit in this field is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

8:7 RESERVED

6 Conversion Start (CONVST) - If the core has been configured, at implementation, to use the an
internal source for the Xilinx System Monitor CONVST signal, this bit can be written to ‘1’ to gen-
erate a pulse on the System Monitor’s CONVST input. This bit is automatically cleared after one
clock cycle.

5 End of Sequence Interrupt Enable (EOS_IEN) - If this bit is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

4 End of Conversion Interrupt Enable (EOC_IEN) - If this bit is set to ‘1’ the core will generate an
interrupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically
cleared after the interrupt has been generated.

3 Busy Interrupt Enable (BUSY_IEN) - If this bit is set to ‘1’ the core will generate an interrupt when
the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after the
interrupt has been generated.

2 JTAG Busy Interrupt Enable (JB_IEN) - If this bit is set to ‘1’ the core will generate an interrupt
when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after
the interrupt has been generated.

1 JTAG Locked Interrupt Enable (JL_IEN) - If this bit is set to ‘1’ the core will generate an interrupt
when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after
the interrupt has been generated.

0 JTAG Modified Interrupt Enable (JM_IEN) - .If this bit is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

Reset value: 0x00000000
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57.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x066. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

57.5 Implementation

57.5.1 Technology mapping

The core instantiates a SYSMON primitive.

57.5.2 RAM usage

The core does not use any RAM components.

57.6 Configuration options

Table 812 shows the configuration options of the core (VHDL generics).

Table 811.GRSYSMON Status register
31 30 13 12 11 9 8 6 5 4 3 2 1 0

WAL RESERVED OT ALM RESERVED EOS EOC BUSY JB JL JM

31 Word aligned registers (WAL) - If this bit is set to ‘1’ each System Monitor memory mapped register
start at a word boundary.

30 :13 RESERVED

12 Over Temperature (OT) - Connected to the System Monitor’s Temperature Alarm output.

11:9 Alarm (ALM) - Connected to the System Monitor’s alarm outputs.

8:6 RESERVED

5 End of Sequence (EOS) - Connected to the System Monitor’s End of Sequence output.

4 End of Conversion (EOC) - Connected to the System Monitors End of Conversion output.

3 Busy (BUSY) - Connected to the System Monitor’s Busy output.

2 JTAG Busy (JB) - Connected to the System Monitor’s JTAG Busy output.

1 JTAG Locked (JL) - Connected to the System Monitor’s JTAG Locked output.

0 JTAG Modified (JM) - Connected to the System Monitor’s JTAG Modified output.

Reset value: See Xilinx System Monitor documentation

Table 812.Configuration options

Generic name Function Allowed range Default

tech Target technology 0 - NTECH 0

hindex AHB slave index 0 - (NAHBSLV-1) 0

hirq Interrupt line 0 - (NAHBIRQ-1) 0

caddr ADDR field of the AHB BAR0 defining configuration
register address space.

0 - 16#FFF# 16#000#

cmask MASK field of the AHB BAR0 defining configuration
register address space.

0 - 16#FFF# 16#FFF#

saddr ADDR field of the AHB BAR1 defining System Monitor
register address space.

0 - 16#FFF# 16#001#

smask MASK field of the AHB BAR1 defining System Monitor
register space.

0 - 16#FFF# 16#FFF#
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split If this generic is set to 1 the core will issue AMBA
SPLIT responses when it is busy performing an opera-
tion with the System Monitor. Otherwise the core will
insert wait states until the operation completes.

0 - 1 0

extconvst Connect CONVST input to System Monitor. If this
generic is set to ‘0’ the System Monitor’s CONVST is
controlled via the configuration register, otherwise the
System Monitor CONVST input is taken from the core
input signal.

0 - 1 0

wrdalign Word align System Monitor registers. If this generic is
set to 1 all System Monitor registers will begin on a word
boundary. The first register will be mapped at offset
0x00, the second at 0x04. To translate a register access
specified in the Xilinx System Monitor register docu-
mentation the register address should be multiplied by
four to get the correct offset in AMBA address space. If
this generic is set to 0, the register address should be
multiplied by two to get the offset in AMBA address
space.

0 - 1 0

INIT_40 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_41 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_42 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 16#0800#

INIT_43 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_44 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_45 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_46 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_47 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_48 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_49 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4A Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4B Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4C Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4D Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4E Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_4F Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_50 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_51 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_52 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_53 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_54 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_55 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_56 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

INIT_57 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0

SIM_MONITOR_
FILE

Simulation analog entry file. See Xilinx System Monitor
documentation for a description of use and format.

- “sysmon.txt”

Table 812.Configuration options

Generic name Function Allowed range Default
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57.7 Signal descriptions

Table 813 shows the interface signals of the core (VHDL ports).

57.8 Library dependencies

Table 814 shows the libraries used when instantiating the core (VHDL libraries).

57.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

Table 813.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SYSMONI CONVST Input Convert start input, connected to Xilinx System
Monitor if theextconvst VHDL generic is set to
‘1’.

High

CONVSTCLK Input Convert start input, connected to Xilinx System
Monitor.

High

VAUXN[15:0] Input Auxiliary analog input, connected to Xilinx Sys-
tem Monitor.

-

VAUXP[15:0] Input Auxiliary analog input, connected to Xilinx Sys-
tem Monitor.

-

VN Input Dedicated analog-input, connected to Xilinx
System Monitor.

-

VP Input Dedicated analog-input, connected to Xilinx
System Monitor.

-

SYSMONO ALM[2:0] Output Alarm outputs, connected to Xilinx System
Monitor.

High

OT Output Over-Temperature alarm output, connected to
Xilinx System Monitor.

High

EOC Output End of Conversion, connected to Xilinx System
Monitor.

High

EOS Output End of Sequence, connected to Xilinx System
Monitor.

High

CHANNEL[4:0] Output Channel selection, connected to Xilinx System
Monitor.

-

* see GRLIB IP Library User’s Manual

Table 814.Library dependencies

Library Package Imported unit(s) Description

GAISLER MISC Component, signals Component and signal definitions

GRLIB AMBA Signals AMBA signal definitions
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library gaisler;
use gaisler.misc.all;

entity grsysmon_ex is
  port (
    clk  : in  std_ulogic;
    rstn  : in  std_ulogic
    );
end;

architecture rtl of grsysmon_ex is
  -- AMBA signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => ahbs_none);

...
  -- GRSYSMON signals

 signal sysmoni : grsysmon_in_type;
 signal sysmono : grsysmon_out_type;

begin

  -- AMBA Components are instantiated here
  ...

-- GRSYSMON core is instantiated below
 sysm0 : grsysmon generic map (tech => virtex5, hindex => 4,

 hirq => 4, caddr => 16#002#, cmask => 16#fff#,
 saddr => 16#003#, smask => 16#fff#, split => 1, extconvst => 0)

 port map (rstn, clk, ahbsi, ahbso(4), sysmoni, sysmono);
sysmoni <= grsysmon_in_gnd; -- Inputs are all driven to ‘0’

end;
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58 GRUSBDC - USB Device controller

58.1 Overview

The Universal Serial Bus Device Controller provides a USB 2.0 function interface accessible from an
AMBA-AHB bus interface. The core must be connected to the USB through an external PHY (shown
in figure 235) compliant to either UTMI, UTMI+ or ULPI. Both full-speed and high-speed mode are
supported.

Endpoints are controlled through a set of registers accessed through an AHB slave interface. Each of
the up to 16 IN and 16 OUT endpoints can be individually configured to any of the four USB transfer
types.

USB data cargo is moved to the core’s internal buffers using a master or a slave data interface. The
data slave interface allows access directly to the internal buffers using AHB transactions and therefore
does not need external memory. This makes it suitable for slow and simple functions. The data master
interface requires an additional AHB master interface through which data is transferred autonomously
using descriptor based DMA. This is suitable for functions requiring large bandwidth.

These two interfaces are mutually exclusive and cannot be present in the same implementation of the
core.

58.2 Operation

58.2.1 System overview

Figure 173 shows the internal structure of the core. This section briefly describes the function of the
different blocks.

The Speed Negotiation Engine (SNE) detects connection by monitoring the VBUS signal on the USB
connector. When a steady 5 V voltage is detected the SNE waits for a reset and then starts the High-
speed negotiation. When the Speed negotiation and reset procedure is finished the selected speed
mode (full-speed or high-speed) is notified to the Serial Interface Engine (SIE) which now can start
operation. The SNE also detects and handles suspend and resume operations.

The SIE is enabled when the SNE notifies that the reset procedure has finished. It then waits for pack-
ets to arrive and processes them according to the USB 2.0 specification. The data cargo is stored to an
internal buffer belonging to the recipient endpoint.

The AHB Interface Engine AIE is responsible for transferring USB data cargo from the endpoint’s
internal buffers to the AHB bus using descriptor based DMA through an AHB master interface when
configured in master mode or by direct accesses to the AHB slave interface when configured in slave
mode.

For received data it is then up to the external (to the device controller) function to continue processing
of the USB data cargo after it has been transferred on the AHB bus. The function is the application
specific core which determines the functionality of the complete USB device. It sets up endpoints in
the device controller and notifies their existence through the appropriate USB descriptors. When the
function wants to transmit a packet it either uses the slave interface to write to the endpoint buffers or
establishes a DMA transfer.

GRUSBDC

Figure 172. GRUSBDC connected to an external PHY device.
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58.2.2 PHY interface

The core supports three different interfaces to the external PHY which is used to connect to the USB
bus. The supported interfaces are UTMI, UTMI+ and ULPI. UTMI+ is an extension of the UTMI
specification with optional additional support for host controllers and on-the-go devices while UTMI
only supports devices. There are different so called levels in the UTMI+ specification, each with an
added degree of support for hosts and on-the-go. The lowest level and common denominator for all
the levels is identical to UTMI and uses the exact same signals. The core only supports devices and
thus the support for UTMI+ refers to level 0. The data path to the UTMI/UTMI+ cores can be 8-bits
or 16-bits wide and also uni- or bi-directional. All combinations are supported by the core.

The UTMI+ Low Pin Interface (ULPI) specifies a generic reduced pin interface and how it can be
used to wrap a UTMI+ interface. The core has UTMI/UTMI+ as the main interface (they are identi-
cal) and when ULPI is used an extra conversion layer is added. When ULPI is enabled, the UTMI
layer is always in 8-bit mode since this is what is required by the ULPI specification.

58.2.3 Speed Negotiation Engine (SNE)

The SNE detects attach, handles reset, high-speed handshake and suspend/resume operation. It also
contains support for the various test-modes, which all USB device have to support.

The attached state is entered when a valid VBUS signal is detected. After this the core waits for a
USB reset and then starts the high-speed handshake which determines whether full-speed or high-
speed mode should be entered. No bus traffic will be accepted by the core until a valid reset has been
detected.

The core supports soft connect/disconnect which means that the pull-up on the D+ line can be con-
trolled from a user accessible register. The pull-up is disabled after reset and thus the function imple-
mentation has full control over when the device will be visible to the host.

The SNE also continuously monitors for the suspend condition (3 ms of idle on the USB bus) when
the suspend state will be entered. The suspend state is left either through an USB reset or resume sig-
naling. The resume signaling can come from either a downstream facing port (hub or host controller)
or the device itself (Remote wakeup). The device controller core can generate remote wakeup signal-
ing which is activated through an user accessible register. If this feature is used the function should
indicate this in the descriptor returned to a device GetStatus request.

GRUSBDC

AHB Master
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Figure 173. Block diagram of the internal structure of the core.
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Transactions are only handled by the SIE if the SNE is in full-speed or high-speed mode. When in
suspend, notattached, attached or during the reset process all transactions will be dropped.

The current status of the SNE such as VBUS valid, suspend active, USB reset received and current
speed mode can be accessed through a status register. Each of these status bits have a corresponding
interrupt enable bit which can be used to generate interrupts when a change occurs in the status bits.

If full-speed only mode is desired the core can be set to not perform the high-speed handshake
through a register.

The different test-modes required by the USB standard are also enabled through user accessible regis-
ters. When enabled they can only be left by power-cycling the complete core or resetting the device
controller (by using the rst signal to the core, not an USB reset).

The test modes are Test_SE0_NAK, Test_J, Test_K and Test_Packet.

In Test_SE0_NAK mode the high-speed receiver is enabled and only valid IN transactions (CRC cor-
rect, device and endpoint addresses match, PID is not corrupt) are responded to with a NAK.

Test_J continuously drives a high-speed J state.

Test_K continuously drives a high-speed K state.

Test_Packet repetitively sends a test packet. Please refer to the USB 2.0 standard for the packet con-
tents. Minimum interpacket delay when device is sending two or more consecutive packets seems not
to be specified in the standard. The core uses 192 bit times as its minimum delay which is the maxi-
mum value of the various minimum delays in the standard for any packet sequence and should there-
fore be compliant.

The core also supports a functional test-mode where all timeouts in the speed-negotiation engine have
been shortened to eight clock cycles. This intended to be used in simulations and for ASIC testers
where time and test-vector length respectively are important.

58.2.4 Serial Interface Engine (SIE)

The SIE handles transmission and reception of USB packets. The core will not respond to any trans-
actions until a reset has been received and either full-speed or high-speed mode has been successfully
entered.

The SIE always begins with waiting for a token packet. Depending on the type of token, data is either
transferred from the core to the host or in the opposite direction. Special tokens are handled without
any data transfers. The special tokens are PING and SOF which cause only a handshake to be sent or
the frame number to be stored respectively. IN tokens initiate transfers to the host while SETUP and
OUT tokens initiate transfers to the device. Packets received in the token stage with other PIDs than
those mentioned in this paragraph are discarded.

A data packet is transmitted in the next stage if the token determined that data should be transferred to
the host. When the data transmission is finished the core waits for a handshake before returning to the
token stage.

If data was determined to be transferred to the device the core waits for and receives a data packet and
then sends a handshake in return before entering the token stage again.

More detailed descriptions of the SIE and how it interacts with the core function are found in section
58.5.

58.2.5 Endpoint buffers

Each endpoint has two buffers to which packets are stored. The core automatically alternates between
them when a packet has been received/transmitted so that data from one of the buffers can be trans-
ferred on the AHB bus while a new packet is being received/transmitted on the USB to/from the sec-
ond buffer.
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The state of the buffers affects the handshake sent to the host at the end of a transaction. In high-speed
mode BULK OUT endpoints and CONTROL OUT endpoints which are not in the SETUP stage sup-
port the PING protocol. This means that at the end of an OUT transaction to one of these endpoints
the device should return ACK if it could accept the current data and has space for another packet. For
the USB device controller this is done if the second buffer for the endpoint is empty when the transac-
tion is ready.

If the second buffer is non-empty a NYET is sent instead. If the current data could not be accepted
(both buffers non-empty when the packet arrives) a NAK is returned.

For other endpoint types in high-speed mode and all endpoint types in full-speed mode an ACK is
always returned if the data is accepted and a NAK if it could not be accepted.

An endpoint buffer can be configured to be larger than the maximum payload for that endpoint. For
IN endpoints the writing of data larger than the maximum payload size to a buffer will result in a
number of maximum sized packets being transferred ending with a packet smaller than or equal to the
maximum size.

In the OUT direction larger buffers are only used for high-bandwidth endpoints where more than one
transaction per microframe can occur for that endpoint. In that case the data from all packets during
one microframe is stored in the order it arrives to a single buffer and is then handed over to the AHB
interface. All non-high-bandwidth endpoints always store one packet data cargo to a buffer.

The endpoint buffers do not use separate physical RAM blocks in hardware instead they reside con-
secutively in the same memory space to avoid wasting memory.

58.2.6 AMBA Interface Engine (AIE)

The AIE can either be configured in slave mode or master mode. This is selected in synthesis process
with a VHDL generic. Both cannot be present at the same time. The two interfaces will be described
separately in this section.

Master interface

In master mode an AHB master interface is included in the core and handles all data transfers to and
from the cores internal buffers using DMA operations. The DMA operation is described in detail in
section 58.3. There is a separate DMA engine in the IN direction and the OUT direction respectively.
They are multiplexed on the single master interface available for the core on the AHB bus. This
scheme is used to limit the load on the AHB bus.

If both engines request the bus at the same time the owner will always be switched. That is, if the
OUT direction DMA engine currently was allowed to make an access and when finished it still
requests the bus for a new transaction and at the same time the IN direction engine also requests the
bus, the IN direction will be granted access. If the situation is the same after the next access ownership
will be switched back to the OUT engine etc.

The IN engine only reads data (note that this only applies to DATA, descriptor status is written) from
the bus and always performs word transfers. Any byte alignment and length can still be used since this
will only cause the core to skip the appropriate amount of leading and trailing bytes from the first and
last words read.

The OUT engine writes data to the bus and performs both word and byte transfers. If the start transfer
for an access is not word-aligned byte writes will be performed until a word boundary is reached.
From then and onwards word writes are performed in burst mode until less than 4 bytes are left. If
remaining number of bytes is not zero byte writes are performed for the last accesses. The byte
accesses are always done as single accesses.

The bursts are of type incremental burst of unspecified length (refer to AMBA specification for more
details). The core can only operate in big-endian mode that is the byte at the lowest address in a word
is the most significant byte. This corresponds to bits 31 downto 24 in the GRLIB implementation. The
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first byte received on the USB will be stored to the msb location. In a single byte the lowest bit index
corresponds to the first bit transmitted on the USB.

Slave interface

The slave interface is used for accessing registers and also for data transfers when the core is config-
ured in slave mode. Byte, half-word and word accesses are supported. At least one waitstate is always
inserted due to the pipelined nature of the interface but the upper limit is not fixed due to registers
being accessed across clock domains. The maximum number of waitstates will thus depend on the
difference in clock frequency between the USB and AHB clock domains. An upper bound can be cal-
culated when the clock frequencies have been determined.

58.2.7 Synchronization

There are two clock domains in the core: the AHB clock domain and the USB clock domain. The
AHB clock domain runs on the same clock as the AHB bus while the USB domain runs on the UTMI
or ULPI clock. The boundary is between then AIE, SIE and Endpoint buffers. All signals between the
two domains are synchronized and should be declared as false paths during synthesis.

58.2.8 Reset generation

The main reset (AMBA reset) resets AHB domain registers, synchronization registers between the
USB and AHB clock domains, the USB PHY and USB SIE registers. Endpoint specific registers
related to the state of the USB protocol in the SIE are reset when an UBS reset is received.

58.2.9 Synthesis

All number of endpoints with up to maximum size payloads cannot be supported due to limitations in
the RAM block generator size in GRLIB. The maximum size also varies with technology. Note that
large buffers can also have a large timing impact at least on FPGA since the a large RAM buffer will
consist of several separate physical block RAMs located at different places causing large routing
delays.

As mentioned in section 58.2.7, signals between the clock domains are synchronized and should be
declared as false paths.

The complete AHB domain runs at the same frequency as the AHB bus and will be completely con-
strained by the bus frequency requirement.

The USB domain runs on different frequencies depending on the data path width. In 8-bit mode the
frequency is 60 MHz and in 16-bit mode it is 30 MHz. Input and output constraints also need to be
applied to the signals to and from the PHY. Please refer to the PHY documentation and/or UTMI/
ULPI specification for the exact values of the I/O constraints.

58.2.10 Functional test-mode

A functional test-mode can be enabled in the core using the functesten VHDL generic. The functional
test-mode is intended to reduce the number of required test-vectors during functional testing of an
ASIC chip. During normal operation it would be required to go through the whole speed detection
sequence before being able to start USB transactions. Since the speed detection takes a relatively long
time this would make the test-vector amount very large often making it incompatible with existing test
equipment.

In functional test-mode the core shortens the speed detection thus making it possible to test the func-
tionality without a long initial delay. The test-mode can be disabled using the FT control register bit.

58.2.11 Scan test support

The VHDL genericscantestenables scan test support. If the core has been implemented with scan test
support it will:
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• disable the internal RAM blocks when the testen and scanen signals are asserted.

• use the testoen signal as output enable signal.

• use the testrst signal as the reset signal for those registers that are asynchronously reseted.

The testen, scanen, testrst, and testoen signals are routed via the AHB slave interface.

58.3 DMA operation

DMA operation is used when the core is configured in AHB master mode. Each IN and each OUT
endpoint has a dedicated DMA channel which transfers data to and from the endpoint’s internal buff-
ers using descriptor based autonomous DMA. Each direction (IN and OUT) has its own DMA engine
which requests the AHB master interface in contention with the other direction. Also each endpoint in
a direction contends for the usage of the DMA engine with the other endpoints in the same direction.
The arbitration is done in a round-robin fashion for all endpoints which are enabled and have data to
send or receive.

The operation is nearly identical in both directions and the common properties will be explained here
while the differences are outlined in the two following sub-sections.

The DMA operation is based on a linked list of descriptors located in memory. Each endpoint has its
own linked list. The first word in a descriptor is the control word which contains an enable bit that
determines whether the descriptor is active or not and other control bits. The following word is a
pointer to a memory buffer where data should be written to or read from for this descriptor. The last
word is a pointer to the location of the next descriptor. A bit in the control word determines if the next
descriptor pointer is valid or not. If not valid the descriptor fetching stops after the current descriptor
is processed and the DMA channel is disabled.

The DMA operation is started by first setting up a list with descriptors in memory and then writing a
pointer to the first descriptor to the endpoint’s descriptor pointer register in the core and setting the
descriptor available bit. The pointer register is updated as the list is traversed and can be read through
the AHB slave interface. When the list is ended with a descriptor that has its next descriptor available
bit disabled the list must not be touched until the core has finished processing the list and the channel
is disabled. Otherwise a deadlock situation might occur and behavior is undefined.

Another way to use the linked list is to always set the next descriptor available bit and instead make
sure that the last descriptor is disabled. This way new descriptors can be added and enabled on the fly
to the end of the list as long as the descriptor available bit is always set after the new descriptors have
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been written to memory. This ensures that no dead lock will occur and that no descriptors are missed.
Figure 174 shows the structure of the descriptor linked list.

58.3.1 OUT endpoints

The DMA operation for OUT endpoints conforms to the general description in the previous subsec-
tion. There are small differences in individual bits and the meaning of the length field. The contents of
the different descriptor words can be found in the tables below.

When a descriptor has been enabled it will be fetched by the core when the descriptor available bit is
set and as soon as a buffer for the corresponding endpoint contains data received from the USB it will
be written to memory starting from the address specified in the buffer pointer word of the descriptor.
The contents of a single internal memory buffer is always written to a single descriptor buffer. This
always corresponds to a single USB packet except for high-bandwidth isochronous and interrupt end-
points. The number of bytes written is stored in the length field when writing is finished which is indi-
cated by the enable bit being cleared. Then the SETUP status bit will also be valid. When the enable
bit is cleared the memory location can be used again.

Interrupts are generated if requested as soon as the writing to memory is finished. The endpoint can
also be configured to generate an interrupt immediately when a packet has been received to the inter-
nal buffers. This can not be enabled per packet since the core cannot associate a received packet with
a specific descriptor in advance. This interrupt is enabled from the endpoint’s control register.

When the data has been fetched from the internal buffer it is cleared and can be used by the SIE again
for receiving a new packet.

Table 815.OUT descriptor word 0 (address offset 0x0) ctrl word
31 18 17 16 15 14 13 12 0

RESERVED SE RE IE NX EN LENGTH

31: 18 RESERVED

17 Setup packet (SE) - The data was received from a SETUP packet instead of an OUT.

16 RESERVED

Figure 174. Example of the structure of a DMA descriptor linked list in
memory.

DESCRIPTOR ADDRESS REGISTER

1 st descriptor

CONTROL WORD

BUFFER POINTER

NEXT DESCRIPTOR

DATA BUFFER 1

2 nd descriptor

CONTROL WORD

BUFFER POINTER

NEXT DESCRIPTOR

DATA BUFFER 2
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58.3.2 IN endpoints

The DMA operation for IN endpoints conforms to the general DMA description. There are small dif-
ferences in individual bits and the meaning of the length field. The contents of the different descriptor
words can be found in the tables below.

When a descriptor has been enabled and the descriptor available bit is set the core will start processing
the descriptor and fetch the number of bytes indicated in the length field to an internal buffer belong-
ing to the endpoint as soon as one is available. An interrupt will be generated if requested when data
has been written to the internal buffer and status has been written back to the descriptor. The packet
might not have been transmitted on the USB yet.

A separate interrupt is available which is generated when the packet has actually been transmitted. It
needs to be enabled from the endpoint’s control register and also in the descriptor (using the PI bit) for
each packet that should generate the interrupt.

A descriptor with length zero will result in a packet with length zero being transmitted while a length
larger than the maximum payload for the endpoint will result in two or more packets with all but the
last being of maximum payload in length. The last transaction can be less than or equal to the maxi-
mum payload. If the length field is larger than the internal buffer size the data will not written to the
internal buffer and status will be immediately written to the descriptor with an error bit set.

When the more bit is set the data from the current descriptor is written to the internal buffer and it then
continues to the next descriptor without enabling the buffer for transmission. The next descriptor’s
data is also read to the same buffer and this continues until a descriptor is encountered which does not
have more set.

If the total byte count becomes larger than the internal buffer size the packet is not sent (the data from
the internal buffer is dropped) and the ML bit is set for the last descriptor. Then the descriptor fetching
starts over again.

15 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been read to the internal buffers and handed over to the SIE. This does not mean that
packet has also been transmitted.

14 Next descriptor available (NX) - The next descriptor field is valid and points to the next descriptor.

13 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

12: 0 LENGTH - The number of bytes received. Valid when the EN bit has been cleared by the core.

Table 816.OUT descriptor word 1 (address offset 0x4) Buffer pointer
31 0

ADDRESS

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED

Table 817.OUT descriptor word 2 (address offset 0x8) Next descriptor pointer
31 2 1 0

NDP RES

31: 2 Next descriptor pointer (NDP) - Pointer to the next descriptor.

1: 0 RESERVED

Table 815.OUT descriptor word 0 (address offset 0x0) ctrl word
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If the next bit is not set when the more bit is, the core will wait for a descriptor to be enabled without
letting other endpoints access the AHB bus in between.

58.4 Slave data transfer interface operation

The AHB slave interface is used for data transfers instead of the DMA interface when the core is con-
figured in AHB slave mode. This mode is selected by setting the aiface VHDL generic to 0. In this
mode the core’s internal buffers containing data to/from USB packets are accessed directly using
AHB read and write transfers. This is usually much slower than DMA but much simpler and does not
require any external memory, thus suitable for slow devices which need to be small and simple.

As for the DMA mode each endpoint is operated separately using four registers at the same addresses.
Two of them, the control and status registers, are the same while the DMA control and the descriptor
address registers have been replaced with the slave control and slave write/read data registers. The
slave interface does not use descriptors so these four registers provides the complete control of the
endpoint.

The details for data transfers in the two different endpoint directions will be explained in separate sec-
tions.

58.4.1 OUT slave endpoint

As stated earlier, in slave mode the core’s buffers are accessed directly from the AHB bus through the
slave interface. For OUT endpoints it has to be checked that data is available in the selected buffer and
then reserve it. This is done using the slave control register by writing a one to the CB bit. The CB bit
is always automatically cleared when the write access is finished and then the BS, DA and BUFCNT

Table 818.IN descriptor word 0 (address offset 0x0) ctrl word
31 19 18 17 16 15 14 13 12 0

RESERVED MO PI ML IE NX EN LENGTH

31: 19 RESERVED

18 More (MO) - The data from the next descriptor should be read to the same buffer.

17 Packet sent interrupt (PI) - Generate an interrupt when packet has been transmitted on the USB.

16 Maximum length violation (ML) - Attempted to transmit a data cargo amount larger than the buffer.

15 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been read to the internal buffers and handed over to the SIE. This does not mean that
packet has also been transmitted.

14 Next descriptor available (NX) - The next descriptor field is valid and points to the next descriptor.

13 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

12: 0 LENGTH - The number of bytes to be transmitted.

Table 819.IN descriptor word 1 (address offset 0x4) Buffer pointer
31 0

ADDRESS

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED

Table 820.IN descriptor word 2 (address offset 0x8) Next descriptor pointer
31 2 1 0

NDP RES

31: 2 Next descriptor pointer (NDP) - Pointer to the next descriptor.

1: 0 RESERVED
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read-only bits/fields contain valid information. The BS bit is set to 0 if buffer 0 is currently selected
and to 1 if buffer 1 is selected. DA is set to 1 if data is available in the buffer and in that case BUFCNT
contains the number of bytes.

If data is available (DA is 1) it can be read from the slave data read register. One byte at a time is read
using byte accesses, two bytes using half-word accesses and four bytes using word accesses. No other
widths are supported. In each case data is available from bit 31 and downwards regardless of the value
of the two least significant address bits. This is summarized in table 821. The BUFCNT field is con-
tinuously updated when reading the buffer so that it can be monitored how many bytes are left.

When all the data has been read, a new buffer can be acquired by writing a one to CB. In this case
when a buffer is currently reserved and the DA bit is set it will be released when CB is written. If a
new buffer was available it will be reserved and DA is set to 1 again. If no new buffer is available DA
will be 0 and the process has to be repeated. The current buffer (if one is selected) will be released
regardless of whether a new one is available or not. Also, if all data has not been read yet when a
buffer change request is issued the rest of the data will be lost.

The core does not have to be polled to determine whether a packet is available. A packet received
interrupt is available which can be enabled from the control register and when set an interrupt will be
generated each time a packet is stored to the internal buffers. The status of the buffers can also be read
through the endpoint’s status register without actually reserving the buffer.

One buffer consists of the data payload from one single packet except for high-bandwidth interrupt
and isochronous endpoints for which up to three packet data payloads can reside in a single buffer.

A buffer does not have to be read consecutively. Buffers for several endpoints can be acquired simul-
taneously and read interleaved with each other.

58.4.2 IN slave endpoint

The slave operation of IN endpoints is mostly identical to that for OUT. For IN endpoints it has to be
checked that a buffer is free and then reserve it before writing data to it. This is done using the slave
control register by writing a one to the EB bit. The EB bit is always automatically cleared when the
write access is finished and then the BS, BA and BUFCNT fields are updated. The BS bit is set to 0 if
buffer 0 is currently selected and to 1 if buffer 1 is selected. BA is set to 1 if a buffer is available to
write data to. BUFCNT contains the number of bytes currently written to the selected buffer. It is
cleared to zero when a new buffer is acquired.

If a buffer is available (BA is 1) data can be written through the slave data write register. One byte at a
time is written using byte accesses, two bytes using half-word accesses and four bytes using word
accesses. No other widths are supported. In each case data should be placed from bit 31 and down-
wards regardless of the value of the two least significant address bits. This is summarized in table 822.

Table 821.AHB slave interface data transfer sizes

Size (byte) AHB transfer size (HSIZE) Data alignment (HRDATA)

1 byte (000) 31:24

2 half-word (001) 31:16

4 word (010) 31:0

Table 822.AHB slave interface data transfer sizes

Size (byte) AHB transfer size (HSIZE) Data alignment (HWDATA)

1 byte (000) 31:24

2 half-word (001) 31:16

4 word (010) 31:0
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When all the data has been written, the buffer is enabled for transmission by writing a one to EB. If a
new buffer was available it will be reserved and BA is set to 1 again. If no new buffer is available BA
will be 0 and the process has to be repeated. The current buffer (if one is reserved) will be enabled for
transmission regardless of whether a new one is available or not.

The core does not have to be polled to determine whether a buffer is available. A packet transmitted
interrupt is available which can be enabled from the endpoint control register. Then when enabling a
packet for transmission the PI bit in the slave control register can be set which will be cause an inter-
rupt to be generated when this packet has been transmitted and cleared from the internal buffers. The
status of the buffers can also be read through the endpoint’s status register without actually reserving
the buffer.

Maximum payload size packets will be generated from the buffer until the last packet which will con-
tain the remaining bytes.

A buffer does not have to be written consecutively. Buffers for several endpoints can be acquired
simultaneously and written interleaved with each other. This will however cause additional waitstates
to be inserted.

58.5 Endpoints

An endpoint needs to have both its AHB and USB function configured before usage. The AHB con-
figuration comprises the DMA operation described in the previous section. The USB configuration
comprises enabling the endpoint for USB transactions, setting up transfer type (control, bulk, isochro-
nous, interrupt), payload size, high-bandwidth among others. The configuration options are accessed
through a register available from the AHB slave interface. See section 58.8 for the complete set of
options.

When setting the configuration options the endpoint valid bit should be set. This will enable transfers
to this endpoint as soon as a USB reset has been received. If the endpoint is reconfigured the valid bit
must first be set to zero before enabling it again. Otherwise the endpoint will not be correctly initial-
ized. When the endpoint is enabled the toggle scheme will be reset and data buffers cleared and buffer
selectors set to buffer zero. The maximum payload, number of additional transactions and transfer
type fields may only be changed when endpoint valid is zero or when setting endpoint valid to one
again after being disabled. Other bits in the endpoint control register can be changed at any time.

No configuration options should be changed when the endpoint is enabled except the halt, control halt
and disable bits.

An endpoint can also be halted by setting the halt bit of the endpoint. This will cause all transactions
to receive a STALL handshake. When clearing the halt condition the toggle scheme will also be reset
as required by the USB standard.

When the endpoint is setup, data transfers from and to the endpoint can take place. There is no differ-
ence in how data is transferred on the AHB bus depending on the selected transfer type. This only
affects the transfers on the USB. For control endpoints some extra handling is required by the core
user during error conditions which will be explained in the control endpoint section.

Packets that are received to an endpoint (independent of endpoint type) with a larger payload than the
configured maximum value for the endpoint will receive a STALL handshake and cause the endpoint
to enter halt mode.

When a USB reset is detected the CS, ED and EH bits of the endpoint control register will be cleared
for all endpoints. The EV bit will also be cleared except for control endpoint 0.

The CB bit in the endpoint control register is for clearing the internal buffers of an endpoint. When set
the data will be discarded from the buffers, the data available bits for the corresponding buffers will be
cleared and the CB bit is cleared when it is done. This will however not work if a transaction is cur-
rently active to the same endpoint so this feature must be used with caution.
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58.5.1 Control endpoints

Endpoint 0 must always be a control endpoint according to the USB standard and be accessible as
soon as a USB reset is received. The core does not accept any transactions until a USB reset has been
received so this endpoint can be enabled directly after power up. More control endpoints can be
enabled as needed with the same constraints as the default control endpoint except that they should
not be accessible until after configuration. If the function controlling the core is slow during startup it
might not be able complete configuration of endpoint 0 before a USB reset is received. This problem
is avoided in the core because its pull-up on D+ is disabled after reset which gives the function full
control of when the device will be visible on the bus.

A control endpoint is a message pipe and therefore transfers data both in the IN and OUT direction.
Thus control endpoints must use the endpoint in both directions with the same number in the device
controller. This requires both to be configured in the same mode (same transfer type, payload ...). Oth-
erwise device behavior is undefined.

A control transfer is always started with a SETUP transaction which will be received to the OUT end-
point. If the control transfer is a write the subsequent data phase will be in the OUT direction and this
data will also be received to the OUT endpoint. The function should read both the setup data and the
other data cargo and respond correspondingly. If the request was valid the function should enable a
zero length packet for the endpoint in the IN direction which will lead to a valid status stage. If an
error is detected it should instead halt the endpoint. There are two alternatives for this: A non-clearing
halt which will last even after the next SETUP transaction or a clearing halt which will be removed
when the next SETUP is received. The latter is the recommended behavior in the USB standard since
the other will require the complete core to be reset to continue operation if the permanent halt appears
on the default control endpoint.

The core can detect errors in single transactions which cause the endpoint to enter halt mode automat-
ically. In this case the clearing halt feature will be used for control endpoints.

If a SETUP transaction indicates a control read the data phase will be in the IN direction. In that case
the core user should enable data for the endpoint in the IN direction if the request was accepted other-
wise the halt feature should be set. The transfer is finished when the host sends a zero length packet to
the OUT endpoint.

Note that when entering halt for a control endpoint both the IN and OUT endpoints halt bits should be
set.

Each time a control endpoint receives a setup token the buffers in the IN direction are emptied. This is
done to prevent inconsistencies if the data and status stage were missing or corrupted and thus the data
never fetched. The old data would still be in the buffer and the next setup transaction would receive
erroneous data. The USB standard states that this can happen during error conditions and a new
SETUP is transmitted before the previous transfer finished. The core user can also clear the buffer
through the IN endpoint control register and is encouraged to do this when it detects a new SETUP
before finishing the previous transfer. This must be done since the user might have enabled buffers
after the core cleared them when receiving the new SETUP.

Whether data received to a descriptor for an OUT endpoint was from a SETUP transaction or an OUT
transaction is indicated in a descriptor status bit.

58.5.2 Bulk endpoints

Bulk endpoints are stream pipes and therefore only use a single endpoint in either the IN or OUT
direction. The endpoint with the same number in the other direction can be used independently. Data
is accessed normally through the AHB interface and no special consideration need to be taken apart
from the general endpoint guidelines.
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58.5.3 Interrupt endpoints

Interrupt data is handled in the same manner as for bulk endpoints on the AHB interface. The differ-
ences only appear on the USB. These endpoints are also of stream type.

Interrupt endpoints support a high-bandwidth state which means that more than one transaction per
microframe is performed. This necessitates buffers larger than the maximum payload size. The end-
point should be configured with a buffer larger or equal to the maximum payload times the number of
transactions. All transactions will be received to/transmitted from the same buffer. The endpoint is
configured as a high-bandwidth endpoint by setting the number of additional transactions to non-zero
in the endpoint control register.

58.5.4 Isochronous endpoints

Isochronous endpoints are of stream type are identical to other endpoints regarding the handling on
the AHB bus.

A big difference between isochronous endpoints and the other types is that they do not use hand-
shakes. If no data is available when an IN token arrives to an Isochronous endpoint a data packet with
length 0 is transmitted. This will indicate to the host that no error occurred but data was not ready. If
no packet is sent the host will not know whether the packet was corrupted or not.

When not in high-bandwidth mode only one transaction in the OUT direction will be stored to a sin-
gle buffer. In high-bandwidth mode all transactions during a microframe are stored to the same buffer.

In the IN direction data is always transferred from the same buffer until it is out of data. For high-
bandwidth endpoints the buffer should be configured to be the maximum payload times the number of
transactions in size.

Isochronous high-bandwidth endpoints use PID sequencing. When an error is detected in the PID
sequence in the OUT direction no data is handed over to AHB domain for the complete microframe.

58.6 Device implementation example in master mode

This section will shortly describe how the USB device controller can be used in master mode.

A function controlling the device controller and implementing the actual application specific device
will be needed. It can be either hardware, software or a combination. The only requirement is that it
can control the device controller through the AHB bus.

The first thing needed for successful operation is a correctly configured PHY. This is automatically
done by the device controller.

After this the device controller waits for attachment to the USB bus indicated by the VBUS becoming
valid. This can be notified to the function either by polling or an interrupt. The time of attachment can
be controlled by the function through the pull-up enable/disable bit in the core control register. When
disabled the USB host will not notice the device even when it is plugged in.

After attachment a USB reset needs to be received before transactions are allowed to be accepted.
This can also notified by polling or an interrupt.

Only control endpoint 0 should be accessible after reset. The function is responsible for enabling and
configuring at the right time. It can wait until a USB reset has been received but it is easier to enable it
immediately after power-up. This can be done since the device controller will not accept any transac-
tions until USB reset has been received. When enabling the endpoint descriptors should also be
enabled for both the IN and OUT direction and also the descriptor available bits should be set.

Then the endpoint is ready to accept packets and the function should wait for SETUP packets arriving.
It can be notified of packets arriving either through polling or interrupts. The core should process the
requests and return descriptors as requested. When a Set address request is received the function
should write the new address to the device controller’s global control register. It will take effect after
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the next successful IN transaction for the control endpoint. This should correspond to the status stage
of the Set address transfer.

When a Set configuration request is received the function should enable the appropriate interface and
endpoints according to the selected configuration. This is done by writing to the various endpoint con-
trol registers. The function is responsible for advertising the configurations and interfaces through the
descriptors requested by SETUP transactions.

When the endpoints for the selected configuration are enabled the function should also setup the
DMA operation. Then it is ready to transmit and receive data through the application specific end-
points. Interrupts can be used to notify that new packets have transferred and then polling will deter-
mine which endpoint had a status change.

58.7 Device implementation example in slave mode

This section will shortly describe how the USB device controller can be used in slave mode.

A function controlling the device controller and implementing the actual application specific device
will be needed. It can be either hardware, software or a combination. The only requirement is that it
can control the device controller through the AHB bus.

The first thing needed for successful operation is a correctly configured PHY. This is automatically
done by the device controller.

After this the device controller waits for attachment to the USB bus indicated by the VBUS becoming
valid. This can be notified to the function either by polling or an interrupt. The time of attachment can
be controlled by the function through the pull-up enable/disable bit in the core control register. When
disabled the USB host will not notice the device even when it is plugged in.

After attachment an USB reset needs to be received before transactions are allowed to be accepted.
This can also notified by polling or an interrupt.

Only control endpoint 0 should be accessible after reset. The function is responsible for enabling and
configuring at the right time. It can wait until a USB reset has been received but it is easier to enable it
immediately after power-up. This can be done since the device controller will not accept any transac-
tions until USB reset has been received. When enabling the endpoint packet interrupts should be
enabled or the function should start polling the buffer status so that it will notice when packets arrive.

Then the endpoint is ready to accept packets and the function should wait for SETUP packets arriving.
When a packet arrives the core should process the requests and return USB descriptors as requested.
When a Set address request is received the function should write the new address to the device con-
troller’s global control register. It will take effect immediately. It should not be written until the status
stage has been finished for the Set address request. It can be determined that the request has finished if
a packet transmitted interrupt is enabled for the handshake packet of the request and an interrupt is
received.

When a Set configuration request is received the function should enable the appropriate interface and
endpoints according to the selected configuration. This is done by writing to the various endpoint con-
trol registers. The function is responsible for advertising the configurations and interfaces through the
descriptors requested by SETUP transactions.

When the endpoints for the selected configuration are enabled the function should also enable inter-
rupts or start polling these endpoints. Then it is ready to transmit and receive data through the applica-
tion specific endpoints. Interrupts can be used to notify that new packets have been transferred and
then status reads will determine which endpoint had a status change.
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58.8 Registers

The core is programmed through registers mapped into AHB address space.

Table 823.GRUSBDC registers

AHB address offset Register

0x00 OUT Endpoint 0 control register

0x04 OUT Endpoint 0 slave ctrl / DMA ctrl register

0x08 OUT Endpoint 0 slave data / DMA descriptor address register

0x0C OUT Endpoint 0 status register

0x10-0x1C OUT Endpoint 1

...

0xF0-0xFC OUT Endpoint 15

0x100-0x1FC IN Endpoints 0-15

0x200 Global Ctrl register

0x204 Global Status register

Table 824.GRUSBDC OUT endpoint control register
31 21 20 19 18 17 7 6 5 4 3 2 1 0

BUFSZ PI CB CS MAXPL NT TT EH ED EV

31: 21 Buffer size (BUFSZ) - Size/8 in bytes of one hardware buffer slot for this endpoint. Two slots are
available for each endpoint.

20 Packet received interrupt (PI) - Generate an interrupt for each packet that is received on the USB for
this endpoint (packet has been stored in the internal buffers). Reset value: ‘0’.

19 Clear buffers (CB) - Clears any buffers for the endpoint that contain data if the buffer is not currently
active.

18 Control Stall (CS) - Return stall for data and status stages in a control transfer. Automatically cleared
when the next setup token is received. Only used when the endpoint is configured as a control end-
point.

17: 7 Maximum payload (MAXPL) - Sets the maximum USB payload (maximum size of a single packet
sent to/from the endpoint) size for the endpoint. All bits of the field are not always used. The maxi-
mum value for the maximum payload is determined with a generic for each endpoint. Not Reset.

6: 5 Number of transactions (NT) - Sets the number of additional transactions per microframe for high-
speed endpoints and per frame for full-speed endpoints. Only valid for isochronous endpoints. Not
Reset.

4: 3 Transfer type (TT) - Sets the transfer type for the endpoint. “00”=CTRL, “01” =ISOCH,
“10”=BULK, “11”=INTERRUPT. Only OUT endpoints should be set to the CTRL type and then the
IN endpoint with the same number will be automatically used. It is important not to use OUT end-
points that do not have a corresponding IN endpoint as a CTRL endpoint. Not Reset.

2 Endpoint halted (EH) - Halt the endpoint. If set, all transfers to this endpoint will receive a STALL
handshake. Reset value: ‘0’.

1 Endpoint disabled (ED) - Disables the endpoint. If set, all transfers to this endpoint will receive a
NAK handshake. Reset value: ‘0’.

0 Endpoint valid (EV) - Enables the endpoint. If not enabled, all transfers to this endpoint will be
ignored and no handshake is sent. Reset value; ‘0’.

Table 825.GRUSBDC OUT slave control register.
31 17 16 15 3 2 1 0

RESERVED SE BUFCNT DA BS CB
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31: 17 RESERVED

16 Setup packet (SE) - The data was received from a SETUP packet instead of an OUT.

15: 3 Buffer counter (BUFCNT) - The number bytes available(OUT)

2 Data available (DA) - Set to one if a valid packet was acquired when requested using the CB. If no
valid packet was available it is set to zero. Reset value: ‘0’.

1 Buffer select (BS) - Current buffer selected. Read only.

0 Change or acquire buffer (CB) - If no buffer is currently active try to acquire a new one. If one is
already acquired, free it and try to acquire a new one.

Table 826.GRUSBDC OUT slave buffer read register.
31 0

DATA

31: 0 Data (DATA) - In AHB slave mode, data is fetched directly from the internal buffer by reading from
this register. Data always starts from bit 31. For word accesses bits 31-0 are valid, for half-word bits
31-16 and for byte accesses bits 31-24.

Table 827.GRUSBDC OUT DMA control register.
31 11 10 9 4 3 2 1 0

RESERVED AE RESERVED AD AI IE DA

31: 11 RESERVED

10 AHB error (AE) - An AHB error has occurred for this endpoint.

9: 4 RESERVED

3 Abort DMA (AD) - Disable descriptor processing (set DA to 0) and abort the current DMA transfer
if one is active. Reset value: ‘0’.

2 AHB error interrupt (AI) - Generate interrupt when an AHB error occurs for this endpoint.

1 Interrupt enable (IE) - Enable DMA interrupts. Each time data has been received or transmitted to/
from a descriptor with its interrupt enable bit set an interrupt will be generated when this bit is set.

0 Descriptors available (DA) - Set to indicate to the GRUSBDC that one or more descriptors have been
enabled.

Table 828.GRUSBDC OUT descriptor address register.
31 2 1 0

DESCADDR RES

31: 2 Descriptor table address (DESCADDR) - Address to the next descriptor.Not Reset.

1: 0 RESERVED

Table 829.GRUSBDC OUT endpoint status register
31 30 29 28 16 15 3 2 1 0

RES PR B1CNT B0CNT B1 B0 BS

31: 30 RESERVED.

29 Packet received (PR) - Set each time a packet has been received (OUT) and stored in the internal
buffers. Cleared when written with a ‘1’.

28: 16 Buffer 1 byte count (B1CNT) - Number of bytes in buffer one.

15: 3 Buffer 0 byte count (B0CNT) - Number of bytes in buffer zero.

2 Buffer 1 data valid (B1) - Set when buffer one contains valid data.

Table 825.GRUSBDC OUT slave control register.
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1 Buffer 0 data valid (B0) - Set when buffer zero contains valid data.

0 Buffer select (BS) - The currently selected buffer.

Table 830.GRUSBDC IN endpoint control register
31 21 20 19 18 17 7 6 5 4 3 2 1 0

BUFSZ PI CB CS MAXPL NT TT EH ED EV

31: 21 Buffer size (BUFSZ) - Size/8 in bytes of one hardware buffer slot for this endpoint. Two slots are
available for each endpoint.

20 Packet transmitted interrupt (PI) - Generate an interrupt each time a packet has been transmitted on
the USB and the internal buffer is cleared. Reset value: ‘0’.

19 Clear buffers (CB) - Clears any buffers for the endpoint that contain data if the buffer is not currently
active.

18 Control Stall (CS) - Return stall for data and status stages in a control transfer. Automatically cleared
when the next setup token is received. Only used when the endpoint is configured as a control end-
point.

17: 7 Maximum payload (MAXPL) - Sets the maximum USB payload (maximum size of a single packet
sent to/from the endpoint) size for the endpoint. All bits of the field are not always used. The maxi-
mum value for the maximum payload is determined with a generic for each endpoint. Not Reset.

6: 5 Number of transactions (NT) - Sets the number of additional transactions per microframe for high-
speed endpoints and per frame for full-speed endpoints. Only valid for isochronous endpoints. Not
Reset.

4: 3 Transfer type (TT) - Sets the transfer type for the endpoint. “00”=CTRL, “01” =ISOCH,
“10”=BULK, “11”=INTERRUPT. Only OUT endpoints should be set to the CTRL type and then the
IN endpoint with the same number will be automatically used. It is important not to use OUT end-
points that do not have a corresponding IN endpoint as a CTRL endpoint. Not Reset.

2 Endpoint halted (EH) - Halt the endpoint. If set, all transfers to this endpoint will receive a STALL
handshake. Reset value: ‘0’.

1 Endpoint disabled (ED) - Disables the endpoint. If set, all transfers to this endpoint will receive a
NAK handshake. Reset value: ‘0’.

0 Endpoint valid (EV) - Enables the endpoint. If not enabled, all transfers to this endpoint will be
ignored and no handshake is sent. Reset value; ‘0’.

Table 831.GRUSBDC IN slave control register.
31 17 16 4 3 2 1 0

RESERVED BUFCNT PI BA BS EB

31: 17 RESERVED

16: 4 Buffer counter (BUFCNT) - The number of bytes written in the current buffer.

3 Packet interrupt enable (PI) - Generate interrupt when the activated packet has been transmitted.
Should be set together with EB when enabling a packet for transmission. Reset value: ‘0’.

2 Buffer active (BA) - A free buffer was acquired and is available for use.

1 Buffer select (BS) - Current buffer selected. Read only.

0 Enable (EB) - Enable current buffer for transmission if one has been acquired and try to acquire a
new buffer. If no data has been written to the buffer a zero length packet will be transmitted.

Table 832.GRUSBDC IN slave buffer read/write register.
31 0

DATA

Table 829.GRUSBDC OUT endpoint status register
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31: 0 Data (DATA) - Data written to this register is placed into the current buffer for transmission. Byte,
Halfword and word sizes are allowed but only a word aligned address should be used. This means
that data is always placed on 31-0 for word, 31-16 for half-word and 31-24 for byte.

Table 833.GRUSBDC IN DMA control register.
31 11 10 9 4 3 2 1 0

RESERVED AE RESERVED AD AI IE DA

31: 11 RESERVED

10 AHB error (AE) - An AHB has occurred for this endpoint.

9: 4 RESERVED

3 Abort DMA (AD) - Disable descriptor processing (set DA to 0) and abort the current DMA transfer
if one is active. Reset value: ‘0’.

2 AHB error interrupt (AI) - Generate interrupt when an AHB error occurs for this endpoint.

1 Interrupt enable (IE) - Enable DMA interrupts. Each time data has been received or transmitted to/
from a descriptor with its interrupt enable bit set an interrupt will be generated when this bit is set.

0 Descriptors available (DA) - Set to indicate to the GRUSBDC that one or more descriptors have been
enabled.

Table 834.GRUSBDC IN descriptor address register.
31 2 1 0

DESCADDR RES

31: 2 Descriptor table address (DESCADDR) - Address to the next descriptor.Not Reset.

1: 0 RESERVED

Table 835.GRUSBDC IN endpoint status register
31 30 29 28 16 15 3 2 1 0

RES PT B1CNT B0CNT B1 B0 BS

31: 30 RESERVED.

29 Packet transmitted (PT) - Packet has been transmitted and cleared from the internal buffers. Cleared
when written with a ‘1’.

28: 16 Buffer 1 byte count (B1CNT) - Number of bytes in buffer one.

15: 3 Buffer 0 byte count (B0CNT) - Number of bytes in buffer zero.

2 Buffer 1 data valid (B1) - Set when buffer one contains valid data.

1 Buffer 0 data valid (B0) - Set when buffer zero contains valid data.

0 Buffer select (BS) - The currently selected buffer.

Table 836.GRUSBDC ctrl register
31 30 29 28 27 26 16 15 14 13 12 11 9 8 7 1 0

SI UI VI SP FI RESERVED FT EP DH RW TS TM UA SU

31: Suspend interrupt (SI) - Generate interrupt when suspend status changes. Reset value: ‘0’.

30 USB reset (UI) - Generate interrupt when USB reset is detected. Reset value: ‘0’.

Table 832.GRUSBDC IN slave buffer read/write register.
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58.9 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x021. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

58.10 Configuration options

Table 838 shows the configuration options of the core (VHDL generics). Buffer sizes are given in
bytes and determines the sizes of one hardware buffer for the endpoint. Two buffers are available for
each endpoint. The buffer size must be equal to or larger than the desired maximum payload size. In

29 VBUS valid interrupt (VI) - Generate interrupt when VBUS status changes. Reset value: ‘0’.

28 Speed mode interrupt (SP) - Generate interrupt when Speed mode changes. Reset value: ‘0’.

27 Frame number received interrupt (FI) - Generate interrupt when a new Start of frame (SOF) token is
received. Reset value: ‘0’.

26: 16 RESERVED

15 Functional test mode (FT) - Enables functional test-mode which shortens all timer such as reset and
chirp timers to 8 clock cycles.

14 Enable pull-up (EP) - Enable pull-up on the D+ line signaling a connect to the host. Reset value: ‘0’.

13 Disable High-speed (DH) - Disable high-speed handshake to make the core full-speed only.

12 Remote wakeup (RW) - Start remote wakeup signaling. It is self clearing and will be cleared when it
has finished transmitting remote wakeup if it was currently in suspend mode. If not in suspend mode
when set it will self clear immediately. Writes to this bit when it is already asserted are ignored.
Reset value: ‘0’.

11: 9 Testmode selector (TS) - Select which testmode to enter. “001”= Test_J, “010”= Test_K, “011”=
Test_SE0_NAK, “100”= Test_Packet.

8 Enable test mode (TM) - Set to one to enable test mode. Note that the testmode cannot be left with-
out resetting or power-cycling the core and cannot be entered if hsdis is set to ‘1’. Reset value: ‘0’.

7: 1 USB address (UA) - The address assigned to the device on the USB bus.

0 Set USB address (SU) - Write with a one to set the usb address stored in the USB address field.

Table 837.GRUSBDC status register
31 28 27 24 23 22 18 17 16 15 14 13 11 10 0

NEPI NEPO DM RESERVED SU UR VB SP AF FN

31: 28 Number of implemented IN endpoints (NEPI) - The number of configurable IN endpoints available
in the core (including endpoint 0) minus one.

27: 24 Number of implemented OUT endpoints (NEPO) - The number of configurable OUT endpoints
available in the core (including endpoint 0) minus one.

23 Data mode (DM) - 0 = core uses slave mode for data transfers, 1 = core uses master mode (DMA) for
data transfers.

22: 18 RESERVED

17 Suspended (SU) - Set to ‘0’ when the device is suspended and ‘1’ when not suspended.

16 USB reset (UR) - Set each time an USB reset has been detected. Cleared when written with a ‘1’.

15 Vbus valid (VB) - Set to one when a valid voltage has been detected on the USB vbus line.

14 Speed (SP) - The current speed mode of the USB bus. ‘0’ = high-speed, ‘1’ = full-speed.

13: 11 Additional frames (AF) - Number of additional frames received with the current frame number.

10: 0 Frame number (FN) - The value of the last SOF token received.

Table 836.GRUSBDC ctrl register
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the case of high-bandwidth endpoints the buffer size must be equal to or larger than the maximum
payload times the number of transactions per (micro) frame.

Table 838.Configuration options

Generic Function Allowed range Default

hsindex AHB slave index. 0 - NAHBSLV-1 0

hirq AHB interrupt number 0 - NAHBIRQ-1 0

haddr AHB slave address - 0

hmask AHB slave address mask - 16#FFF#

hmindex AHB master index 0 - NAHBMST-1

aiface 0 selects the AHB slave interface for data transfer while
1 selects the AHB master interface.

0 - 1 0

memtech Memory technology used for blockrams (endpoint buff-
ers).

0 - NTECH 0

uiface 0 selects the UTMI interface while 1 selects ULPI. 0 - 1 0

dwidth Selects the data path width for UTMI. 8 - 16 8

blen Maximum number of beats in burst accesses on the AHB
bus.

4 - 128 16

ninep Number of IN endpoints 1 - 16 1

noutep Number of OUT endpoints 1 - 16 1

i0 Buffer size for IN endpoint 0. 8, 16, 24, ... , 3072 1024

i1 Buffer size for IN endpoint 1. 8, 16, 24, ... , 3072 1024

i2 Buffer size for IN endpoint 2. 8, 16, 24, ... , 3072 1024

i3 Buffer size for IN endpoint 3. 8, 16, 24, ... , 3072 1024

i4 Buffer size for IN endpoint 4. 8, 16, 24, ... , 3072 1024

i5 Buffer size for IN endpoint 5. 8, 16, 24, ... , 3072 1024

i6 Buffer size for IN endpoint 6. 8, 16, 24, ... , 3072 1024

i7 Buffer size for IN endpoint 7. 8, 16, 24, ... , 3072 1024

i8 Buffer size for IN endpoint 8. 8, 16, 24, ... , 3072 1024

i9 Buffer size for IN endpoint 9. 8, 16, 24, ... , 3072 1024

i10 Buffer size for IN endpoint 10. 8, 16, 24, ... , 3072 1024

i11 Buffer size for IN endpoint 11. 8, 16, 24, ... , 3072 1024

i12 Buffer size for IN endpoint 12. 8, 16, 24, ... , 3072 1024

i13 Buffer size for IN endpoint 13. 8, 16, 24, ... , 3072 1024

i14 Buffer size for IN endpoint 14. 8, 16, 24, ... , 3072 1024

i15 Buffer size for IN endpoint 15. 8, 16, 24, ... , 3072 1024

o0 Buffer size for OUT endpoint 0. 8, 16, 24, ... , 3072 1024

o1 Buffer size for OUT endpoint 1. 8, 16, 24, ... , 3072 1024

o2 Buffer size for OUT endpoint 2. 8, 16, 24, ... , 3072 1024

o3 Buffer size for OUT endpoint 3. 8, 16, 24, ... , 3072 1024

o4 Buffer size for OUT endpoint 4. 8, 16, 24, ... , 3072 1024

o5 Buffer size for OUT endpoint 5. 8, 16, 24, ... , 3072 1024

o6 Buffer size for OUT endpoint 6. 8, 16, 24, ... , 3072 1024

o7 Buffer size for OUT endpoint 7. 8, 16, 24, ... , 3072 1024

o8 Buffer size for OUT endpoint 8. 8, 16, 24, ... , 3072 1024

o9 Buffer size for OUT endpoint 9. 8, 16, 24, ... , 3072 1024

o10 Buffer size for OUT endpoint 10. 8, 16, 24, ... , 3072 1024

o11 Buffer size for OUT endpoint 11. 8, 16, 24, ... , 3072 1024
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58.11 Signal descriptions

Table 839 shows the interface signals of the core (VHDL ports).

o12 Buffer size for OUT endpoint 12. 8, 16, 24, ... , 3072 1024

o13 Buffer size for OUT endpoint 13. 8, 16, 24, ... , 3072 1024

o14 Buffer size for OUT endpoint 14. 8, 16, 24, ... , 3072 1024

o15 Buffer size for OUT endpoint 15. 8, 16, 24, ... , 3072 1024

oepol Select polarity of output enable signal. 1 selects active
high and 0 selects active low.

0 - 1 0

syncprst Use synchronously deasserted rst to PHY. This requires
that the PHY generates a clock during reset.

0 - 1 0

prsttime Reset time in microseconds needed for the PHY. Set to
zero to disable this feature and use the reset time
enforced by the reset to the GRUSBDC core.

>= 0 0

sysfreq System frequency (HCLK input) in kHz. This is used
together with prsttime to calculate how many clock
cycles are needed for the PHY rst.

>= 0 50000

keepclk This generic determines wheter or not the USB trans-
ceiver will be suspended and have its clock turned off
during USB suspend. Set this generic to 1 if the clock
should not be turned off. This might be needed for some
technologies that can’t handle that the USB clock is
turned off for long periods of time.

0 - 1 0

sepirq* Set this generic to 1 if three seperate interrupt lines
should be used, one for status related interrupts, one for
IN endpoint related interrupts, and one for OUT end-
point related interrupts. The irq number for the three dif-
ferent interrupts are set with the hirq (status), irqi (IN),
and irqo (OUT) generics. If sepirq = 0 then only inter-
rupts with irq number hirq will be generated.

0 - 1 0

irqi* Sets the irq number for IN endpoint related interrupts.
Only used if sepirq generic is set to 1.

0 - NAHBIRQ-1 1

irqo* Sets the irq number for OUT endpoint related interrupts.
Only used if sepirq generic is set to 1.

0 - NAHBIRQ-1 2

functesten Enable functional test mode. This is used to skip the
USB high-speed detection sequence to reduce the num-
ber of test vectors during functional testing.

0 - 1 0

scantest Set this generic to 1 if scan test support should be imple-
mented.

0 - 1 0

* The values of these generics are stored in the first User-Defined word of the core’s AHB plug-n-play area as follows: bit
0 = sepirq, bits 7:4 = irqi, bits 11:8 = irqo. Please see the AHBCTRL section of GRLIB IP Core User’s Manual.

Table 839.Signal descriptions

Signal name Field Type Function Active

UCLK N/A Input USB UTMI/ULPI Clock -

HCLK Input AMBA Clock -

HRST Input AMBA Reset Low

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

Table 838.Configuration options

Generic Function Allowed range Default
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AHBSO * Output AHB slave output signals -

USBI datain[15:0] Input UTMI/UTMI+/ULPI. Bits 15:8 are only used in
16-bit UTMI/UTMI+ mode.

-

rxactive Input UTMI/UTMI+ High

rxvalid Input UTMI/UTMI+ High

rxvalidh Input UTMI/UTMI+ 16-bit High

rxerror Input UTMI/UTMI+ High

txready Input UTMI/UTMI+ High

linestate[1:0] Input UTMI/UTMI+ -

nxt Input ULPI High

dir Input ULPI High

vbusvalid Input UTMI+ High

urstdrive Input This input determines if the cores should drive
the transceiver data lines low during USB trans-
ceiver reset, even if the dir input is High. This is
needed for some transceivers, such as the NXP
ISP1504. When this input is low the direction of
the transceiver data lines are exclusively con-
trolled by the dir signal from the transceiver.
When this input is high the core will drive the
data lines low during transceiver reset. Only
applicable for ULPI transceivers.

High

USBO dataout[15:0] Output UTMI/UTMI+/ULPI. Bits 15:8 are only used in
16-bit UTMI/UTMI+ mode.

-

txvalid Output UTMI+ High

txvalidh Output UTMI+ 16-bit High

opmode[1:0] Output UTMI+ -

xcvrselect[1:0] Output UTMI/UTMI+. Bit 1 is constant low. -

termselect Output UTMI/UTMI+ -

suspendm Output UTMI/UTMI+ Low

reset Output Transceiver reset signal. Asserted asynchro-
nously and deasserted synchrnously to the USB
clock.

**

stp Output ULPI High

oen Output Data bus direction control for ULPI and bi-direc-
tional UTMI/UTMI+ interfaces.

***

databus16_8 Output UTMI+. Constant high for 16-bit interface, con-
stant low for 8-bit interface.

-

dppulldown Output UTMI+. Constant low. High

dmpulldown Output UTMI+. Constant low. High

idpullup Output UTMI+. Constant low. High

drvvbus Output UTMI+. Constant low. High

dischrgvbus Output UTMI+. Constant low. High

chrgvbus Output UTMI+. Constant low. High

txbitstuffenable Output UTMI+. Constant low. High

txbitstuffenableh Output UTMI+. Constant low. High

fslsserialmode Output UTMI+. Constant low. High

tx_enable_n Output UTMI+. Constant high. Low

Table 839.Signal descriptions

Signal name Field Type Function Active
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58.12 Library dependencies

Table 840 shows libraries used when instantiating the core (VHDL libraries).

58.13 Instantiation

This example shows how the core can be instantiated.

usbdc0: GRUSBDC
    generic map(
      hsindex       => 4,
      hirq          => 0,
      haddr         => 16#001#,
      hmask         => 16#FFF#,
      hmindex       => 14,
      aiface        => 1,
      memtech       => memtech,
      uiface        => 0,
      dwidth        => 8,
      nepi          => 16,
      nepo          => 16)
    port map(
      uclk          => uclk,
      usbi          => usbi,
      usbo          => usbo,
      hclk          => clkm,
      hrst          => rstn,
      ahbmi         => ahbmi,
      ahbmo         => ahbmo(14),
      ahbsi         => ahbsi,
      ahbso         => ahbso(4)
     );

usb_d_pads: for i in 0 to 15 generate
 usb_d_pad: iopad generic map(tech => padtech, slew => 1)

 port map (usb_d(i), usbo.dataout(i), usbo.oen, usbi.datain(i));
end generate;

usb_h_pad:iopad generic map(tech => padtech, slew => 1)
 port map (usb_validh, usbo.txvalidh, usbo.oen, usbi.rxvalidh);

usb_i0_pad : inpad generic map (tech => padtech) port map (usb_txready,usbi.txready);
usb_i1_pad : inpad generic map (tech => padtech) port map (usb_rxvalid,usbi.rxvalid);
usb_i2_pad : inpad generic map (tech => padtech) port map (usb_rxerror,usbi.rxerror);
usb_i3_pad : inpad generic map (tech => padtech) port map (usb_rxactive,usbi.rxactive);
usb_i4_pad : inpad generic map (tech => padtech) port map
(usb_linestate(0),usbi.linestate(0));
usb_i5_pad : inpad generic map (tech => padtech) port map

tx_dat Output UTMI+. Constant low. High

tx_se0 Output UTMI+. Constant low. High

* See GRLIB IP Library User’s Manual.

** Depends on transceiver interface. Active high for UTMI/UTMI+ and active low for ULPI.

*** Implementation dependent.

Table 840.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER GRUSB Signals, component GRUSBDC component declarations, USB sig-
nals

Table 839.Signal descriptions

Signal name Field Type Function Active
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(usb_linestate(1),usbi.linestate(1));
usb_i6_pad : inpad generic map (tech => padtech) port map (usb_vbus, usbi.vbusvalid);

usb_o0_pad : outpad generic map (tech => padtech, slew => 1) port map (usb_reset,usbo.reset);
usb_o1_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_suspend,usbo.suspendm);
usb_o2_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_termsel,usbo.termselect);
usb_o3_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_xcvrsel,usbo.xcvrselect(0));
usb_o4_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_opmode(0),usbo.opmode(0));
usb_o5_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_opmode(1),usbo.opmode(1));
usb_o6_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_txvalid,usbo.txvalid);

usb_clk_pad : clkpad generic map (tech => padtech, arch => 2) port map (usb_clkout, uclk);

usbi.urstdrive <= ‘0’;
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59 GRUSBHC - USB 2.0 Host Controller

59.1 Overview

The Aeroflex Gaisler USB 2.0 Host Controller provides a link between the AMBA AHB bus and the
Universal Serial Bus. The host controller supports High-, Full-, and Low-Speed USB traffic. USB 2.0
High-Speed functionality is supplied by an enhanced host controller implementing the Enhanced Host
Controller Interface revision 1.0. Full- and Low-Speed traffic is handled by up to 15 (USB 1.1) com-
panion controllers implementing the Universal Host Controller Interface, revision 1.1. Each controller
has its own AMBA AHB master interface. Configuration and control of the enhanced host controller
is done via the AMBA APB bus. Companion controller registers are accessed via an AMBA AHB
slave interface. Figure 175 shows a USB 2.0 host system and the organization of the controller types.
Figure 176 shows an example with both host controller types present.

The controller supports both UTMI+ and ULPI transceivers and can handle up to 15 ports.

Figure 175. Block diagram of USB 2.0 host system

Figure 176. Block diagram of both host controller types
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59.2 Operation

59.2.1 System overview

Depending on the core’s configuration it may contain both controller types, one enhanced host con-
troller, or up to 15 standalone universal host controllers. If both controller types are present, each uni-
versal host controller acts as a companion controller to the enhanced host controller.

The enhanced host controller complies with the Enhanced Host Controller Interface with the excep-
tion of the optional Light Host Controller Reset, which is not implemented.

The universal host controller complies with the Universal Host Controller Interface, with exceptions.
The HCHalted field in the USB Command register is implemented as Read Only instead of Read/
Write Clear. The Port Status/Control registers have been extended with Over Current and Over Cur-
rent Change fields. Changes to both registers have been done in accordance with contemporary imple-
mentations of the interface. Both changes match the description of corresponding bits in the EHCI
specification.

59.2.2 Protocol support

The enhanced host controller has full support for High-Speed traffic as defined in the USB Specifica-
tion, revision 2.0. In addition Asynchronous Park Mode is supported, and the controller has a NAK
counter.

The universal host controller supports Full- and Low-Speed traffic.

59.2.3 Descriptor and data buffering

The enhanced host controller prefetches one frame of isochronous descriptors. All payload data for a
transaction is fetched before the transaction is executed. The enhanced host controller has a 2048 byte
buffer for descriptors and a 2048 byte buffer for payload data, which can hold data for two transac-
tions.

The universal host controller does not prefetch descriptors. Depending on controller configuration a
transaction on the bus may be initiated before all payload data has been fetched from memory. Each
universal host controller has a 1024 byte buffer for payload data. A transfer descriptor in UHCI may
describe a transaction that has a payload of 1280 bytes. The USB specification limits the maximum
allowed data payload to 1023 bytes and the controller will not transfer a larger payload than 1023
bytes. If a descriptor has a, legal, larger payload than 1023 bytes, the controller will only attempt to
transfer the first 1023 bytes before the transaction is marked as completed.

In the event that the host controller has just one port, the universal host controller and the enhanced
host controller will share the data payload buffer. Thus only two 2048 byte buffers are required.

59.2.4 Clocking and reset

The core has two clock domains; a system clock domain and a USB clock domain. The USB clock
domain always operates in either 60 MHz or 30 MHz, depending on the transceiver interface. All sig-
nals that cross a clock domain boundary are synchronized to prevent meta-stability.

The reset input can be asserted and deasserted asynchronously or synchronously. All registers that in
the system clock domain that require a reset value are synchronously reseted. It is assumed that the
reset input is held asserted until the system clock input is stable. In order to insure that no unwanted
USB activity take place, a few registers in the USB clock domain are asynchronously reseted. Once
the USB clock starts to toggle, alla other registers in the USB domain that require a reset value will be
reset as well.

From the reset input the core also generates reset to the USB transceivers. This generated reset is
asserted asynchronously with respect to the USB clock, and it is deasserted synchronously or asyn-
chronously depending on the value of thesyncprstgeneric. Some transceivers require a synchronous
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deassert, while others turn off their clock output during reset, and therefore require an asynchronous
deassert. The core can also time the reset to the transceiver(s). This is done with theurst_timeandsys-
freq generics.

Some ULPI transceivers require the data bus to be kept low by the core during transceiver reset, this
behaviour is controlled by theurstdrive input signal.

59.2.5 Endianness

The core always accesses the least significant byte of a data payload at offset zero. Depending on the
core’s configuration, registers may be big endian, little endian, or byte swapped little endian.

59.2.6 RAM test facilities

The VHDL genericramtestadds the possibility to test the RAM by mapping the core’s internal buff-
ers into the register space. If the core is implemented with RAM test facilities the universal host con-
troller maps the packet buffer at offset 0x400 - 0x7FF. An enhanced host controller will map the
packet buffer at offset 0x1000 - 0x17FF and the transaction buffer at 0x1800 - 0x1FFF. Note that the
VHDL genericsuhchmaskandehcpmaskmust be modified to allow access to the increased number of
registers. The three least significant bits of the universal host controller’s mask must be set to zero.
The enhanced host controller’s mask must have its five least significant bits set to zero.

When theramtestgeneric is set to one an extra register calledRAM test controlregister is added to
both the universal and the enhanced controller. This register is described in section 59.9.1 and 59.9.2.
To perform the RAM tests the user should first make sure that both the universal host controller and
enhanced host controller are in their respective idle state. Note that if the core has only one port then
the enhanced controller and the universal controller share the packet buffer. The shared buffer can be
tested through both of the controllers but the controller performing the test must be the current owner
of the port. For information on how to enter idle state and change ownership of the port please see sec-
tion 59.9. When the controllers are in their idle states the enable bit in theRAM test controlregister
should be set to one.

Once RAM test is enabled the whole RAM can be tested by first filling the buffers by writing to the
corresponding register addresses and then setting the start bit in theRAM test controlregister. When
the start bit is set the controller will, in order to access to the RAM from all its ports, read and write
the whole packet buffer from the USB domain. If the core uses dual port RAM (see section 59.11 for
more information on RAM usage) the same thing is done with the transaction buffer (if it is the
enhanced controller that is performing the test). When the core uses double port RAM both the read
and write port of the transaction buffer is located in the AHB domain, and therefore both the read and
write port is tested during read and write accesses to register space. When the transfers are finished
the core will clear the start bit and the data can then be read back through register space and be com-
pared with the values that were written. When the core is implemented with dual port RAM individual
addresses in the packet buffer and transaction buffer can be written and read without using the start
bit. When using double port RAM only the transaction buffer can be read without using the start bit.
However when individual addresses are accessed the buffers are only read/written from the AHB
domain.

59.2.7 Scan test support

The VHDL genericscantestenables scan test support. If the core has been implemented with scan test
support it will:

• disable the internal RAM blocks when the testen and scanen signals are asserted.

• use the testoen signal as output enable signal.

• clock all registers with the clk input (i.e. not use the USB clock).

• use the testrst signal as the reset signal for those registers that are asynchronously reseted.
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The testen, scanen, testrst, and testoen signals are routed via the AHB master interface.

59.3 Port routing

Port routing is implemented according to the EHCI specification but functions regardless of whether
the core is configured with or without an enhanced host controller. The VHDL generic prr enables or
disables Port Routing Rules. With Port Routing Rules enabled, each port can be individually routed to
a specific universal host controller via the VHDL generics portroute1 and portroute2. If Port Routing
Rules is disabled the n_pcc lowest ports are routed to the first companion controller, the next n_pcc
ports to the second companion controller, and so forth. The HCSP-PORTROUTE array is communi-
cated via the portroute VHDL generics, which are calculated with the following algorithm:

portroute1 = 226*CC8 + 222*CC7 + 218*CC6 + 214*CC5 + 210*CC4 + 26*CC3 + 22*CC2 + CC1 / 4

portroute1 = 226*CC15 + 222*CC14 + 218*CC13 + 214*CC12 + 210*CC11 + 26*CC10 + 22*CC9 + CC1 mod 4

where CCP is the companion controller that port P is routed to. Companion controllers are enumerated
starting at 1.

When the enhanced host controller has not been configured by software, or when it is nonexistent,
each port is routed to its companion controller. This allows a universal host controller to function even
if the host system does not have support for the enhanced host controller. Please see the EHCI specifi-
cation for a complete description of port routing.

59.4 DMA operations

Both host controller types have configurable DMA burst lengths. The burst length in words is defined
by the VHDL generic bwrd. The value of bwrd limits how many words a controller may access in
memory during a burst and not the number of memory operations performed after bus access has been
granted. When writing a data payload back to memory that requires half-word or byte addressing the
number of memory operations may exceed bwrd by one before the bus is released. If a host controller
is given a byte-aligned data buffer its burst length may exceed the bwrd limit with one word when
fetching payload data from memory.

The universal host controller uses a burst length of four words when fetching descriptors. This
descriptor burst length is not affected by the bwrd VHDL generic. The universal host controller may
be configured to start transactions on the USB before all data has been fetched from memory. The
VHDL generic uhcblo specifies the number of words that must have been fetched from memory
before a USB transaction is started. Since the USB traffic handled by the universal host controller can
be expected to have significantly lower bandwidth than the system memory bus, this generic should
be set to a low value.

59.5 Endianness

The core works internally with little endian. If the core is connected to a big endian bus, endian con-
version must be enabled. When the VHDL generic endian_conv is set, all AMBA data lines are byte
swapped. With endian_conv correctly set the core will start accessing data payloads from byte offset
zero in the buffer, this is the first byte that is moved on the USB. The VHDL generic endian_conv
must be set correctly for byte and halfword accesses to work. Therefore it is not possible to change the
byte order of the buffer by configuring the controller for a little endian bus when it is connected to a
big endian bus or vice versa.

The VHDL generics be_regs and be_desc are used to place the controller into big endian mode when
endian conversion is enabled. These configuration options have no effect when the core is connected
to a little endian bus, as determined by the value of VHDL generic endian_conv. The VHDL generic
be_regs arranges the core’s registers in accordance with big endian addressing. In the enhanced host
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controller this will only affect the placement of the register fields CAPLENGTH and HCIVERSION,
the HCSP-PORTROUTE array, and - if implemented - the PCI registersSerial Bus Release Number
RegisterandFrame Length Adjustment Register. In the universal host controller be_regs will affect
the placement of all registers. When be_regs is set, the bus to the register interface is never byte
swapped. Tables 841 - 843 below illustrate the difference between big endian, little endian, and little
endian layout with byte swapped (32 bit) WORDs on two 16 bit registers. Register R1 is located at
address 0x00 and register R2 is located at address 0x02.

The VHDL generic be_desc removes the byte swapping of descriptors on big endian systems. Tables
844 and 845 below list the effects of endian_conv and be_regs on a big endian and a little endian sys-
tem respectively.

59.6 Transceiver support

The controller supports UTMI+ 8-bit, UTMI+ 16-bit, and ULPI transceivers. All connected transceiv-
ers must be of the same type. Note that the transceiver type is fixed and the core can therefore not
change between 8-bit and 16-bit UTMI+ interface during operation. Transceiver signals not belonging
to the selected transceiver type are not connected and do not need to be driven. When using ULPI
transceivers the default, and recommended, configuration is to use an external source for USB bus

Table 841.R1 and R2 with big endian addressing

31 16 15 0

R1(15:0) R2(15:0)

Table 842.R1 and R2 with little endian addressing

31 16 15 0

R2(15:0) R1(15:0)

Table 843.R1 and R2 with little endian layout and byte swapped DWORD

31 24 23 16 15 8 7 0

R1(7:0) R1(15:8) R2(7:0) R2(15:8)

Table 844.Effect of endian_conv, be_regs, and be_desc on a big endian system

endian_conv be_regs be_desc System configuration

0 - - Illegal. DMA will not function.

1 0 0 Host controller registers will be arranged according to little endian addressing and
each DWORD will be byte swapped. In-memory transfer descriptors will also be
byte swapped. This is the correct configuration for operating systems, such as
Linux, that swap the bytes on big endian systems.

1 0 1 Host controller registers are arranged according to little endian addressing and will
be byte swapped. Transfer descriptors will not be byte swapped.

1 1 0 Host controller registers will be arranged according to big endian addressing and
will not be byte swapped. In memory transfer descriptors will be byte swapped.

1 1 1 Host controller registers will be arranged according to big endian addressing. In
memory transfer descriptors will not be byte swapped.

Table 845.Effect of endian_conv, be_regs and be_desc on a little endian system

endian_conv be_regs be_desc System configuration

0 - - Host controller registers will be placed as specified in the register interface specifi-
cations.

1 - - Illegal. DMA will not function.
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power (VBUS) as well as external VBUS fault detection. However the core can be configured to sup-
port configurations where the ULPI transceiver handles VBUS generation and fault detection inter-
nally, and configurations where VBUS generation is external to transceiver but fault detection is
handled internally. Also the active level of the VBUS fault indicator can be configured. The configu-
ration is handled by the vbusconf generic. If UTMI+ transceivers are used it does not matter to the
core how VBUS generation and fault detection is handled as long as the VBUS enable signal and
VBUS fault indicator are connected to the core’s drvvbus and vbusvalid signals respectively. The
UTMI+ specification defines these two signals to be active high, however in order to support different
types of USB power switches and fault detectors the core can be configured to have active low drvv-
bus and vbusvalid signals. This configuration is also handled by the vbusconf generic. The UTMI+
interface is described inUSB 2.0 Transceiver Macrocell Interface (UTMI) SpecificationandUTMI+
Specification Revision 1.0. The ULPI interface is described inUTMI+ Low Pin Interface (ULPI)
Specification Revision 1.1.

59.7 PCI configuration registers and legacy support

The VHDL genericpcidevis used to configure the core to be used as a PCI device. If the core is con-
figured to be used as a PCI device then the PCI registersSerial Bus Release Number Registerand
Frame Length Adjustment Registerare implemented in the enhanced controller. TheSerial Bus
Release Number Registeris also implemented for the universal controller. SeeEnhanced Host Con-
troller Interface Specification (EHCI) for Universal Serial Bus revision 1.0andUniversal Host Con-
troller Interface (UHCI) Design Guide revision 1.1for details.

Legacy support is not implemented.

59.8 Software drivers

The core implements open interface standards and should function with available drivers. Aeroflex
Gaisler supplies initialization code for both controllers for the Linux 2.6 kernel and VxWorks.

59.9 Registers

59.9.1 Enhanced host controller

The core is programmed through registers mapped into APB address space. The contents of each reg-
ister is described in theEnhanced Host Controller Interface Specification (EHCI) for Universal Serial
Bus revision 1.0. Aregister calledRAM test controlis added when the VHDL genericramtestis set to
one. TheRAM test controlregister is not part of the EHCI interface and is described below. Also reg-
isters mapped to the packet buffer and transaction buffer are added if RAM test facilities are imple-
mented.

Table 846.Enhanced Host Controller capability registers

APB address offset Register

0x00 Capability Register Length

0x01 Reserved

0x02 Interface Version Number

0x04 Structural Parameters

0x08 Capability Parameters

0x0C Companion Port Route Description

Table 847.Enhanced Host Controller operational registers

APB address offset Register

0x14 USB Command*
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59.9.2 Universal host controller

The core is programmed through registers mapped into AHB I/O address space. The contents of each
register is described in theUniversal Host Controller Interface (UHCI) Design Guide revision 1.1. A
register calledRAM test controlis added when the VHDL genericramtestis set to one. TheRAM test

0x18 USB Status

0x1C USB Interrupt Enable

0x20 USB Frame Index

0x24 4G Segment Selector (Reserved)

0x28 Frame List Base Address

0x2C Next Asynchronous List Address

0x54 Configured Flag Register

0x58 - 0x90 Port Status/Control Registers**

*Light Host Controller reset is not implemented.

**One 32-bit register for each port

Table 848.Enhanced Host Controller RAM test registers

APB address offset Register

0x100 - 0xFFF RAM test control*

0x1000 - 0x17FF Packet buffer**

0x1800 - 0x1FFF Transaction buffer**

*Register is only present iframtest generic is set to one. Accessible through any of the offsets specified.

**Registers are only present iframtest generic is set to one.

Table 849.RAM test control
31 2 1 0

R ST EN

31: 2 R (Reserved): Always reads zero.

1 ST (Start): Starts the automatic RAM test. Can only be written to ‘1’. Cleared by the core when test
is finished.

0 EN (Enable): Enable RAM test. Need to be set to ‘1’ in order to access the buffers.

Table 850.Enhanced Host Controller PCI registers

APB address offset Register

0x2060 PCI registersSerial Bus Release Number RegisterandFrame Length
Adjustment Register*

*Only implemented if configured to be used as a PCI device.

Table 847.Enhanced Host Controller operational registers

APB address offset Register
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control register is not part of the UHCI interface and is described below. Also registers mapped to the
packet buffer are added when RAM test facilities are implemented.

Table 851.Universal Host Controller I/O registers

AHB address offset Register

0x00 USB Command

0x02 USB Status*

0x04 USB Interrupt Enable

0x06 Frame Number

0x08 Frame List Base Address

0x0C Start Of Frame Modify

0x10 - 0x2C Port Status/Control**

*The HCHalted bit is implemented as Read Only and has the default value 1.

**Over Current and Over Current Change fields have been added. Each port has a 16-bit register.

Table 852.Changes to USB Status register
15 6 5 4 0

UHCI compliant HCH UHCI compliant

15: 6 UHCI compliant

5 Host Controller Halted (HCH) - Same behaviour as specified in the UHCI specification but the field
has been changed from Read/Write Clear to Read Only and is cleared when Run/Stop is set. The
default value of this bit has been changed to 1.

4:0 UHCI compliant

Table 853.Changes to Port Status/Control registers
15 11 10 9 0

UHCI compliant OCC OC UHCI compliant

15: 12 UHCI compliant

11 Over Current Change (OCC) - Set to 1 when Over Current (OC) toggles. Read/Write Clear.

10 Over Current Active (OC) - Set to 1 when there is an over current condition. Read Only.

9:0 UHCI compliant

Table 854. Universal Host Controller RAM test registers

AHB address offset Register

0x100 - 0x3FF RAM test control*

0x400 - 0x7FF Packet buffer**

*Register is only present iframtest generic is set to one. Accessible through any of the offsets specified.

**Registers are only present iframtest generic is set to one.

Table 855.RAM test control
31 2 1 0

R ST EN

31: 2 R (Reserved): Always reads zero.

1 ST (Start): Starts the automatic RAM test. Can only be written to ‘1’. Cleared by the core when test
is finished.

0 EN (Enable): Enable RAM test. Need to be set to ‘1’ in order to access the buffers.
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59.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler), the enhanced host controller has device identi-
fier 0x026, the universal host controller has device identifier 0x027. For description of vendor and
device identifiers see GRLIB IP Library User’s Manual.

59.11 RAM usage

The core maps all usage of RAM on either thesyncram_dpcomponent (dual port) or thesyncram_2p
component (double port), both from the technology mapping library (TECHMAP). Which component
that is used can be configured with generics. The default, and recommended, configuration will use
syncram_dp.A universal host controller requires one 256x32syncram_dp, or two 256x32
syncram_2pfor its packet buffer. The extra amount ofsyncram_2pneeded comes from the fact that
the packet buffer is both read and written from the AHB clock domain and the USB clock domain. It
can not be guaranteed that a synchronization scheme would be fast enough and therefore one buffer
for data beeing sent and one buffer for data beeing received are needed. An enhanced host controller
requires one 512x32syncram_dp(or two 512x32syncram_2p, for the same reason discussed above)
for its packet buffer and two 512x16syncram_dp/syncram_2pfor its transaction buffer. The transac-
tion buffer is not doubled when usingsyncram_2p, instead synchronization and arbritration logic is
added. When the core is instantiated with only one port, the enhanced host controller and universal
host controller will share the packet buffer and the core only requires one 512x32syncram_dp(or two
512x32syncram_2p) for the packet buffer. Table 857 below shows RAM usage for all legal configura-
tions.

59.12 Configuration options

Table 858 shows the configuration options of the core (VHDL generics).

Table 856. Universal Host Controller PCI registers

AHB address offset Register

0x60 PCI registerSerial Bus Release Number Register*

*Only implemented if configured to be used as a PCI device.

Table 857.RAM usage for USB Host Controller core

Enhanced Host
Controller present

Number of
Universal Host
Controllers

Number of
ports

RAM
component

RAM
256x32

RAM
512x32

RAM
512x16

No x* Don’t care syncram_dp x* 0 0

No x* Don’t care syncram_2p x** 0 0

Yes 1 1 syncram_dp 0 1 2

Yes 1 1 syncram_2p 0 2 2

Yes x* > 1 syncram_dp x* 1 2

Yes x* > 1 syncram_2p x** 2 2

* The number of required 256x32syncram_dp equals the number of instantiated universal host controllers.

** The number of required 256x32syncram_2p equals the double amount of instantiated universal host controllers.

Table 858.Configuration options

Generic name Function Allowed range Default

ehchindex Enhanced host controller AHB master index 0 - NAHBMST-1 0

ehcpindex Enhanced host controller APB slave index 0 - NAPBSLV-1 0

ehcpaddr Enhanced host controller ADDR field of the APB BAR. 0 - 16#FFF# 0
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ehcpmask Enhanced host controller MASK field of the APB BAR.

Note that if theramtest generic is set to 1 then the
allowed range for this generic changes to 0 - 16#FE0#. If
the pcidev generic is set to 1 then the allowed range for
ehcpmask is 0 - 16#FC0#

0 - 16#FFF# 16#FFF#

ehcpirq Enhanced host controller interrupt line 0 - NAHBIRQ-1 0

uhchindex Universal host controller AHB master index. If the core
contains more than one universal host controller the con-
trollers will be assigned indexes from uhchindex to
uhchindex+n_cc-1.

0 - NAHBMST-1 0

uhchsindex Universal host controller AHB slave index. If the core
contains more than one universal host controller the con-
trollers will be assigned indexes from uhc_hsindex to
uhchsindex+n_cc-1.

0 - NAHBSLV-n_cc 0

uhchaddr Universal host controller ADDR field of the AHB BAR.
If the core contains more than one universal host control-
ler the controllers will be assigned the address space
uhchaddr to uhchaddr + n_cc.

0 - 16#FFF# 0

uhchmask Universal host controller MASK field of the AHB BAR.

Note that if theramtest generic is set to 1 then the
allowed range for this generic changes to 0 - 16#FF8#

0 - 16#FFF# 16#FFF#

uhchirq Universal host controller interrupt line. If the core con-
tains more than one universal host controller the control-
ler will be assigned interrupt lines uhc_hirq to
uhchirq+n_cc-1.

0 - NAHBIRQ-1 0

tech Technology for clock buffers 0 - NTECH inferred

memtech Memory Technology used for buffers. 0 - NTECH inferred

nports Number of USB ports 1 - 15 1

ehcgen Enable enhanced host controller 0 - 1 1

uhcgen Enable universal host controller(s) 0 - 1 1

n_cc Number of universal host controllers. This value must be
consistent with nports and n_pcc, or portroute1 and
portroute2, depending on the value of the generic prr.
This value must be at least 1, regardless the value of
generic uhcgen.

1 - 15 1

n_pcc Number of ports per universal host controller. This value
must be consistent with n_cc and nports:

nports <= (n_cc * n_pcc) < (nports + n_pcc)

when Port Routing Rules is disabled. The only allowed
deviation is if (nports mod n_cc) < n_pcc in which case
the last universal host controller will get (nports mod
n_cc) ports. This generic is not used then Port Routing
Rules (prr) is enabled.

1 - 15 1

prr Port Routing Rules. Determines if the core’s ports are
routed to companion controller(s) with n_cc and n_pcc
or with the help of portroute1 and portroute2.

0 - 1 0

portroute1 Defines part of the HCSP-PORTROUTE array - 0

portroute2 Defines part of the HCSP-PORTROUTE array - 0

endian_conv Enable endian conversion. When set, all AMBA data
lines are byte swapped. This generic must be set to 1 if
the core is attached to a big endian bus, it must be set to 0
if the core is attached to a little endian bus.

0 - 1 1

Table 858.Configuration options

Generic name Function Allowed range Default
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be_regs Arrange host controller registers according to big endian
addressing. When set no endian conversion is made on
the AMBA data lines connected to the host controller
registers, regardless of endian_conv. Valid when
endian_conv is enabled.

0 - 1 0

be_desc Disable byte swapping of in-memory descriptors. Valid
when endian_conv is enabled.

0 - 1 0

uhcblo Universal Host Controller Buffer Limit Out. A universal
host controller will start OUT bus transactions when
uhcblo words of payload data has been fetched from
memory. Note that if the core uses the UTMI+ 16 bit
interface this generic must have a value larger than 2.

1 - 255 2

bwrd Burst length in words. A universal host controller has a
fixed, not affected by bwrd, burst length of four words
when fetching transfer descriptors. See comments under
section 59.2 DMA operations.

0 - 256 16

utm_type Transceiver type:

0: UTMI+ 16 bit data bus

1: UTMI+ 8 bit data bus

2: ULPI

0 - 2 2

vbusconf* Selects configuration for USB power source and fault
detection (external and internal below is from the USB
transceivers point of view):

ULPI transceivers:

0: ULPI transceiver generates VBUS internally and no
external fault indicator present

1: External power source but no external fault indicator.
Transceiver implement the optional ULPI pin DrvVbu-
sExternal but not ExternalVbusIndicator.

2: External power source and external active high fault
indicator. Transceiver implement both the optional ULPI
signals DrvvbusExternal and ExternalVbusIndicator.

3: External power source and external active low fault
indicator. Transceiver implement both the optional sig-
nals DrvvbusExternal and ExternalVbusIndicator.

4: External power source, but transceiver does not imple-
ment the optional ULPI signal DrvVbusExternal. Active
low drvvbus output from Host Controller will be used.
Don’t care if ExternalVbusIndicator is implemented, not
used.

5: External power source, but transceiver does not imple-
ment the optional ULPI signal DrvVbusExternal. Active
high drvvbus output from Host Controller will be used.
Don’t care if ExternalVbusIndicator is implemented, not
used.

UTMI+ transceivers:

0: vbusvalid and drvvbus are both active low

1: vbusvalid is active low, drvvbus is active high

2: vbusvalid is active high, drvvbus is active low

3: vbusvalid and drvvbus are both active high

0 - 3 3

ramtest When set each controller maps its internal buffers into
the controller’s register space.**

0 - 1 0

Table 858.Configuration options

Generic name Function Allowed range Default
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59.13 Signal descriptions

Table 859 shows the interface signals of the core (VHDL ports).

urst_time Amount of time (in ns) that the USB transceiver reset
output need to be active. The actual length of the USB
transceiver reset will be the length of the system reset
plus the value of this generic. If set to zero, the host con-
troller will not time the reset to the transceiver(s). Note
that the sysfreq generic can not be set to zero either if
reset timing is required.

- 0

oepol The polarity of the output enable signal for the data
input/output buffers, 0 means active low and 1 means
active high.

0 - 1 0

scantest Scan test support will be included if this generic is set to
1.

0 - 1 0

memsel Selects if dual port or double port memories should be
used for the host controllers’ internal buffers. Dual port
memories are used if this generic is set to 0 (or
MEMSEL_DUALPORT). Double port memories are
used if this generic is set to 1 (or
MEMSEL_DOUBLEPORT). It is strongly recom-
mended to use dual port memories in the host control-
lers. Double port memories should only be used on
technologies that lack support for dual port memories or
where the area overhead for dual port memories preven-
tively large.***

0 - 1 0

syncprst Some USB transceivers require that their reset input is
deasserted synchronously to the USB clock. Set this
generic to 1 if that is the case. Note that if the transceiver
generates the USB clock and it keeps the clock output off
during reset, then this generic must be set to 0. Other-
wise the core will never leave its reset state.

0 - 1 0

sysfreq This generic should be set to the system frequency (AHB
domain clock frequency), in kHz. This generic is used to
time reset to the USB transceivers. If set to zero, the host
controller will not time the reset to the transceiver(s).
Note that the urst_time generic can not be set to zero
either if reset timing is required.

- 65000

pcidev This generic should be set to one if the core is to be used
as a PCI device. If set to 1 the core will hold its interrupt
signal(s) high until cleared by software. Also a few PCI
registers will be added. See section 59.7 and 59.9 for
details on the registers.

Note that if this generic is set to 1 then the allowed range
for ehcpmask changes to 0 - 16#FC0#.

0 - 1 0

*see section 59.6 Transceiver support for more information

**see section 59.2.6 RAM test facilities for more information

***see section 59.11 RAM usage for more information

Table 859.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

UCLK N/A Input USB clock -

Table 858.Configuration options

Generic name Function Allowed range Default
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RST N/A Input Reset Low

APBI * Input APB slave input signals -

EHC_APBO * Output APB slave output signals -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

EHC_AHBMO * Output AHB master output signals. -

UHC_AHBMO[] * Output AHB master output vector.

UHC_AHBSO[] * Output AHB slave output vector. -

O[] xcvrselect[1:0] Output UTMI+ -

termselect Output UTMI+ -

suspendm Output UTMI+ Low

opmode[1:0] Output UTMI+ -

txvalid Output UTMI+ High

dataout[15:0] Output UTMI+/ULPI. Bits 15:8 are only used in 16-bit
UTMI+ mode.

-

txvalidh Output UTMI+ 16-bit High

stp Output ULPI High

reset Output Transceiver reset signal. Asserted asynchro-
nously and deasserted synchrnously to the USB
clock.

**

oen Output Data bus direction control for ULPI and bi-direc-
tional UTMI+ interfaces.

***

databus16_8 Output UTMI+ Constant high for 16-bit interface, con-
stant low for 8-bit interface.

-

dppulldown Output UTMI+ Constant high. High

dmpulldown Output UTMI+ Constant high. High

idpullup Output UTMI+ Constant low. High

drvvbus Output UTMI+/ULPI ***

dischrgvbus Output UTMI+ Constant low. High

chrgvbus Output UTMI+ Constant low. High

txbitstuffenable Output UTMI+ Constant low. High

txbitstuffenableh Output UTMI+ Constant low. High

fslsserialmode Output UTMI+ Constant low. High

tx_enable_n Output UTMI+ Constant high. High

tx_dat Output UTMI+ Constant low. High

tx_se0 Output UTMI+ Constant low. High

I[] linestate[1:0] Input UTMI+ -

txready Input UTMI+ High

rxvalid Input UTMI+ High

rxactive Input UTMI+ High

rxerror Input UTMI+ High

vbusvalid Input UTMI+ ***

datain[15:0] Input UTMI+/ULPI. Bits 15:8 are only used in 16-bit
UTMI+ interface.

-

rxvalidh Input UTMI+ 16-bit High

hostdisconnect Input UTMI+ High

Table 859.Signal descriptions

Signal name Field Type Function Active
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59.14 Library dependencies

Table 860 shows the libraries used when instantiating the core (VHDL libraries).

59.15 ASIC implementation details

When synthesizing the core for ASIC it might be required to use DC Ultra to reach the desired perfor-
mance of the AMBA interface. The longest path might be as long as 200 gates when using DC-
Expert, while its only around 10 gates when using DC Ultra. The core has successfully been synthe-
sized with a 125 MHz AMBA interface, using TSMC 65nm CLN65LP standard library.

59.16 Instantiation

This example shows how the core can be instantiated.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.grusb.all;

-- USB Host controller with 2 ports. One enhanced
-- host controller and two universal host controllers. Note that not all generics are set
-- in this example, many are kept at their defaulr values.

entity usbhc_ex is
 generic (

 tech  => tech;
 memtech => memtech;
 padtech => padtech);

  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- USBHC signals
 usbh_clkin     : in std_ulogic;

nxt Input ULPI High

dir Input ULPI -

urstdrive Input This input determines if the cores should drive
the transceiver data lines low during USB trans-
ceiver reset, even if the dir input is High. This is
needed for some transceivers, such as the NXP
ISP1504. When this input is low the direction of
the transceiver data lines are exclusively con-
trolled by the dir signal from the transceiver.
When this input is high the core will drive the
data lines low during transceiver reset. Only
applicable for ULPI transceivers.

High

* See GRLIB IP Library User’s Manual.

** Depends on transceiver interface. Active high for UTMI+ and active low for ULPI.

*** Implementation dependent.

Table 860.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER GRUSB Signals, component Component declaration, USB signals

Table 859.Signal descriptions

Signal name Field Type Function Active
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    usbh_d         : inout std_logic_vector(15 downto 0);
    usbh_reset     : out std_logic_vector(1 downto 0);
    usbh_nxt       : in std_logic_vector(1 downto 0);
    usbh_stp       : out std_logic_vector(1 downto 0);
    usbh_dir       : in std_logic_vector(1 downto 0)
    );
end;

architecture rtl of usbhc_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

  -- USBHC signals
 signal usbhci : grusb_in_vector(1 downto 0);
 signal usbhco : grusb_out_vector(1 downto 0);
 signal uhclk : std_ulogic;

begin

  -- AMBA Components are instantiated here
  ...

 -- Instantiate pads, one iteration for each port
 multi_pads: for i in 0 to 1 generate

usbh_d_pad: iopadv
generic map(tech => padtech, width => 8)
port map (usbh_d((i*8+7) downto (i*8)),

usbhco(i).dataout(7 downto 0), usbhco(i).oen,
usbhci(i).datain(7 downto 0));

usbh_nxt_pad : inpad generic map (tech => padtech)
port map (usbh_nxt(i),usbhci(i).nxt);

usbh_dir_pad : inpad generic map (tech => padtech)
port map (usbh_dir(i),usbhci(i).dir);

usbh_reset_pad : outpad generic map (tech => padtech)
port map (usbh_reset(i),usbhco(i).reset);

usbh_stp_pad : outpad generic map (tech => padtech)
port map (usbh_stp(i),usbhco(i).stp);

-- No need to drive ULPI data bus during USB reset
usbhci(i).urstdrive <= ‘0’;

end generate multi_pads;

usbh_clkin_pad : clkpad:
generic map (tech => padtech)

 port map(usbh_clkin, uhclk);

usbhostcontroller0: grusbhc
generic map (

ehchindex => 5,
ehcpindex => 14,
ehcpaddr => 14,
ehcpirq => 9,
ehcpmask => 16#fff#,
uhchindex => 6,
uhchsindex => 3,
uhchaddr => 16#A00#,
uhchmask => 16#fff#,
uhchirq => 10,
tech => tech,
memtech => memtech,
nports => 2,
ehcgen => 1,
uhcgen => 1,
n_cc => 2,
n_pcc => 1,
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endian_conv => 1,
utm_type => 2,
vbusconf => 3)

port map (
clk => clk,
uclk => uhclk,
rst => rstn,
apbi => apbi,
ehc_apbo => apbo(14),
ahbmi => ahbmi,
ahbsi => ahbsi,
ehc_ahbmo => ahbmo(5),
uhc_ahbmo => ahbmo(7 downto 6),
uhc_ahbso => ahbso(4 downto 3),
o => usbhco,
i => usbhci);

end;
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60 GRVERSION - Version and Revision information register

60.1 Overview

The GRVERSION provides a register containing a 16 bit version field and a 16 bit revision field. The
values for the two fields are taken from two corresponding VHDL generics. The register is available
via the AMBA APB bus.

60.2 Registers

The core is programmed through registers mapped into APB address space.

60.2.1 Configuration Register (R)

31-16: VERSION Version number
15- 0: REVISIONRevision number

60.3 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x03A. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

60.4 Configuration options

Table 863 shows the configuration options of the core (VHDL generics).

Table 861.GRVERSION registers

APB address offset Register

16#000# Configuration Register

Table 862.Configuration Register

31 16 15 0

VERSION REVISION

Table 863.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

versionnr Version number 0 - 2^16-1 0

revisionnr Revision number 0 - 2^16-1 0
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60.5 Signal descriptions

Table 864 shows the interface signals of the core (VHDL ports).

60.6 Library dependencies

Table 865 shows the libraries used when instantiating the core (VHDL libraries).

60.7 Instantiation

This example shows how the core can be instantiated.

TBD

Table 864.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

Table 865.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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61 I2C2AHB - I2C to AHB bridge

61.1 Overview

The I2C slave to AHB bridge is an I2C slave that provides a link between the I2C bus and AMBA
AHB. The core is compatible with the Philips I2C standard and external pull-up resistors must be sup-
plied for both bus lines.

On the I2C bus the slave acts as an I2C memory device where accesses to the slave are translated to
AMBA accesses. The core can translate I2C accesses to AMBA byte, halfword or word accesses. The
core makes use of I2C clock stretching but can also be configured to use a special mode without clock
stretching in order to support systems where master or physical layer limitations prevent stretching of
the I2C clock period.

GRLIB also contains another I2C slave core, without an AHB interface, where the transfer of each
individual byte is controlled by software via an APB interface, see the I2CSLV core documentation
for more information.

61.2 Operation

61.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).

A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.

Figure 178 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. The bit following the slave address is the R/W bit
which determines the direction of the data transfer. In this case the R/W bit is zero indicating a write
operation. After the master has transmitted the address and the R/W bit it releases the SDA line. The
receiver pulls the SDA line low to acknowledge the transfer. If the receiver does not acknowledge the

Figure 177. Block diagram, optional APB interface not shown
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transfer, the master may generate a STOP condition to abort the transfer or start a new transfer by gen-
erating a repeated START condition.

After the address has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data
byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer.

If the data bit rate is too high for a slave device or if the slave needs time to process data, it may
stretch the clock period by keeping SCL low after the master has driven SCL low. Clock stretching is
a configurable parameter of the core (see sections 61.2.4 and 61.2.6).

61.2.2 Slave addressing

The core’s I2C addresses are set with VHDL generics at implementation time. If the core has been
implemented with the optional APB interface, then the I2C addresses can be changed via registers
available via APB.

The core responds to two addresses on the I2C bus. Accesses to the I2C memory address are translated
to AMBA AHB accesses and accesses to the I2C configuration address access the core’s configura-
tion register.

61.2.3 System clock requirements and sampling

The core samples the incoming I2C SCL clock and does not introduce any additional clock domains
into the system. Both the SCL and SDA lines first pass through two stage synchronizers and are then
filtered with a low pass filter consisting of four registers.

START and STOP conditions are detected if the SDA line, while SCL is high, is at one value for two
system clock cycles, toggles and keeps the new level for two system clock cycles.

The synchronizers and filters constrain the minimum system frequency. The core requires the SCL
signal to be stable for at least four system clock cycles before the core accepts the SCL value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. Therefore it takes the core over eight
system clock cycles to discover a transition on SCL.

Figure 178. Complete I2C data transfer
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61.2.4 Configuration register access

The I2C configuration register is accessed via a separate I2C address (I2C configuration address). The
configuration register has the layout shown in table 866.

Reads from the I2C configuration address will return the current value of the configuration register.
Writes to the I2C configuration address will affect the writable bits in the configuration register.

61.2.5 AHB accesses

All AMBA accesses are done in big endian format. The first byte sent to or from the slave is the most
significant byte.

To write a word on the AHB bus the following I2C bus sequence should be performed:

1. Generate START condition

2. Send I2C memory address with the R/W bit set to ‘0’.

3. Send four byte AMBA address, the most significant byte is transferred first

4. Send four bytes to write to the specified address

5. If more than four consecutive bytes should be written, continue to send additional bytes, other-
wise go to 6.

6. Generate STOP condition

To perform a read access on the AHB bus, the following I2C bus sequence should be performed:

1. Generate START condition

2. Send I2C memory address with the R/W bit set to ‘0’.

3. Send four byte AMBA address, the most significant byte is transferred first

4. Generate (repeated) START condition

5. Send I2C memory address with the R/W bit set to ‘0’.

6. Read the required number of bytes and NACK the last byte

7. Generate stop condition

During consecutive read or write operations, the core will automatically increment the address. The
access size (byte, halfword or word) used on AHB is set via the HSIZE field in the I2C2AHB config-
uration register.

The core always respects the access size specified via the HSIZE field. If a write operation writes
fewer bytes than what is required to do an access of the specified HSIZE then the write data will be
dropped, no access will be made on AHB. If a read operation reads fewer bytes than what is specified
by HSIZE then the remaining read data will be dropped at a START or STOP condition. This means,

Table 866.I2C2AHB configuration register
7 6 5 4 3 2 1 0

Reserved PROT MEXC DMAACT NACK HSIZE

7:6 Reserved, always zero (read only)

5 Memory protection triggered (PROT) - ‘1’ if last AHB access was outside the
allowed memory area. Updated after each AMBA access (read only)

4 Memory exception (MEXC) - ‘1’ if core receives AMBA ERROR response. Updated
after each AMBA access (read only)

3 DMA active (DMAACT) - ‘1’ if core is currently performing a DMA operation.

2 NACK (NACK) - Use NACK instead of clock stretching. See documentation in sec-
tion 61.2.6.

1:0 AMBA access size (HSIZE) - Controls the access size that the core will use for
AMBA accesses. 0: byte, 1: halfword, 2: word. HSIZE = “11” is illegal.

Reset value: 0x02
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for instance, that if HSIZE is “10” (word) the core will perform two word accesses if a master reads
one byte, generates a repeated start condition, and reads one more byte. Between these two accesses
the address will have been automatically increased, so the fist access will be to addressn and the sec-
ond to addressn+4.

The automatic address increment means that it is possible to write data and then immediately read the
data located at the next memory position. As an example, the following sequence will write a word to
address 0 and then read a word from address 4:

1. Generate START condition

2. Send I2C memory address with the R/W bit set to ‘0’.

3. Send four byte AMBA address, all zero.

4. Send four bytes to write to the specified address

5. Generate (repeated) START condition

6. Send I2C memory address with the R/W bit set to ‘0’.

7. Read the required number of bytes and lack the last byte

8. Generate stop condition

The core will not mask any address bits. Therefore it is important that the I2C master respects AMBA
rules when performing halfword and word accesses. A halfword access must be aligned on a two byte
address boundary (least significant bit of address must be zero) and a word access must be aligned on
a four byte boundary (two least significant address bits must be zero).

The core can be configured to generate interrupt requests when an AHB access is performed if the
core is implemented with the APB register interface, see the APB register documentation for details.

61.2.6 Clock stretching or NACK mode

The core has two main modes of operation for AMBA accesses. In one mode the core will use clock
stretching while performing an AHB operation and in the other mode the core will not acknowledge
bytes (abort the I2C access) when the core is busy. Clock stretching is the preferred mode of opera-
tion. The NACK mode can be used in scenarios where the I2C master or physical layer does not sup-
port clock stretching. The mode to use is selected via the NACK field in the I2C configuration
register.

When clock stretching is enabled (NACK field is ‘0’) the core will stretch the clock when the slave is
accessed (via the I2C memory address) and the slave is busy processing a transfer. Clock stretching is
also used when a data byte has been transmitted, or received, to keep SCL low until a DMA operation
has completed. In the transmit (AMBA read) case SCL is kept low before the rising edge of the first
byte. In the receive case (AMBA write) the ACK cycle for the previous byte is stretched.

When clock stretching is disabled (NACK field is ‘1’) the core will never stretch the SCL line. If the
core is busy performing DMA when it is addressed, the address will not be acknowledged. If the core
performs consecutive writes and the first write operation has not finished the core will now acknowl-
edge the written byte. If the core performs a read operation and the read DMA operation has not fin-
ished when the core is supposed to deliver data then the core will go to its idle state and not respond to
more accesses until a START condition is generated on the bus. This last part means that the NACK
mode is practically unusable in systems where the AMBA access can take longer than one I2C clock
period. This can be compensated by using a very slow I2C clock.

61.2.7 Memory protection

The core is configured at implementation time to only allow accesses to a specified AHB address
range (which can be the full 4 GiB AMBA address range). If the core has been implemented with the
optional APB register interface then the address range is soft configurable and the reset value is spec-
ified with VHDL generics.
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The VHDL genericsahbaddrhandahbaddrldefine the base address for the allowed area. The VHDL
genericsahbmaskhandahbmaskldefine the size of the area. The generics are used to assign the mem-
ory protection area’s address and mask in the following way:

Protection address, bits 31:16 (protaddr[31:16]): ahbaddrh
Protection address, bits 15:0 (protaddr[15:0]): ahbaddrl
Protection address, bits 31:16 (protmask[31:16]): ahbmaskh
Protection address, bits 15:0 (protmask[15:0]): ahbmaskh

Before the core performs an AMBA access it will perform the check:

(((incoming address) xor (protaddr)) and protmask) /= 0x00000000

If the above expression is true (one or several bits in the incoming address differ from the protection
address, and the corresponding mask bits are set to ‘1’) then the access is inhibited. As an example,
assume thatprotaddr is 0xA0000000 andprotmaskis 0xF0000000. Sinceprotmaskonly has ones in
the most significant nibble, the check above can only be triggered for these bits. The address range of
allowed accessed will thus be 0xA0000000 - 0xAFFFFFFF.

The memory protection check is performed at the time when the core is to perform the AHB access. It
is possible to start a write operation and transmit an illegal address to the core without any errors. If
additional bytes are transmitted (so that a HSIZE access can be made) the core will NACK the byte
that triggers the AHB access.

For a read operation the core will NACK the I2C memory address of the first AHB access of the read
in case the access would be to restricted memory. If consecutive bytes are read from the core and one
of the later accesses lead to restricted memory being accessed, then the core will abort all operations
and enter its idle state. In this case junk data will be returned and there is no way for the core to alert
the master that memory protection has been triggered.

The core will set the configuration register bit PROT if an access is attempted outside the allowed
address range. This bit is updated on each AHB access and will be cleared by an access inside the
allowed range. Note that the (optional) APB status register has a PROT field with a slightly different
behavior.

61.3 Registers

The core can optionally be implemented with an APB interface that provides registers mapped into
APB address space.

Table 867.I2C slave registers

APB address offset Register

0x00 Control register

0x04 Status register

0x08 Protection address register

0x0C Protection mask register

0x10 I2C slave memory address register

0x14 I2C slave configuration address register

Table 868.Control register
31 2 1 0

RESERVED IRQEN EN

31 : 2 RESERVED

1 Interrupt enable (IRQEN) - When this bit is set to ‘1’ the core will generate an interrupt each time
the DMA field in the status register transitions from ‘0’ to ‘1’.
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0 Core enable (EN) - When this bit is set to ‘1’ the core is enabled and will respond to I2C accesses.
Otherwise the core will not react to I2C traffic.

Reset value: Implementation dependent

Table 869.Status register
31 3 2 1 0

RESERVED PROT WR DMA

31 : 3 RESERVED

2 Protection triggered (PROT) - Set to ‘1’ if an access has triggered the memory protection. This bit
will remain set until cleared by writing ‘1’ to this position. Note that the other fields in this register
will be updated on each AHB access while the PROT bit will remain at ‘1’ once set.

1 Write access (WR) - Last AHB access performed was a write access. This bit is read only.

0 Direct Memory Access (DMA) - This bit gets set to ‘1’ each time the core attempts to perform an
AHB access. By setting the IRQEN field in the control register this condition can generate an inter-
rupt. This bit can be cleared by software by writing ‘1’ to this position.

Reset value: 0x00000000

Table 870.Protection address register
31 0

PROTADDR

31 : 0 Protection address (PROTADDR) - Defines the base address for the memory area where the core is
allowed to make accesses.

Reset value: Implementation dependent

Table 871.Protection mask register
31 3 2 1 0

PROTMASK

31 : 0 Protection mask (PROTMASK) - Selects which bits in the Protection address register that are used
to define the protected memory area.

Reset value: Implementation dependent

Table 872.I2C slave memory address register
31 7 6 0

RESERVED I2CSLVADDR

31 : 7 RESERVED

6 : 0 I2C slave memory address (I2CSLVADDR) - Address that slave responds to for AHB memory
accesses

Reset value: Implementation dependent

Table 873.I2C slave configuration address register
31 7 6 0

RESERVED I2CCFGADDR

Table 868.Control register
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61.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00B. For a description
of vendor and device identifiers see the GRLIB IP Library User’s Manual.

61.5 Configuration options

Table 874 shows the configuration options of the core (VHDL generics). Two different top level ent-
ites for the core is available. One with the optional APB interface (i2c2ahb_apb) and one without the
APB interface (i2c2ahb). The entity without the APB interface has fewer generics as indicated in the
table below.

31 : 7 RESERVED

6 : 0 I2C slave configuration address (I2CCFGADDR) - Address that slave responds to for configuration
register accesses.

Reset value: Implementation dependent

Table 874.Configuration options

Generic name Function Allowed range Default

hindex AHB master index 0 - NAHBMST 0

ahbaddrh Defines bits 31:16 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbaddrl Defines bits 15:0 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbmaskh Defines bits 31:16 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

ahbmaskl Defines bits 15:0 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

resen Reset value for core enable bit (only available on the
i2c2ahb_apb entity).

0 - 1 0

pindex APB slave index (only available on the i2c2ahb_apb
entity).

0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR (only available on the
i2c2ahb_apb entity).

0 - 16#FFF# 0

pmask MASK field of the APB BAR (only available on the
i2c2ahb_apb entity).

0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by APB interface (only available on
the i2c2ahb_apb entity).

0 - NAHBIRQ-1 0

i2caddr The slave’s (initial) I2C address. i2caddr specified the
core’s I2C memory address and (i2caddr+1) will be the
cores I2C configuration address.

0 - 126 0

oepol Output enable polarity 0 - 1 0

Table 873.I2C slave configuration address register
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61.6 Signal descriptions

Table 875 shows the interface signals of the core (VHDL ports).

61.7 Library dependencies

Table 876 shows the libraries used when instantiating the core (VHDL libraries).

61.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

filter Low-pass filter length. This generic should specify, in
number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.

2 - 512 2

Table 875.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low**

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low**

ENABLE Output High when core is enabled, low otherwise. High

* see GRLIB IP Library User’s Manual
** depends on value of OEPOL VHDL generic.

Table 876.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER I2C Component, signals Component declaration, I2C signal definitions

Table 874.Configuration options

Generic name Function Allowed range Default
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library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2c2ahb_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;

    -- I2C signals
iic_scl : inout std_ulogic;
iic_sda : inout std_ulogic

    );
end;

architecture rtl of i2c2ahb_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector;

signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector;

  -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;

begin

  -- AMBA Components are instantiated here
  ...

 -- NOTE: There are also wrappers for the top-level entities that do not make use of VHDL
-- records. These wrappers are called i2c2ahb_apb_gen and i2c2ahb_gen.

  -- I2C-slave, with APB interface
 i2c2ahb0 : i2c2ahb_apb

    generic map (
      hindex   => 1,
      ahbaddrh => ahbaddrh,
      ahbaddrl => ahbaddrl,
      ahbmaskh => ahbmaskh,
      ahbmaskl => ahbmaskl,
      resen    => 1,
      pindex   => 1,
      paddr    => 1,
      pmask    => 16#fff#,
      i2caddr  => i2caddr,
      oepol    => 0,
      filter   => I2C_FILTER)
    port map (rstn, clk, ahbmi, ahbmo(1), apbi, apbo(1),
              i2ci, i2co);

scl_pad : iopad generic map (tech => padtech)
    port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);

sda_pad : iopad generic map (tech => padtech)
 port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);

end;
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62 I2CMST - I2C-master

62.1 Overview

The I2C-master core is a modified version of the OpenCores I2C-Master with an AMBA APB inter-
face. The core is compatible with Philips I2C standard and supports 7- and 10-bit addressing. Stan-
dard-mode (100 kb/s) and Fast-mode (400 kb/s) operation are supported directly. External pull-up
resistors must be supplied for both bus lines.

62.2 Operation

62.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).

A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.

Figure 180 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. The bit following the slave address is the R/W bit
which determines the direction of the data transfer. In this case the R/W bit is zero indicating a write
operation. After the master has transmitted the address and the R/W bit it releases the SDA line. The
receiver pulls the SDA line low to acknowledge the transfer. If the receiver does not acknowledge the
transfer, the master may generate a STOP condition to abort the transfer or start a new transfer by gen-
erating a repeated START condition.

After the first byte has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data
byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer. Section 62.2.3 contains three more example transfers from the perspec-
tive of a software driver.

Figure 179. Block diagram
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If the data bitrate is too high for a slave device, it may stretch the clock period by keeping SCL low
after the master has driven SCL low.

62.2.2 Clock generation

The core uses the prescale register to determine the frequency of the SCL clock line and of the 5*SCL
clock that the core uses internally. To calculate the prescale value use the formula:

The SCLfrequencyis 100 kHz for Standard-mode operation (100 kb/s) and 400 kHz for Fast mode
operation. To use the core in Standard-mode in a system with a 60 MHz clock driving the AMBA bus
the required prescale value is:

Note that the prescale register should only be changed when the core is disabled. The minimum rec-
ommended prescale value is 3 due to synchronization issues. This limits the minimum system fre-
quency to 2 MHz for operation in Standard-mode (to be able to generate a 100 kHz SCL clock).
However, a system frequency of 2 MHz will not allow the implementation fulfill the 100 ns minimum
requirement for data setup time (required for Fast-mode operation). For compatibility with the I2C
Specification, in terms of minimum required data setup time, the minimum allowed system frequency
is 20 MHz due to synchronization issues. If the core is run at lower system frequencies, care should be
taken so that data from devices is stable on the bus one system clock period before the rising edge of
SCL.

62.2.3 Software operational model

The core is initialized by writing an appropriate value to the clock prescale register and then setting
the enable (EN) bit in the control register. Interrupts are enabled via the interrupt enable (IEN) bit in
the control register.

To write a byte to a slave the I2C-master must generate a START condition and send the slave address
with the R/W bit set to ‘0’. After the slave has acknowledged the address, the master transmits the

Figure 180. Complete I2C data transfer
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data, waits for an acknowledge and generates a STOP condition. The sequence below instructs the
core to perform a write:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.

2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt, or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the slave-data to the transmit register.

6. Send the data to the slave and generate a stop condition by setting STO and WR in the com-
mand register.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Verify that the slave has acknowledged the data by reading the RxACK bit in the status regis-
ter. RxACK should not be set.

To read a byte from an I2C-connected memory much of the sequence above is repeated. The data writ-
ten in this case is the memory location on the I2C slave. After the address has been written the master
generates a repeated START condition and reads the data from the slave. The sequence that software
should perform to read from a memory device:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.

2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the memory location to be read from the slave to the transmit register.

6. Set the WR bit in the command register. Note that a STOP condition is not generated here.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Read RxACK bit in the status register. RxACK should be low.

9. Address the I2C-slave again by writing its left-shifted address into the transmit register. Set the
least significant bit of the transmit register (R/W) to ‘1’ to read from the slave.

10. Set the STA and WR bits in the command register to generate a repeated START condition.

11. Wait for interrupt, or for TIP bit in the status register to go low.

12. Read RxACK bit in the status register. The slave should acknowledge the transfer.

13. Prepare to receive the data read from the I2C-connected memory. Set bits RD, ACK and STO
on the command register. Setting the ACK bit NAKs the received data and signifies the end of the
transfer.

14. Wait for interrupt, or for TIP in the status register to go low.

15. The received data can now be read from the receive register.

To perform sequential reads the master can iterate over steps 13 - 15 by not setting the ACK and STO
bits in step 13. To end the sequential reads the ACK and STO bits are set. Consult the documentation
of the I2C-slave to see if sequential reads are supported.
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The final sequence illustrates how to write one byte to an I2C-slave which requires addressing. First
the slave is addressed and the memory location on the slave is transmitted. After the slave has
acknowledged the memory location the data to be written is transmitted without a generating a new
START condition:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.

2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the memory location to be written from the slave to the transmit register.

6. Set the WR bit in the command register.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Read RxACK bit in the status register. RxACK should be low.

9. Write the data byte to the transmit register.

10. Set WR and STO in the command register to send the data byte and then generate a STOP
condition.

11. Wait for interrupt, or for TIP bit in the status register to go low.

12. Check RxACK bit in the status register. If the write succeeded the slave should acknowledge
the data byte transfer.

The example sequences presented here can be generally applied to I2C-slaves. However, some devices
may deviate from the protocol above, please consult the documentation of the I2C-slave in question.
Note that a software driver should also monitor the arbitration lost (AL) bit in the status register.

62.2.4 Signal filters

The core is configured at implementation to use one of two possible filter strategies: a static filter or a
dynamic filter, the selection between the two options is made with thedynfilt VHDL generic.

With a static filter (dynfilt = 0) the core will implement low-pass filters using simple shift registers.
The number of shift registers is determined by the VHDL genericfilter. When all bits in a shift regis-
ter are equal, the core will consider the state of the input signal (SCL or SDA) to have changed. An
appropriate value for the filter generic is calculated via:

To disregard any pulse that is 50 ns or shorter in a system with a system frequency of 54 MHz thefil-
ter generic should be set to: (50 ns) / ((1/(54 MHz)) + 1 = 3.7. The value from this calculation should
always be rounded up. In other words an appropriate filter length for a 54 MHz system is 4.

With a dynamic filter (dynfilt = 1) the VHDL genericfilter determines the number of bits imple-
mented in a counter that controls the sample window. The reload value for the counter can then be
specified by software by writing to the core’s dynamic filter register available via the APB interface.
The number of bits required for the dynamic counter is calculated using (where system clock period is
the shortest system clock period that the design will use):

filter
pulsetime

systemclockperiod
-------------------------------------------------- 1+=

filter 2 pulsetime
systemclockperiod
-------------------------------------------------- 1+

 
 
 

log=
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When using dynamic filtering, the core will ignore all pulses shorter than the system clock period
multiplied with the value of the FILT field in the core’s Dynamic Filter register and may also ignore
pulses that are shorter than 2 * FILT * (system clock period) - 1.

62.3 Registers

The core is programmed through registers mapped into APB address space.

Table 877.I2C-master registers

APB address offset Register

0x00 Clock prescale register

0x04 Control register

0x08 Transmit register*

0x08 Receive register**

0x0C Command register*

0x0C Status register**

0x10 Dynamic filter register***

* Write only

** Read only

*** Only available on some implementations

Table 878.I2C-master Clock prescale register
31 16 15 7 6 5 4 3 2 1 0

RESERVED Clock prescale

31 : 16 RESERVED

15:0 Clock prescale - Value is used to prescale the SCL clock line. Do not change the value of this register
unless the EN field of the control register is set to ‘0’. The minimum recommended value of this reg-

ister is 0x0003. Lower values may cause the master to violate I2C timing requirements due to syn-
chronization issues.

Table 879.I2C-master control register
31 8 7 6 5 0

RESERVED EN IEN RESERVED

31 : 8 RESERVED

7 Enable (EN) - Enable I2C core. The core is enabled when this bit is set to ‘1’.

6 Interrupt enable (IEN) - When this bit is set to ‘1’ the core will generate interrupts upon transfer
completion.

5:0 RESERVED

Table 880.I2C-master transmit register
31 8 7 1 0

RESERVED TDATA RW

31 : 8 RESERVED

7:1 Transmit data (TDATA) - Most significant bits of next byte to transmit via I2C

0 Read/Write (RW) - In a data transfer this is the data’s least significant bit. In a slave address transfer
this is the RW bit. ‘1’ reads from the slave and ‘0’ writes to the slave.
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Table 881.I2C-master receive register
31 8 7 0

RESERVED RDATA

31 : 8 RESERVED

7:0 Receive data (RDATA) - Last byte received over I2C-bus.

Table 882.I2C-master command register
31 8 7 6 5 4 3 2 1 0

RESERVED STA STO RD WR ACK RESERVED IACK

31 : 8 RESERVED

7 Start (STA) - Generate START condition on I2C-bus. This bit is also used to generate repeated
START conditions.

6 Stop (STO) - Generate STOP condition

5 Read (RD) - Read from slave

4 Write (WR) - Write to slave

3 Acknowledge (ACK) - Used when acting as a receiver. ‘0’ sends an ACK, ‘1’ sends a NACK.

2:1 RESERVED

0 Interrupt acknowledge (IACK) - Clears interrupt flag (IF) in status register.

Table 883.I2C-master status register
31 8 7 6 5 4 3 2 1 0

RESERVED RxACK BUSY AL RESERVED TIP IF

31 : 8 RESERVED

7 Receive acknowledge (RxACK) - Received acknowledge from slave. ‘1’ when no acknowledge is
received, ‘0’ when slave has acked the transfer.

6 I2C-bus busy (BUSY) - This bit is set to ‘1’ when a start signal is detected and reset to ‘0’ when a
stop signal is detected.

5 Arbitration lost (AL) - Set to ‘1’ when the core has lost arbitration. This happens when a stop signal
is detected but not requested or when the master drives SDA high but SDA is low.

4:2 RESERVED

1 Transfer in progress (TIP) - ‘1’ when transferring data and ‘0’ when the transfer is complete. This bit
is also set when the core will generate a STOP condition.

0 Interrupt flag (IF) - This bit is set when a byte transfer has been completed and when arbitration is
lost. If IEN in the control register is set an interrupt will be generated. New interrupts will ge gener-
ated even if this bit has not been cleared.

Table 884.I2C-master dynamic filter register
31 x x-1 0

RESERVED FILT

31 : x RESERVED

x-1 : 0 Dynamic filter reload value (FILT) - This field sets the reload value for the dynamic filter counter.
The core will ignore all pulses on the bus shorter than FILT * (system clock period) and may also
ignore pulses shorter than 2 * FILT * (system clock period) - 1. The reset value of this register is all
‘1’.

This register is not available in all implementations, and only for core revisions higher than two (the
core’s version number can be read from the plug’n’play area). When implemented, the number of
bits in the FILT field is implementation dependent. Software can probe the precense of this register
by writing 0x1 to the register location and reading back the value. If the read value is non-zero then
the core has been implemented with a dynamic filter.
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62.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x028. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

62.5 Configuration options

Table 885 shows the configuration options of the core (VHDL generics).

Table 885.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by I2C-master 0 - NAHBIRQ-1 0

oepol Output enable polarity 0 - 1 0

filter Low-pass filter length. This generic should specify, in
number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.

Note that the value of this generic changes meaning if
the dynfilt generic described below is non-zero. See
description below.

2 - 512 2

dynfilt Dynamic low-pass filter length. If this generic is non-
zero the core will be implemented with a configurable
filter. If dynfilt is non-zero the filter generic, described
above, specifies how many bits that will be implemented
for the dynamic filter counter.

0 - 1 0
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62.6 Signal descriptions

Table 886 shows the interface signals of the core (VHDL ports).

62.7 Library dependencies

Table 887 shows the libraries used when instantiating the core (VHDL libraries).

62.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2c_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;

    -- I2C signals
iic_scl : inout std_ulogic;
iic_sda : inout std_ulogic

    );
end;

architecture rtl of i2c_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

Table 886.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low

* see GRLIB IP Library User’s Manual

Table 887.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER I2C Component, signals Component declaration, I2C signal definitions
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  -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- I2C-master
 i2c0 : i2cmst

    generic map (pindex => 12, paddr => 12, pmask => 16#FFF#,
 pirq => 8, filter => (BUS_FREQ_in_kHz*5+50000)/100000+1)

    port map (rstn, clkm, apbi, apbo(12), i2ci, i2co);

-- Using bi-directional pads:
 i2c_scl_pad : iopad generic map (tech => padtech)

 port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);
 i2c_sda_pad : iopad generic map (tech => padtech)

 port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);
 -- Note: Some designs may want to use a uni-directional pad for the clock. In this case the
 -- the clock should have a on-chip feedback like: i2ci.scl <= i2co.scloen (for OEPOL = 0)

-- This feedback connection should have the same delay as i2co.sdaoen to i2ci.sda
end;
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63 I2CSLV - I2C slave

63.1 Overview

The I2C slave core is a simple I2C slave that provides a link between the I2C bus and the AMBA APB.
The core is compatible with Philips I2C standard and supports 7- and 10-bit addressing with an
optionally software programmable address. Standard-mode (100 kb/s) and Fast-mode (400 kb/s) oper-
ation are supported directly. External pull-up resistors must be supplied for both bus lines.

GRLIB also contains another I2C slave core that has DMA capabilities, see the I2C2AHB core docu-
mentation for details.

63.2 Operation

63.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).

A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.

Figure 182 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. I2C also supports 10-bit addresses, which are dis-
cussed briefly below. The bit following the slave address is the R/W bit which determines the direc-
tion of the data transfer. In this case the R/W bit is zero indicating a write operation. After the master
has transmitted the address and the R/W bit it releases the SDA line. The receiver pulls the SDA line
low to acknowledge the transfer. If the receiver does not acknowledge the transfer, the master may
generate a STOP condition to abort the transfer or start a new transfer by generating a repeated
START condition.

After the address has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data

Figure 181. Block diagram
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byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer.

An I2C slave may also support 10-bit addressing. In this case the master first transmits a pattern of five
reserved bits followed by the two first bits of the 10-bit address and the R/W bit set to ‘0’. The next
byte contains the remaining bits of the 10-bit address. If the transfer is a write operation the master
then transmits data to the slave. To perform a read operation the master generates a repeated START
condition and repeats the first part of the 10-bit address phase with the R/W bit set to ‘1’.

If the data bitrate is too high for a slave device or if the slave needs time to process data, it may stretch
the clock period by keeping SCL low after the master has driven SCL low.

63.2.2 Slave addressing

The core’s addressing support is implementation dependent. The core may have a programmable
address and may support 10-bit addresses. If the core has support for 10-bit addressing, the TBA bit of
the Slave address register will be set to ‘1’ after reset. If the core’s address is programmable this bit is
writable and is used by the core to determine if it should listen to a 7- or 10-bit address.

Software can determine the addressing characteristics of the core by writing and reading the Slave
address register. The core supports 10-bit addresses if the TBA bit is, or can be set, to ‘1’. The core
has a software programmable address if the SLVADDR field in the same register can be changed.

63.2.3 System clock requirements and sampling

The core samples the incoming I2C SCL clock and does not introduce any additional clock domains
into the system. Both the SCL and SDA lines first pass through two stage synchronizers and are then
filtered with a low pass filter consisting of four registers.

START and STOP conditions are detected if the SDA line, while SCL is high, is at one value for two
system clock cycles, toggles and keeps the new level for two system clock cycles.

The synchronizers and filters constrain the minimum system frequency. The core requires the SCL
signal to be stable for at least four system clock cycles before the core accepts the SCL value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. Therefore it takes the core over eight
system clock cycles to discover a transition on SCL. To use the slave in Standard-mode operation at
100 kHz the recommended minimum system frequency is 2 MHz. For Fast-mode operation at 400
kHz the recommended minimum system frequency is 6 MHz.

Figure 182. Complete I2C data transfer
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63.2.4 Operational model

The core has four main modes of operation and is configured to use one of these modes via the Con-
trol register bits Receive Mode (RMOD) and Transmit Mode (TMOD). The mode setting controls the
core’s behavior after a byte has been received or transmitted.

The core will always NAK a received byte if the receive register is full when the whole byte is
received. If the receive register is free the value of RMOD determines if the core should continue to
listen to the bus for the master’s next action or if the core should drive SCL low to force the master
into a wait state. If the value of the RMOD field is ‘0’ the core will listen for the master’s next action.
If the value of the RMOD field is ‘1’ the core will drive SCL low until the Receive register has been
read and the Status register bit Byte Received (REC) has been cleared. Note that the core has not
accepted a byte if it does not acknowledge the byte.

When the core receives a read request it evaluates the Transmit Valid (TV) bit in the Control register.
If the Transmit Valid bit is set the core will acknowledge the address and proceed to transmit the data
held in the Transmit register. After a byte has been transmitted the core assigns the value of the Con-
trol register bit Transmit Always Valid (TAV) to the Transmit Valid (TV) bit. This mechanism allows
the same byte to be sent on all read requests without software intervention. The value of the Transmit
Mode (TMOD) bit determines how the core acts after a byte has been transmitted and the master has
acknowledged the byte, if the master NAKs the transmitted byte the transfer has ended and the core
goes into an idle state. If TMOD is set to ‘0’ when the master acknowledges a byte the core will con-
tinue to listen to the bus and wait for the master’s next action. If the master continues with a sequential
read operation the core will respond to all subsequent requests with the byte located in the Transmit
Register. If TMOD is ‘1’ the core will drive SCL low after a master has acknowledged the transmitted
byte. SCL will be driven low until the Transmit Valid bit in the control register is set to ‘1’. Note that
if the Transmit Always Valid (TAV) bit is set to ‘1’ the Transmit Valid bit will immediately be set and
the core will have show the same behavior for both Transmit modes.

When operating in Receive or Transmit Mode ‘1’, the bus will be blocked by the core until software
has acknowledged the transmitted or received byte. This may have a negative impact on bus perfor-
mance and it also affects single byte transfers since the master is prevented to generate STOP or
repeated START conditions when SCL is driven low by the core.

The core reports three types of events via the Status register. When the core NAKs a received byte, or
its address in a read transfer, the NAK bit in the Status register will be set. When a byte is successfully
received the core asserts the Byte Received (REC) bit. After transmission of a byte, the Byte Trans-
mitted (TRA) bit is asserted. These three bits can be used as interrupt sources by setting the corre-
sponding bits in the Mask register.

63.3 Registers

The core is programmed through registers mapped into APB address space.

Table 888.I2C slave registers

APB address offset Register

0x00 Slave address register

0x04 Control register

0x08 Status register

0x0C Mask register

0x10 Receive register

0x14 Transmit register
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Table 889.Slave address register
31 30 ALEN ALEN-1 0

TBA RESERVED SLVADDR

31 Ten-bit Address (TBA) - When this bit is set the core will interpret the value in the SLVADDR field
as a 10-bit address. If the core has 10-bit address support this bit will have the reset value ‘1’.

30 : ALEN RESERVED

(ALEN-1):0 Slave address (SLVADDR) - Contains the slave I2C address. The width of the slave address field,
ALEN, is 7 bits (6:0) if the core only has support for 7-bit addresses. If the core has support for 10-
bit addressing the width of SLVADDR is 10 bits. Depending on the hardware configuration this reg-
ister may be read only. The core checks the length of the programmed address and will function with
7-bit addresses even if it has support for 10-bit addresses.

I2C addresses can be allocated by NXP, please see the link in the core’s overview section.

Reset value: Implementation dependent

Table 890.Control register
31 5 4 3 2 1 0

RESERVED RMOD TMOD TV TAV EN

31 : 5 RESERVED

4 Receive Mode (RMOD) - Selects how the core handles writes:

‘0’: The slave accepts one byte and NAKs all other transfers until software has acknowledged the
received byte by reading the Receive register.

‘1’: The slave accepts one byte and keeps SCL low until software has acknowledged the received
byte by reading the Receive register.

3 Transmit Mode (TMOD) - Selects how the core handles reads:

‘0’: The slave transmits the same byte to all if the master requests more than one byte in the transfer.
The slave then NAKs all read requests as long as the Transmit Valid (TV) bit is unset.

‘1’: The slave transmits one byte and then keeps SCL low until software has acknowledged that the
byte has been transmitted by setting the Transmit Valid (TV) bit.

2 Transmit Valid (TV) - Software sets this bit to indicate that the data in the transmit register is valid.
The core automatically resets this bit when the byte has been transmitted. When this bit is ‘0’ the
core will either NAK or insert wait states on incoming read requests, depending on the Transmit
Mode (TMOD).

1 Transmit Always Valid (TAV) - When this bit is set, the core will not clear the Transmit Valid (TV)
bit when a byte has been transmitted.

0 Enable core (EN) - Enables core. When this bit is set to ‘1’ the core will react to requests to the
address set in the Slave address register. If this bit is ‘0’ the core will keep both SCL and SDA inputs
in Hi-Z state.

Reset value: 0b000000000000000000000000000UUUU0, where U is undefined.

Table 891.Status register
31 3 2 1 0

RESERVED REC TRA NAK

31 : 3 RESERVED

2 Byte Received (REC) - This bit is set to ‘1’ when the core accepts a byte and is automatically cleared
when the Receive register has been read.

1 Byte Transmitted (TRA) - This bit is set to ‘1’ when the core has transmitted a byte and is cleared by
writing ‘1’ to this position. Writes of ‘0’ have no effect.

0 NAK Response (NAK) - This bit is set to ‘1’ when the core has responded with NAK to a read or
write request. This bit does not get set to ‘1’ when the core responds with a NAK to an address that
does not match the cores address. This bit is cleared by writing ‘1’ to this position, writes of ‘0’ have
no effect.

Reset value: 0x00000000
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63.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x03E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 892.Mask register
31 3 2 1 0

RESERVED RECE TRAE NAKE

31 : 3 RESERVED

2 Byte Received Enable (RECE) - When this bit is set the core will generate an interrupt when bit 2 in
the Status register gets set.

1 Byte Transmitted Enable (TRAE) - When this bit is set the core will generate an interrupt when bit 1
in the Status register gets set.

0 NAK Response Enable (NAKE) - When this bit is set the core will generate an interrupt when bit 0
in the Status register gets set.

Reset value: Undefined

Table 893.Receive register
31 8 7 0

RESERVED RECBYTE

31 : 8 RESERVED

7:0 Received Byte (RECBYTE) - Last byte received from master. This field only contains valid data if
the Byte received (REC) bit in the status register has been set.

Reset value: Undefined

Table 894.Transmit register
31 8 8 7 0

RESERVED TRABYTE

31 : 8 RESERVED

7:0 Transmit Byte (TRABYTE) - Byte to transmit on the next master read request.

Reset value: Undefined
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63.5 Configuration options

Table 895 shows the configuration options of the core (VHDL generics).

63.6 Signal descriptions

Table 896 shows the interface signals of the core (VHDL ports).

Table 895.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by I2C slave 0 - NAHBIRQ-1 0

hardaddr If this generic is set to 1 the core uses the value of
generic i2caddr as the hard coded address. If hardaddr is
set to 0 the core’s address can be changed via the Slave
address register.

0 - 1 0

tenbit If this generic is set to 1 the core will support 10-bit
addresses. Note that the core can still be configured to
use a 7-bit address.

0 - 1 0

i2caddr The slave’s (initial) I2C address. 0 - 1023 0

oepol Output enable polarity 0 - 1 0

filter Low-pass filter length. This generic should specify, in
number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.

2 - 512 2

Table 896.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low**

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low**

ENABLE Output High when core is enabled, low otherwise High

* see GRLIB IP Library User’s Manual
** Depends on OEPOL VHDL generic
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63.7 Library dependencies

Table 897 shows the libraries used when instantiating the core (VHDL libraries).

63.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2cslv_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;

    -- I2C signals
iic_scl : inout std_ulogic;
iic_sda : inout std_ulogic

    );
end;

architecture rtl of i2cslv_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- I2C-slave
i2cslv0 : i2cslv

    generic map (pindex => 1, paddr => 1, pmask => 16#FFF#, pirq => 1,
                 hardaddr => 0, tenbit => 1, i2caddr => 16#50#)
    port map (rstn, clk, apbi, apbo(1), i2ci, i2co);
  i2cslv0_scl_pad : iopad generic map (tech => padtech)
    port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);
  i2cslv0_sda_pad : iopad generic map (tech => padtech)
    port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);
end;

Table 897.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER I2C Component, signals Component declaration, I2C signal definitions
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64 IRQMP - Multiprocessor Interrupt Controller

64.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to the AMBA bus as an APB slave, and monitors the com-
bined interrupt signals.

The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority to the processor. In
multiprocessor systems, the interrupts are propagated to all processors.

64.2 Operation

64.2.1 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]). When any
of these lines are asserted high, the corresponding bit in the interrupt pending register is set. The pend-
ing bits will stay set even if the PIRQ line is de-asserted, until cleared by software or by an interrupt
acknowledge from the processor.

Each interrupt can be assigned to one of two levels (0 or 1) as programmed in the interrupt level regis-
ter. Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with inter-
rupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will
be forwarded to the processor. If no unmasked pending interrupt exists on level 1, then the highest
unmasked interrupt from level 0 will be forwarded. PIRQ[31:16] are not used by the IRQMP core.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

MP IRQ
Processor 0 Processor 1

BUS
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 183. LEON multiprocessor system with Multiprocessor Interrupt controller

AMBA BUS
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When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the pro-
cessor acknowledgement will clear the force bit rather than the pending bit. After reset, the interrupt
mask register is set to all zeros while the remaining control registers are undefined. Note that interrupt
15 cannot be maskable by the LEON processor and should be used with care - most operating systems
do not safely handle this interrupt.

64.2.2 Extended interrupts

The AHB/APB interrupt consist of 32 signals ([31:0]), while the IRQMP only uses lines 1 - 15 in the
nominal mode. To use the additional 16 interrupt lines (16-31), extended interrupt handling can be
enabled by setting the VHDL genericeirq to a value between 1 - 15. The interrupt lines 16 - 31 will
then also be handled by the interrupt controller, and the interrupt pending and mask registers will be
extended to 32 bits. Since the processor only has 15 interrupt levels (1 - 15), the extended interrupts
will generate one of the regular interrupts, indicated by the value of theeirq generic. When the inter-
rupt is taken and acknowledged by the processor, the regular interrupt (eirq) and the extended inter-
rupt pending bits are automatically cleared. The extended interrupt acknowledge register will identify
which extended interrupt that was most recently acknowledged. This register can be used by software
to invoke the appropriate interrupt handler for the extended interrupts.

64.2.3 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is halted (‘1’) or running (‘0’). A halted processor can be reset
and restarted by writing a ‘1’ to its status field. After reset, all processors except processor 0 are
halted. When the system is properly initialized, processor 0 can start the remaining processors by
writing to their STATUS bits.

Figure 184. Interrupt controller block diagram
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64.2.4 Irq broadcasting

The Broadcast Register is activated when the genericncpuis > 1. An incoming irq that has its bit set
in the Broadcast Register is propagated to the force register ofall CPUs rather than only to the Pend-
ing Register. This can be used to implement a timer that fires to all CPUs with that same irq.

64.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depends on the number of processor in the multiprocessor system.

Table 898.Interrupt Controller registers

APB address offset Register

0x00 Interrupt level register

0x04 Interrupt pending register

0x08 Interrupt force register (NCPU = 0)

0x0C Interrupt clear register

0x10 Multiprocessor status register

0x14 Broadcast register

0x40 Processor interrupt mask register

0x44 Processor 1 interrupt mask register

0x40 + 4 *n Processorn interrupt mask register

0x80 Processor interrupt force register

0x84 Processor 1 interrupt force register

0x80 + 4 *n Processorn interrupt force register

0xC0 Processor extended interrupt acknowledge register

0xC4 Processor 1 extended interrupt acknowledge register

0xC0 + 4 *n Processorn extended interrupt acknowledge register

Table 899.Interrupt Level Register
31 16 15 1 0

RESERVED IL[15:1] R

31:16 Reserved

15:1 Interrupt Level n (IL[n]) - Interrupt level for interrupt n

0 Reserved

Table 900.Interrupt Pending Register
31 16 15 1 0

EIP[31:16] IP[15:1] R

31:16 Extended Interrupt Pending n (EIP[n])

15:1 Interrupt Pending n (IP[n]) - Interrupt pending for interrupt n

0 Reserved
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Table 901.Interrupt Force Register (NCPU = 0)
31 16 15 1 0

RESERVED IF[15:1] R

31:16 Reserved

15:1 Interrupt Force n (IF[n]) - Force interrupt nr n.

0 Reserved

Table 902.Interrupt Clear Register
31 16 15 1 0

EIC[31:16] IC[15:1] R

31:16 Extended Interrupt Clear n (EIC[n])

15:1 Interrupt Clear n (IC[n]) - Writing ‘1’ to IC[n] will clear interrupt n

0 Reserved

Table 903.Multiprocessor Status Register
31 28 27 26 20 19 16 15 0

NCPU BA RESERVED EIRQ STATUS[15:0]

31:28 Number of CPUs (NCPU) - Number of CPUs in the system - 1

27 Broadcast Available (BA) - Set to ‘1’ if NCPU > 0.

26:20 Reserved

19:16 Extended IRQ (EIRQ) - Interrupt number (1 - 15) used for extended interrupts. Fixed to 0 if
extended interrupts are disabled.

15:0 Power-down status of CPU[n] (STATUS[n]) - ‘1’ = power-down, ‘0’ = running. Write STATUS[n]
with ‘1’ to start processor n.

Table 904.Broadcast Register (NCPU > 0)
31 16 15 1 0

RESERVED BM15:1] R

31:16 Reserved

15:1 Broadcast Mask n (BM[n]) - If BM[n] = ‘1’ then interrupt n is broadcasted (written to the Force Reg-
ister of all CPUs), otherwise standard semantic applies (Pending register)

0 Reserved

Table 905.Processor Interrupt Mask Register
31 16 15 1 0

EIM[31:16] IM15:1] R

31:16 Extended Interrupt Mask n (EIC[n]) - Interrupt mask for extended interrupts

15:1 Interrupt Mask n (IM[n]) - If IM[n] = ‘0’ then interrupt n is masked, otherwise it is enabled.

0 Reserved



AEROFLEX GAISLER 713 GRIP

64.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

64.5 Configuration options

Table 908 shows the configuration options of the core (VHDL generics).

Table 906.Processor Interrupt Force Register (NCPU > 0)
31 17 16 15 1 0

IFC[15:1] R IF15:1] R

31:17 Interrupt Force Clear n (IFC[n]) - Interrupt force clear for interrupt n

16 Reserved

15:1 Interrupt Force n (IF[n]) - Force interrupt nr n

0 Reserved

Table 907.Extended Interrupt Acknowledge Register
31 5 4 0

RESERVED EID[4:0]

31:5 Reserved

4:0 Extended interrupt ID (EID) - ID (16-31) of the most recent acknowledged extended interrupt.

If this field is 0, and support for extended interrupts exist, the last assertion of interrupteirq was not
the result of an extended interrupt being asserted. If interrupteirq is forced, or asserted, this field will
be cleared unless one, or more, of the interrupts 31 - 16 are enabled and set in the pending register.

Table 908.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) that will be
used to access the interrupt controller

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

ncpu Number of processors in multiprocessor system 1 to 16 1

eirq Enable extended interrupts 1 - 15 0
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64.6 Signal descriptions

Table 909 shows the interface signals of the core (VHDL ports).

64.7 Library dependencies

Table 910 shows libraries that should be used when instantiating the core.

64.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqmp_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

Table 909.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI[n] INTACK Input Processorn Interrupt acknowledge High

IRL[3:0] Processorn interrupt level High

PWD Unused -

FPEN Unused -

IDLE Unused -

IRQO[n] IRL[3:0] Output Processorn Input interrupt level High

RST Reset power-down and error mode of processorn High

RUN Start processorn after reset (SMP systems only) High

RSTVEC[31:12] Always zero -

IACT Always low -

INDEX[3:0] CPU index -

HRDRST Always low -

* see GRLIB IP Library User’s Manual

Table 910.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals, component Signals and component declaration
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architecture rtl of irqmp_ex is
  constant NCPU : integer := 4;

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  signal ahbsi : ahb_slv_in_type;

  -- GP Timer Unit input signals
  signal irqi   : irq_in_vector(0 to NCPU-1);
  signal irqo   : irq_out_vector(0 to NCPU-1);

  -- LEON3 signals
  signal leon3i : l3_in_vector(0 to NCPU-1);
  signal leon3o : l3_out_vector(0 to NCPU-1);

begin

  -- 4 LEON3 processors are instantiated here
  cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s generic map (hindex => i)
    port map (clk, rstn, ahbmi, ahbmo(i), ahbsi,
irqi(i), irqo(i), dbgi(i), dbgo(i));
  end generate;

  -- MP IRQ controller
  irqctrl0 : irqmp
  generic map (pindex => 2, paddr => 2, ncpu => NCPU)
  port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end
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65 IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support

65.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to the AMBA bus as an APB slave, and monitors the com-
bined interrupt signals.

The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority. The interrupt con-
troller is configured at instantiation to implement one or several internal interrupt controllers. Each
processor in a system can then be dynamically routed to one of the internal controllers. This allows
safe Asymmetric Multiprocessing (ASMP) operation. For Symmetric Multiprocessor (SMP) opera-
tion, several processors can be routed to the same internal interrupt controller.

The IRQ(A)MP core is an extended version of the traditional multiprocessor interrupt controller. If a
design does not need to have extended support for Asymmetric Multiprocessing, nor support for inter-
rupt timestamping, it is recommended to use the IRQMP core instead.

65.2 Operation

65.2.1 Support for Asymmetric Multiprocessing

Extended support for Asymmetric Multiprocessing (ASMP) is activated when the VHDL generic
nctrl is > 1. Asymmetric Multiprocessing support means that parts of the interrupt controller are
duplicated in order to provide safe ASMP operation. If the VHDL generic nctrl = 1 the core will have
the same behavior as the normal IRQMP Multiprocessor interrupt controller core. If nctrl > 1, the
core’s register set will be duplicated on 4 KiB address boundaries. The core’s register interface will
also enable the use of three new registers, one Asymmetric Multiprocessing Control Register and two
Interrupt Controller Select Registers.

Software can detect if the controller has been implemented with support for ASMP by reading the
Asymmetric Multiprocessing Control register. If the field NCTRL is 0, the core was not implemented

(A)MP IRQ
Processor 0 Processor 1

BUS
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 185. LEON multiprocessor system with Multiprocessor Interrupt controller

AMBA BUS
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with ASMP extensions. If the value of NCTRL is non-zero, the core has NCTRL+1 sets of registers
with additional underlying functionality. From a software view this is equivalent to having NCTRL
interrupt controllers available and software can configure to which interrupt controller a processor
should connect.

After system reset, all processors are connected to the first interrupt controller accessible at the core’s
base address. Software can then use the Interrupt Controller Select Registers to assign processors to
other (internal) interrupt controllers. After assignments have been made, it is recommended to freeze
the contents of the select registers by writing ‘1’ to the lock bit in the Asymmetric Multiprocessing
Control Register.

When a software driver for the interrupt controller is loaded, the driver should check the Asymmetric
Multiprocessing Control Register and Interrupt Controller Select Registers to determine to which con-
troller the current processor is connected. After software has determined that it has been assigned to
controller n, software should only access the controller with registers at offset 0x1000 * n. Note that
the controllers are enumerated with the first controller being n = 0.

The processor specific registers (mask, force, interrupt acknowledge) can be read from all interrupt
controllers. However the processor specific mask and interrupt acknowledge registers can only be
written from the interrupt controller to which the processor is assigned. This also applies to individual
bits in the Multiprocessor Status Register. Interrupt Force bits in a processor’s Interrupt Force Regis-
ter can only be cleared through the controller to which the processor is assigned. If the ICF field in the
Asymmetric Multiprocessing Control Register is set to ‘1’, all bits in all Interrupt Force Registers can
be set, but not cleared, from all controllers. If the ICF field is ‘0’ the bits in a processor’s Interrupt
Force register can only be set from the controller to which the processor is assigned.

65.2.2 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]). When any
of these lines are asserted high, the corresponding bit in the interrupt pending register is set. The pend-
ing bits will stay set even if the PIRQ line is de-asserted, until cleared by software or by an interrupt
acknowledge from the processor.

Each interrupt can be assigned to one of two levels (0 or 1) as programmed in the interrupt level regis-
ter. Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with inter-
rupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will
be forwarded to the processor. If no unmasked pending interrupt exists on level 1, then the highest
unmasked interrupt from level 0 will be forwarded. PIRQ[31:16] are not used by the IRQMP core.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.
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When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the pro-
cessor acknowledgement will clear the force bit rather than the pending bit. After reset, the interrupt
mask register is set to all zeros while the remaining control registers are undefined. Note that interrupt
15 cannot be maskable by the LEON processor and should be used with care - most operating systems
do not safely handle this interrupt.

65.2.3 Extended interrupts

The AHB/APB interrupt consist of 32 signals ([31:0]), while the IRQMP only uses lines 1 - 15 in the
nominal mode. To use the additional 16 interrupt lines (16-31), extended interrupt handling can be
enabled by setting the VHDL genericeirq to a value between 1 - 15. The interrupt lines 16 - 31 will
then also be handled by the interrupt controller, and the interrupt pending and mask registers will be
extended to 32 bits. Since the processor only has 15 interrupt levels (1 - 15), the extended interrupts
will generate one of the regular interrupts, indicated by the value of theeirq generic. When the inter-
rupt is taken and acknowledged by the processor, the regular interrupt (eirq) and the extended inter-
rupt pending bits are automatically cleared. The extended interrupt acknowledge register will identify
which extended interrupt that was most recently acknowledged. This register can be used by software
to invoke the appropriate interrupt handler for the extended interrupts.

65.2.4 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is halted (‘1’) or running (‘0’). A halted processor can be reset
and restarted by writing a ‘1’ to its status field. After reset, all processors except processor 0 are
halted. When the system is properly initialized, processor 0 can start the remaining processors by
writing to their STATUS bits.

The core can be implemented with support for specifying the processor reset start address dynami-
cally. Please see section 65.2.9 for further information.

Figure 186. Interrupt controller block diagram
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65.2.5 Irq broadcasting

The Broadcast Register is activated when the genericncpuis > 1. An incoming irq that has its bit set
in the Broadcast Register is propagated to the force register ofall CPUs rather than only to the Pend-
ing Register. This can be used to implement a timer that fires to all CPUs with that same irq.

65.2.6 Interrupt timestamping description

Support for interrupt timestamping is implemented when the VHDL generictstamp is > 0.

Interrupt timestamping is controlled via the Interrupt Timestamp Control register(s). Each Interrupt
Timestamp Control register contains a field (TSTAMP) that contains the number of timestamp regis-
ters sets that the core implements. A timestamp register sets consist of one Interrupt Timestamp
Counter register, one Interrupt Timestamp Control register, one Interrupt Assertion Timestamp regis-
ter and one Interrupt Acknowledge Timestamp register.

Software enables timestamping for a specific interrupt via a Interrupt Timestamp Control Register.
When the selected interrupt line is asserted, software will save the current value of the interrupt times-
tamp counter into the Interrupt Assertion Timestamp register and set the S1 field in the Interrupt
Timestamp Control Register. When the processor acknowledges the interrupt, the S2 field of the
Interrupt Timestamp Control register will be set and the current value of the timestamp counter will
be saved in the Interrupt Acknowledge Timestamp Register. The difference between the Interrupt
Assertion timestamp and the Interrupt Acknowledge timestamp is the number of system clock cycles
that was required for the processor to react to the interrupt and divert execution to the trap handler.

The core can be configured to stamp only the first occurrence of an interrupt or to continuously stamp
interrupts. The behavior is controlled via the Keep Stamp (KS) field in the Interrupt Timestamp Con-
trol Register. If KS is set, only the first assertion and acknowledge of an interrupt is stamped. Soft-
ware must then clear the S1 and S2 fields for a new timestamp to be taken. If Keep Stamp is disabled
(KS field not set), the controller will update the Interrupt Assertion Timestamp Register every time
the selected interrupt line is asserted. In this case the controller will also automatically clear the S2
field and also update the Interrupt Acknowledge Timestamp register with the current value when the
interrupt is acknowledged.

For controllers with extended ASMP support, each internal controller has a dedicated set of Interrupt
timestamp registers. This means that the Interrupt Acknowledge Timestamp Register(s) on a specific
controller will only be updated if and when the processor connected to the controller acknowledges
the selected interrupt. The Interrupt Timestamp Counter is shared by all controllers and will be incre-
mented when an Interrupt Timestamp Control register has the ITSEL field set to a non-zero value.

65.2.7 Interrupt timestamping usage guidelines

Note that KS = ‘0’ and a high interrupt rate may cause the Interrupt Assertion Timestamp register to
be updated (and the S2 field reset) before the processor has acknowledged the first occurrence of the
interrupt. When the processor then acknowledges the first occurrence, the Interrupt Acknowledge
Timestamp register will be updated and the difference between the two Timestamp registers will not
show how long it took the processor to react to the first interrupt request. If the interrupt frequency is
expected to be high it is recommended to keep the first stamp (KS field set to ‘1’) in order to get reli-
able measurements. KS = ‘0’ should not be used in systems that include cores that use level interrupts,
the timestamp logic will register each cycle that the interrupt line is asserted as an interrupt.

In order to measure the full interrupt handling latency in a system, software should also read the cur-
rent value of the Interrupt Timestamp Counter when entering the interrupt handler. In the typical case,
a software driver’s interrupt handler reads a status register and then determines the action to take.
Adding a read of the timestamp counter before this status register read can give an accurate view of
the latency during interrupt handling.

The core listens to the system interrupt vector when reacting to interrupt line assertions. This means
that the Interrupt Assertion Timestamp Register(s) will not be updated if software writes directly to
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the pending or force registers. To measure the time required to serve a forced interrupt, read the value
of the Interrupt Timestamp counter before forcing the interrupt and then read the Interrupt Acknowl-
edge Timestamp and Interrupt Timestamp counter when the processor has reacted to the interrupt.

65.2.8 Watchdog

Support for watchdog inputs is implemented when the VHDL genericwdogen> 0, the number of
watchdog input is determined by the VHDL genericnwdog.

The core can be implemented with support for asserting a bit in the controller’s Interrupt Pending
Register when an external watchdog signal is asserted. This functionality can be used to implement a
sort of soft watchdog for one or several processor cores. The controller’s Watchdog Control Register
contains a field that shows the number of external watchdog inputs supported and fields for configur-
ing which watchdog inputs that should be able to assert a bit in the Interrupt Pending Register. The
pending register will be assigned in each cycle that a selected watchdog input is high. Therefore it is
recommended that the watchdog inputs are connected to sources which send a one clock cycle long
pulse when a watchdog expires. Otherwise software should make sure that the watchdog signal is
deasserted before re-enabling interrupts during interrupt handling.

For controllers with extended ASMP support, each internal controller has a dedicated Watchdog Con-
trol register. Assertion of a watchdog input will only affect the pending register on the internal inter-
rupt controllers that have enabled the watchdog input in their Watchdog Control Register.

65.2.9 Dynamic processor reset start address

Support for dynamically specifying the processor start address(es) is enabled when the VHDL generic
dynrstaddris non-zero (note that the processors must also be implemented to latch the start address
from an external vector).

The core can be implemented with registers that are used to dynamically specify the reset start address
for each CPU in the system. If implemented, the processor start address registers are available, one for
each processor, starting at register offset 0x200. The reset value for all Processor Reset Start Address
registers is specified at implementation time through the VHDL genericrstaddr. If software wishes to
boot a processor from a different address, the processor’s start address register should be written (start
address must be aligned on a 4 KiB address boundary) and the processor should then be enabled
through the Processor boot register.

For controllers with extended ASMP support, the Processor Reset Start Address registers and boot
register are visible and writable from the register space of all internal controllers.

65.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depends on the number of processors in the multiprocessor system. The number of accessi-
ble register sets depend on the value of the NCTRL field in the Asymmetric Multiprocessing Control
Register. The register set for controller n is accessed at offset 0x1000*n.

Table 911.Interrupt Controller registers

APB address offset Register

0x000 Interrupt level register

0x004 Interrupt pending register

0x008 Interrupt force register (NCPU = 0)

0x00C Interrupt clear register

0x010 Multiprocessor status register

0x014 Broadcast register

0x018 Reserved
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0x01C Watchdog control register

0x020 Asymmetric multiprocessing control register

0x024 Interrupt controller select register for processor 0 - 7

0x028 Interrupt controller select register for processor 8 - 15

0x02C - 0x03C Reserved

0x040 Processor interrupt mask register

0x044 Processor 1 interrupt mask register

0x040 + 0x4 *n Processorn interrupt mask register

0x080 Processor interrupt force register

0x084 Processor 1 interrupt force register

0x080 + 0x4 *n Processorn interrupt force register

0x0C0 Processor extended interrupt acknowledge register

0x0C4 Processor 1 extended interrupt acknowledge register

0x0C0 + 0x4 *n Processorn extended interrupt acknowledge register

0x100 Interrupt timestamp counter register

0x104 Interrupt timestamp 0 control register

0x108 Interrupt assertion timestamp 0 register

0x10C Interrupt acknowledge timestamp 0 register

0x100 + 0x10 *n Interrupt timestamp counter register (mirrored in each set)

0x104 + 0x10 *n Interrupt timestampn control register

0x108 + 0x10 *n Interrupt assertion timestampn register

0x10C + 0x10 *n Interrupt acknowledge timestampn register

0x200 + 0x4*n Processor n reset start address register

0x240 Processor boot register

Table 912.Interrupt Level Register
31 16 15 1 0

RESERVED IL[15:1] R

31:16 Reserved

15:1 Interrupt Level n (IL[n]) - Interrupt level for interrupt n

0 Reserved

Table 913.Interrupt Pending Register
31 16 15 1 0

EIP[31:16] IP[15:1] R

31:16 Extended Interrupt Pending n (EIP[n])

15:1 Interrupt Pending n (IP[n]) - Interrupt pending for interrupt n

0 Reserved

Table 911.Interrupt Controller registers

APB address offset Register
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Table 914.Interrupt Force Register (NCPU = 0)
31 16 15 1 0

RESERVED IF[15:1] R

31:16 Reserved

15:1 Interrupt Force n (IF[n]) - Force interrupt nr n.

0 Reserved

Table 915.Interrupt Clear Register
31 16 15 1 0

EIC[31:16] IC[15:1] R

31:16 Extended Interrupt Clear n (EIC[n])

15:1 Interrupt Clear n (IC[n]) - Writing ‘1’ to IC[n] will clear interrupt n

0 Reserved

Table 916.Multiprocessor Status Register
31 28 27 26 20 19 16 15 0

NCPU BA RESERVED EIRQ STATUS[15:0]

31:28 Number of CPUs (NCPU) - Number of CPUs in the system - 1

27 Broadcast Available (BA) - Set to ‘1’ if NCPU > 0.

26:20 Reserved

19:16 Extended IRQ (EIRQ) - Interrupt number (1 - 15) used for extended interrupts. Fixed to 0 if
extended interrupts are disabled.

15:0 Power-down status of CPU[n] (STATUS[n]) - ‘1’ = power-down, ‘0’ = running. Write STATUS[n]
with ‘1’ to start processor n.

Table 917.Broadcast Register (NCPU > 0)
31 16 15 1 0

RESERVED BM15:1] R

31:16 Reserved

15:1 Broadcast Mask n (BM[n]) - If BM[n] = ‘1’ then interrupt n is broadcasted (written to the Force Reg-
ister of all CPUs), otherwise standard semantic applies (Pending register)

0 Reserved

Table 918.Watchdog Control Register (NCPU > 0)
31 27 26 20 19 16 15 0

NWDOG Reserved WDOGIRQ WDOGMSK

31:27 Number of watchdog inputs (NWDOG) - Number of watchdog inputs that the core supports.

26:20 Reserved

19:16 Watchdog interrupt (WDOGIRQ) - Selects the bit in the pending register to set when any line watch-
dog line selected by the WDOGMSK field is asserted.

15:0 Watchdog Mask n (WDOGMSK[n]) - If WDOGMSK[n] = ‘1’ then the assertion of watchdog input
n will lead to the bit selected by the WDOGIRQ field being set in the controller’s Interrupt Pending
Register.
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Table 919.Asymmetric Multiprocessing Control Register
31 28 27 2 1 0

NCTRL RESERVED ICF L

31:28 Number of internal controllers (NCTRL) - NCTRL + 1 is the number of internal interrupt controllers
available.

27:2 Reserved

1 Inter-controller Force (ICF) - If this bit is set to ‘1’ all Interrupt Force Registers can be set from any
internal controller. If this bit is ‘0’, a processor’s Interrupt Force Register can only be set from the
controller to which the processor is connected. Bits in an Interrupt Force Register can only be
cleared by the controller or by writing the Interrupt Force Clear field on the controller to which the
processor is connected.

0 Lock (L) - If this bit is written to ‘1’, the contents of the Interrupt Controller Select registers is fro-
zen. This bit can only be set if NCTRL > 0.

Table 920.Interrupt Controller Select Register for Processors 0 -7 (NCTRL > 0)
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ICSEL0 ICSEL1 ICSEL2 ICSEL3 ICSEL4 ICSEL5 ICSEL6 ICSEL7

31:0 Interrupt controller select for processor n (ICSEL[n]) - The nibble ICSEL[n] selects the (internal)
interrupt controller to connect to processor n.

Table 921.Interrupt Controller Select Register for Processors 8 - 15 (NCTRL > 0)
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ICSEL8 ICSEL9 ICSEL10 ICSEL11 ICSEL12 ICSEL13 ICSEL14 ICSEL15

31:0 Interrupt controller select for processor n (ICSEL[n]) - The nibble ICSEL[n] selects the (internal)
interrupt controller to connect to processor n.

Table 922.Processor Interrupt Mask Register
31 16 15 1 0

EIM[31:16] IM15:1] R

31:16 Extended Interrupt Mask n (EIC[n]) - Interrupt mask for extended interrupts

15:1 Interrupt Mask n (IM[n]) - If IM[n] = ‘0’ then interrupt n is masked, otherwise it is enabled.

0 Reserved

Table 923.Processor Interrupt Force Register (NCPU > 0)
31 17 16 15 1 0

IFC[15:1] R IF15:1] R

31:17 Interrupt Force Clear n (IFC[n]) - Interrupt force clear for interrupt n

16 Reserved

15:1 Interrupt Force n (IF[n]) - Force interrupt nr n

0 Reserved
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Table 924.Extended Interrupt Acknowledge Register
31 5 4 0

RESERVED EID[4:0]

31:5 Reserved

4:0 Extended interrupt ID (EID) - ID (16-31) of the most recent acknowledged extended interrupt

If this field is 0, and support for extended interrupts exist, the last assertion of interrupteirq was not
the result of an extended interrupt being asserted. If interrupteirq is forced, or asserted, this field will
be cleared unless one, or more, of the interrupts 31 - 16 are enabled and set in the pending register.

Table 925.Interrupt Timestamp Counter register(s)
31 0

TCNT

31:0 Timestamp Counter (TCNT) - Current value of timestamp counter. The counter increments when-
ever a TSISEL field in a Timestamp Control Register is non-zero. The counter will wrap to zero
upon overflow and is read only.

Table 926.Timestamp n Control Register
31 27 26 25 24 6 5 4 0

TSTAMP S1 S2 RESERVED KS TSISEL

31:27 Number of timestamp register sets (TSTAMP) - The number of available timestamp register sets.

26 Assertion Stamped (S1) - Set to ‘1’ when the assertion of the selected line has received a timestamp.
This bit is cleared by writing ‘1’ to its position. Writes of ‘0’ have no effect.

25 Acknowledge Stamped (S2) - Set to ‘1’ when the processor acknowledge of the selected interrupt
has received a timestamp. This bit can be cleared by writing ‘1’ to this position, writes of ‘0’ have no
effect. This bit can also be cleared automatically by the core, see description of the KS field below.

24:6 RESERVED

5 Keep Stamp (KS) - If this bit is set to ‘1’ the core will keep the first stamp value for the first interrupt
until the S1 and S2 fields are cleared by software. If this bit is set to ‘0’ the core will time stamp the
most recent interrupt. This also has the effect that the core will automatically clear the S2 field when-
ever the selected interrupt line is asserted and thereby also stamp the next acknowledge of the inter-
rupt.

4:0 Timestamp Interrupt Select (TSISEL) - This field selects the interrupt line (0 - 31) to timestamp
when the EN field of this register has been set to ‘1’.

Table 927.Interrupt Assertion Timestamp register
31 0

TASSERTION

31:0 Timestamp of Assertion (TASSERTION) - The current Timestamp Counter value is saved in this
register when timestamping is enabled and the interrupt line selected by TSISEL is asserted.

Table 928.Interrupt Acknowledge Timestamp register
31 0

TACKNOWLEDGE

31:0 Timestamp of Acknowledge (TACKNOWLEDGE) - The current Timestamp Counter value is saved
in this register when timestamping is enabled, the Acknowledge Stamped (S2) field is ‘0’, and the
interrupt selected by TSISEL is acknowledged by a processor connected to the interrupt controller.
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65.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00D (same as IRQMP
core). For description of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 929.Processor n reset start address register
31 12 11 0

RSTADDR RESERVED

31:12 Processor reset start address (RSTADDR) - If the core has been implemented to support dynamic
assignment of the processor reset start address(es), then the Processor start address register at offset
0x200 + 4*n specifies the reset start address for processor n.
Note that a processor must be reset before the new reset start address is valid. It is generally not pos-
sible to update the value in this register and then to correctly boot from the new address by only wak-
ing a processor via the Multiprocessor status register. Instead use the Processor boot register to boot
or reset the processor.

11:0 RESERVED

Table 930.Processor boot register
31 16 15 0

RESET[n] BOOT[n]

31:16 Processor reset (RESET): Writing bitn of this field to ‘1’ will reset, but not start, processorn. When
the processor has been reset the bit will be reset to ‘0’. A processor can only be reset if it is currently
idle (in power-down, error or debug mode), if a processor is running then the write to its bit in this
field will be ignored. Multiple bits in this register may be set with one write but the register can only
be written when all bits are zero.

15:0 Processor boot (BOOT): Writing bitn of this field to ‘1’ will reset and start processorn. When the
processor has been booted the bit will be reset to ‘0’. A processor can only be reset if it is currently
idle (in power-down, error or debug mode), if a processor is running then the write to its bit in this
field will be ignored. Multiple bits in this register may be set with one write but the register can only
be written when all bits are zero.

NOTE: This functionality is currently only supported when instantiating the LEON4FT entity. Contact Aeroflex Gaisler if
you want to use the Processor boot register with LEON3.
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65.5 Configuration options

Table 931 shows the configuration options of the core (VHDL generics).

Table 931.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) that will be
used to access the interrupt controller

0 to NAPBSLV-1 0

paddr The 12-bit MSB APB address 0 - 16#FFF# 0

pmask The APB address mask. The mask determines the size of
the memory area occupied by the core. The minimum
required memory area based on thenctrl VHDL generic
gives (nctrl : pmask) = 1 : 16#FFF#, 2: 16#FE0#, 3-4 :
16#FC0#, 5-8 : 16#F80#, 9-16 : 16#F00#.

Note that even with nctrl = 1 the core may require a
larger area than 256 bytes if the core has been imple-
mented with support for timestamping and/or dynamic
reset addresses.

0 - 16#FFF# 16#FFF#

ncpu Number of processors in multiprocessor system 1 to 16 1

eirq Enable extended interrupts 1 - 15 0

nctrl Asymmetric multiprocessing system extension. This
generic defines the number of internal interrupt control-
lers that will be implemented in the core.

1 - 16 1

tstamp Interrupt timestamping. If this generic is non-zero the
core will include a timestamp counter andtstamp set(s)
of interrupt timestamp register(s).

0 - 16 0

wdogen Enable watchdog inputs. If this generic is set to 1 the
core will include logic to assert a selected interrupt when
a watchdog input is asserted.

0 - 1 0

nwdog Number of watchdog inputs 1 - 16 1

dynrstaddr Enable dynamic reset start address assignments. If this
generic is set to 1, the core will be implemented with
registers that specify the reset address of each processor
connected to the core. The processor(s) must also be
implemented with support for dynamically assigning the
reset start address.

0 - 1 0

rstaddr Default reset start address for all Processor reset start
address registers (if implemented)

0 - (220-1) 0

extrun Use external run vector. If this generic is set to 1 the start
of processors after reset will be controlled via the input
signal cpurun. If this generic is set to 0, CPU 0 will be
started after reset and the other CPUs will be put in
power-down mode.

0 - 1 0
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65.6 Signal descriptions

Table 932 shows the interface signals of the core (VHDL ports).

65.7 Library dependencies

Table 933 shows libraries that should be used when instantiating the core.

65.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqamp_ex is

Table 932.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI[n] INTACK Input Processorn Interrupt acknowledge High

IRL[3:0] Processorn interrupt level High

PWD Unused -

FPEN Unused -

IDLE Processor idle High

IRQO[n] IRL[3:0] Output Processorn Input interrupt level High

RST Reset power-down and error mode of processorn High

RUN Start processorn after reset (SMP systems only) High

RSTVEC[31:12] Reset start address for processorn -

IACT Asserted when the IRL vector of processor 0 is
non-zero.

High

INDEX[3:0] CPU index -

HRDRST Processor reset High

WDOG[] N/A Input Watchdog input signals High

NCPU[] N/A Input If position n in this vector is set to ‘1’, processor
n will be started after reset. Otherwise processor
n will go into power-down. This signal is only
used if VHDL generic extrun is /= 0.

High

* see GRLIB IP Library User’s Manual

Table 933.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals, component Signals and component declaration
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  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

architecture rtl of irqamp_ex is
  constant NCPU : integer := 4;

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  signal ahbsi : ahb_slv_in_type;

  -- GP Timer Unit input signals
  signal irqi   : irq_in_vector(0 to NCPU-1);
  signal irqo   : irq_out_vector(0 to NCPU-1);

  -- LEON3 signals
  signal leon3i : l3_in_vector(0 to NCPU-1);
  signal leon3o : l3_out_vector(0 to NCPU-1);

begin

  -- 4 LEON3 processors are instantiated here
  cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s generic map (hindex => i)
    port map (clk, rstn, ahbmi, ahbmo(i), ahbsi,
irqi(i), irqo(i), dbgi(i), dbgo(i));
  end generate;

  -- MP IRQ controller
  irqctrl0 : irqamp
  generic map (pindex => 2, paddr => 2, ncpu => NCPU, nctrl => NCPU)
  port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end
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66 L2C - Level 2 Cache controller

66.1 Overview

The L2C implements a Level-2 cache for processors with AHB interfaces. The L2C works as an AHB
to AHB bridge, caching the data that is read or written via the bridge. A front-side AHB interface is
connected to the processor bus, while a backend AHB interface is connected to the memory bus. Both
front-side and backend buses can be individually configured to 32, 64 or 128 bits data width. The
front-side bus and the backend bus must be clocked with the same clock. Figure 187 show a system
block diagram for the cache controller.

66.2 Configuration

The level-2 cache can be configured as direct-mapped or multi-way with associativity 2, 3 or 4. The
replacement policy for a multi-way configuration can be configured as: LRU (least-recently-used),
pseudo-random or master-index (where the way to replace is determine by the master index). The way
size is configurable to 1 - 512 Kbyte with a line size of 32/64 bytes.

66.2.1 Replacement policy

The core can implements three different replacement policies: LRU (least-recently-used), (pseudo-)
random and master-index. A VHDL generic REPL is used to define which replacement policy is con-
figured as default. With the master-index replacement policy, master 0 would replace way 1, master 1
would replace way 2, and so on. With a master indexes corresponding to a way number larger then the
number of implemented ways there is two options to determine which way to replace. One option is to
map all these master index to a specific way. This is done by specify this way in the index-replace
field in the control register and select this option in the replacement policy field also located in the
control register. It is not allowed to select a locked way in the index-replace field. The second option is
to replace way = ((master index) modulus (number of ways)). This option can be selected in the
replacement policy field, but is only allowed with multi-way associativity 2 or 4.

Figure 187. Block diagram
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66.2.2 Write policy

The cache can be configured to operate as write-through or copy-back cache. Before change the write
policy to write-through, the cache has to be disabled and flushed (to write back dirty cache lines to
memory. This can be done by setting the Cache disable bit when issue a flush all command). The
write policy is controlled via the cache control register. A more fine-grained control can also be
obtained by enabling the MTRR registers (see text below).

66.2.3 Memory type range registers

The memory type range registers (MTRR) are used to control the cache operation with respect to the
address. Each MTRR can define an area in memory to be uncached, write-through or write-protected.
The MTRR consist of a 14-bit address field, a 14-bit mask and two 2-bit control fields. The address
field is compared to the 14 most significant bits of the cache address, masked by the mask field. If the
unmasked bits are equal to the address, an MTRR hit is declared. The cache operation is then per-
formed according to the control fields (see register descriptions). If no hit is declared or if the MTRR
is disabled, cache operation takes place according to the cache control register. The number of
MTRRs is configurable through themtrr VHDL generic. When changing the value of any MTRR reg-
ister, cache must be disabled and flushed (This can be done by setting the Cache disable bit when
issue a flush all command).

66.2.4 Cachability

The core uses a VHDL generic CACHED to determine which address range is cachable. Each bit in
this 16-bit value defines the cachability of a 256 Mbyte address block on the AMBA AHB bus. A
value of 16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.
When the VHDL generic CACHED is 0, the cachable areas is defined by the plug&play information
on the backend bus. The core can also be configured to use the HPROT signal to override the cachable
area defined by VHDL generic CACHED. A access can only be redefined as non-cachable by the
HPROT signal. See table 934 for information on how HPROT can change the access cachability
within a cachable address area. The AMBA AHB signal HPROT[3] defines the access cacheable
when active high and the AMBA AHB signal HPROT[2] defines the access bufferable when active
high.

* When the HPROT-Read-Hit-Bypass bit is set in the cache control register this will generate a Mem-
ory access.

66.2.5 Cache tag entry

Table 935 show the different fields of the cache tag entry for a cache with set size equal to 1 kbyte.
The number of bits implemented is depending on the cache configuration.

Table 934.Access cachability using HPROT.

HPROT: non-cachable, non-bufferable non-cachable, bufferable cacheable

Read hit Cache access* Cache access Cache access

Read miss Memory access Memory access Cache allocation and Memory access

Write hit Cache and Memory access Cache access Cache access

Write miss Memory access Memory access Cache allocation

Table 935.L2C Cache tag entry
31 10 9 8 7 6 5 4 0

TAG Valid Dirty RES LRU

31 : 10 Address Tag (TAG) - Contains the address of the data held in the cache line.
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66.2.6 AHB address mapping

The AHB slave interface occupies three AHB address ranges. The first AHB memory bar is used for
memory/cache data access. The address and size of this bar is configured via VHDL generics. The
second AHB memory bar is used for access to configuration registers and the diagnostic interface.
This bar has a configurable address via VHDL generic but always occupy 4MB in the AHB address
space. The last AHB memory bar is used to map the ioarea of the backend AHB bus (to access the
plug&play information on that bus). The address and size of the this bar is configured via VHDL
generics.

66.2.7 Memory protection and Error handling

The ft VHDL generic enables the implementation of the Error Detection And Correction (EDAC) pro-
tection for the data and tag memory. One error can be corrected and two error can be detected with the
use of a (32, 7) BCH code. When implemented, the EDAC functionality can dynamically be enabled
or disabled. Before being enabled the cache should be flushed. The dirty and valid bits fore each cache
line is implemented with TMR. When EDAC error or backend AHB error or write-protection hit in a
MTRR register is detected the error status register is updated to store the error type. The address
which cause the error is also saved in the error address register. The error types is prioritised in the
way that a uncorrected EDAC error will overwrite any other previously stored error in the error status
register. In all other cases, the error status register has to be cleared before a new error can be stored.
Each error type (correctable-, uncorrectable EDAC error, write-protection hit, backend AHB error)
has a pending register bit. When set and this error is unmasked, a interrupt is generated.
When uncorrectable error is detected in the read data the core will respond with a AHB
error. AHB error response can also be enabled for a access whish match a stored error in the
error status register. Error detection is done per cache line. The core also provide a correct-
able error counter accessible via the error status register.

9 : 8 Valid bits. When set, the corresponding sub-block of the cache line contains valid data. Valid bit 0
corresponds to the lower 16 bytes sub-block (with offset 1) in the cache line and valid bit 1 corre-
sponds to the upper 16 bytes sub-block (with offset 0) in the cache line.

7 : 6 Dirty bits When set, this sub-block contains modified data.

5 RESERVED

4 : 0 LRU bits

Table 935.L2C Cache tag entry
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66.2.8 Scrubber

When EDAC protection is implemented a cache scrubber is enabled. The scrubber is con-
trolled via two register in the cache configuration interface. To scrub one specific cache line
the index and way of the line is set in the scrub control register. To issue the scrub opera-
tion, the pending bit is set to 1. The scrubber can also be configured to continuously loop
through and scrub each cache line by setting the enabled bit to 1. In this mode, the delay
between the scrub operation on each cache line is determine by the scrub delay register (in
clock cycles).

66.2.9 Locked way

One or more ways can be configured to be locked (not replaced). How many way that should be
locked is configured by the locked-way field in the control register. The way to be locked is starting
with the uppermost way (for a 4-way associative cache way 4 is the first locked way, way 3 the sec-
ond, and so on). After a way is locked, this way has to be flushed with the “way flush” func-
tion to update the tag match the desired locked address. During this “way flush” operation,
the data can also be fetched from memory.

Table 936.Cache action on detected EDAC error

Access/Error
type Cache-line not dirty Cache-line dirty

Read, Correctable
Tag error

Tag is corrected before read is handled,
Error status is updated with a corretable
error.

Tag is corrected before read is handled,
Error status is updated with a corretable
error.

Read, Uncorrect-
able Tag error

Cache-line invalidated before read is han-
dled, Error status is updated with a corret-
able error.

Cache-line invalidated before read is han-
dled, Error status is updated with a uncor-
rectable error. Cache data is lost.

Write, Correctable
Tag error

Tag is corrected before write is handed,
Error status is updated with a corretable
error.

Tag is corrected before write is handled,
Error status is updated with a corretable
error.

Write, Uncorrect-
able Tag error

Cache-line invalidated before write is han-
dled, Error status is updated with a correct-
able error.

Cache-line invalidated before write is han-
dled, Error status is updated with a uncor-
rectable error. Cache data is lost.

Read, Correctable
Data error

Cache-data is correted and updated, Error
status is updated with a correctable error.
AHB access is not affected.

Cache-data is correted and updated, Error
status is updated with a correctable error.
AHB access is not affected.

Read, Uncorrect-
able Data error

Cache-line is invalidated, Error status is
updated with a correctable error. AHB
access is terminated with retry.

Cache-line is invalidated, Error status is
updated with a uncorrectable error. AHB
access is terminated with error.

Write (<32-bit),
Correctable Data
error

Cache-data is correted and updated, Error
status is updated with a correctable error.
AHB access is not affected.

Cache-data is correted and updated, Error
status is updated with a correctable error.
AHB access is not affected.

Write (<32-bit),
Uncorrectable Data
error

Cache-line is re-fetched from memory, Error
status is updated with a correctable error.
AHB access is not affected.

Cache-line is invalidated, Error status is
updated with a uncorrectable error. AHB
access write data and cache data is lost.
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66.3 Operation

66.3.1 Read

A cachable read access to the core result in a tag lookup to determine if the requested data is located
in the cache memory. For a hit (requested data is in the cache) the data is read from the cache and no
read access is issued to the memory. If the requested data is not in the cache (cache miss), the cache
controller issue a read access to the memory controller to fetch the cache line including the requested
data. The replacement policy determine which cache line in a multi-way configuration that should be
replaced and its tag is updated. If the replaced cache line is modified (dirty) this data is stored in a
write buffer and after the requested data is fetched from memory the replaced cache line is written to
memory.

For a non-cachable read access to the core, the cache controller issue an single read access of the same
size to the memory. The data is stored in a read buffer and the state of the cache is not modified in any
way. When HPROT support is enabled, a bufferable (but non-cachable) read burst access will prefetch
data up to the cache line boundary from memory.

66.3.2 Write

A cachable write access to the core result in a tag lookup to determine if the cache line is find in the
cache. For a hit the cache line is updated. No access is issued to the memory for a copy-back configu-
ration. When the core is configured as a write-through cache, each write access is also issued towards
the memory. For a miss, the replacement policy determine which cache line i a multi-way configura-
tion that should be replaced and updates its tag. If the replaced cache line is dirty, this is stored in a
write buffer to be written back to the memory. The new cache line is updated with the data from the
write access and for a non 128-bit access the rest of the cache line is fetched from memory. Last
(when copy-back policy is used and the replaced cache line was marked dirty) the replaced cache line
is written to memory. When the core is configured as a write-through cache, no cache lines are marked
as dirty and no cache line needs to be written back to memory. Instead the write access is issued
towards the memory as well. A new cache line is allocated on a miss for a cacheable write access
independent of write policy (copy-back or write-through).

For a non-cachable write access to the core, the data is stored in a write buffer and the cache controller
issue single write accesses to write the data to memory. The state of the cache is unmodified during
this access.

66.3.3 Cache flushing

The cache can be flushed by accessing a cache flush register. There is three flushing modes: invalidate
(reset valid bits), write back (write back dirty cache lines to memory, but no invalidation of the cache
content) and flush (write back dirty cache lines to memory and invalidate the cache line). The flush
command can be applied to the entire cache, one way or to only one cache line. The cache line to be
flushed can be addresses in two ways: direct address (specify way and line address) and memory
address (specify which memory address that should be flushed in the cache. The controller will make
a cache lookup for the specified address and on a hit, flush that cache line). When the entire cache is
flushed the Memory Address field should be set to zero. Invalidate a cache line takes 3 clock cycles. If
the cache line needs to be written back to memory one additional clock cycle is needed plus the mem-
ory write latency. When the whole cache is flushed the invalidation of the first cache line takes 3 clock
cycles, after this one line can be invalidate each clock cycle. When a cache line needs to be written
back to memory this memory access will be stored in a access buffer. If the buffer is full the invalida-
tion of the next cache line is stall until a slot in the buffer has opened up. If the cache also should be
disabled after the flush is complete, it is recommended to set the cache disable bit together with the
flush command instead of writing ‘0’ to the cache enable bit in the cache control register.
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66.3.4 Disabling Cache

To be able to safely disable the cache when it is being accessed, the cache need to be disabled and
flushed at the same time. This is accomplished by setting the cache disable bit when issue the flush
command.

66.3.5 Diagnostic cache access

The diagnostic interface can be used for RAM block testing and direct access to the cache tag, cache
data content and EDAC check bits. The read-check-bits filed in the error control register selects if data
content or the EDAC check bits should be read out. On writes, the EDAC check bits can be selected
from the data-check-bit or tag-check-bit register. These register can also be XOR:ed with the correct
check bits on a write. See the error control register for how this is done.

66.3.6 Error injection

Except using the diagnostic interface, the EDAC check bits can also be manipulated on a regular
cache access. By setting the xor-check-bit field in the error control register the data EDAC check bits
will be XOR:ed with the data-check-bit register on the next write or the tag EDAC check bits will be
XOR:ed with the tag-check-bit register on the next tag replacement. The tag check bit manipulation is
only done if the tag-check-bit register is not zero. The xor-check-bit is reset on the next tag
replacement or data write. Error can also be injected by writing a address together with the
inject bit to the “Error injection” register. This will XOR the check-bits for the specified
address with the data-check-bit register. If the specified address in not cached, the cache
content will be unchanged.

66.3.7 AHB slave interface

The slave interface is the core’s connection to the CPU and the level 1 cache. The core can accept 8-
bit(byte), 16-bit(half word), 32-bit(word), 64-bit, and 128-bit single accesses and also 32-bit, 64-bit,
and 128-bit burst accesses. For an access during a flush operation, the core will respond with a AHB
RETRY response. For a uncorrectable error or a backend AHB error on a read access, the core will
respond with a AHB error.

66.3.8 AHB master interface

The master interface is the core’s connection to the memory controller. During cache line fetch, the
controller can issue either a 32-bit, 64-bit or 128-bit burst access. For a non cachable access and in
write-through mode the core can also issue a 8-bit(byte), 16-bit(half word), 32-bit(word), 64-bit, or
128-bit single write access. The bbuswidth VHDL generic controls the maximum bus access size on
the master interface in the “wide-bus” address range. If set to 128 (default), the largest access will be
128-bit. If set to 64, the largest access will be 64-bit. If set to 32, the largest access will be 32-bit. The
“wide-bus address range is defined by the wbmask VHDL generic. Each bit in this 16-bit value repre-
sents a 256 Mbyte address block on the AMBA AHB bus. The cache will only generate wide accesses
(> 32-bit) to address ranges which wbmask bit is ‘1’. For address ranges which wbmask bit is ‘0’,
wide accesses will be translated to 32-bit bursts.

The HBURST value during burst accesses will correspond to SINGLE, INCR, INCR4, INCR8 or
INCR16, depending on burst type and AHB data bus width.

66.3.9 Latency

Table 937 defines the minimum latency for different access sequences. The latency is defined as core
latency + memory latency (The memory latency in this table is for the synchronous version of the
ddr2spa DDR controller with 64-bit DDR and 128-bit AHB bus).
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+ Additional memory latency

The latency for a access that bypass the cache (the cache is disabled; the address is non-cachable; the
HPROT signal defines the access not-cachable and not-bufferable) is the same as for a cache miss.
Because the cache controller only issue single accesses towards the memory in this mode, a burst
access will suffer this latency for each beat in the burst. If the access is bufferable and HRPOT support
is enabled, the controller will prefetch data up to the cache line boundary from memory which then
can be read out with no additional latency except for the first word. When EDAC is enabled, one addi-
tional latency cycle is added to read access returning cache data. For definition of the HPROT support
(cachable and bufferable) see section 66.2.4.

66.3.10 Cache status

The cache controller has a status register which provide information on the cache configuration
(multi-way configuration and set size). The core also provides an access counter and a hit counter via
AHB mapped registers. These register can be used to calculate hit rate. The counters increments for
each data access to core (i.e. a burst access is only counted as one access). When writing 0 to the
access counter, the internal access/hit counters is cleared and its value is loaded to the registers acces-
sible via the AHB interface. In wrapping mode both counters will be cleared when the access counter
is wrapping at 0xFFFFFFFF. In shifting mode both counters will be shifted down 16 bits when the
access counter reach 0xFFFFFFFF. In this mode the accessible counter registers is updated automati-
cally when the access counter’s 16 LSB reach the value of 0xFFFF.

The core can also implement a front-side bus usage counter. This counter records every clock cycle
the bus is not in idle state. The registers accessible via the AHB interface is updated in the same way
as for the hit counter registers. Writing 0 to the bus cycle counter register resets the bus usage
counters. This counter also has a wrapping and shifting mode similar to the hit counter.

In addition to the counter registers, the core also provide output signals for: cache hit, cache miss, and
cache access. These signals can be connected to external statistic counters.

Table 937.Access latency

Current Access P
re
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s 
A

cc
es

s
None

128-Bit Non 128-Bit

Read Write Read Write

Hit Miss
Dirty
miss Hit Miss

Dirty
miss Hit Miss

Dirty
miss Hit Miss

Dirty
miss

12
8-

 B
it

Read hit 3 3 3 3 4 4 6 3 3 3 6 6+6 6+6

Read miss 5+7 5+7 5+7 5+11 6+7 6+7 9+13 6+6 6+6 6+11 7+6 9+12 11+12

Read dirty miss 5+8 5+8 5+7 5+12 6+10 6+7 9+11 6+6 6+6 6+11 7+7 9+12 12+19

Write hit 0 0 0 0 0 1 4+1 0 0 1 0 4+6 6+8

Write miss 0 0 0 0 0 1 4+3 0 0 1 0 4+6 7+10

Write dirty miss 0 0 0 0 0 1 5+2 0 0 1 0 4+10 7+6

N
on

 1
28

-B
it

Read hit 3 3 3 3 4 4 6 3 3 4 4 5+7 8+7

Read miss 5+8 6+6 6+6 6+11 7+6 7+6 9+21 5+7 5+7 6+11 6+7 7+15 9+24

Read dirty miss 5+9 6+6 6+6 6+11 7+8 7+6 9+10 5+9 5+7 6+12 6+11 7+14 10+21

Write hit 0 0 0 2 0 1 5 0 0 0 0 4+6 6+7

Write miss 0 0 0 2 0 1 5+1 0 0 0 0 4+6 6+11

Write dirty miss 0 0 0 1 0 1 5 0 0 0 0 4+11 6+7
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66.4 Registers

The core is configured via registers mapped into the AHB memory address space.

Table 938.L2C: AHB registers

AHB address offset Register

0x00 Control register

0x04 Status register

0x08 Flush (Memory address)

0x0C Flush (set, index)

0x10 Access counter

0x14 Hit counter

0x18 Bus cycle counter

0x1C Bus usage counter

0x20 Error status/control

0x24 Error address

0x28 TAG-check-bit

0x2C Data-check-bit

0x30 Scrub Control/Status

0x34 Scrub Delay

0x38 Error injection

0x80 - 0xFC MTRR registers

0x80000 - 0x8FFFC Diagnostic interface (Tag)
0x80000: Tag 1, way-1
0x80004: Tag 1, way-2
0x80008: Tag 1, way-3
0x8000C: Tag 1, way-4
0x80010: Tag check-bits way-0,1,2,3 (Read only)

bit[27:21] = check-bits for way-1.
bit[20:14] = check-bits for way-2.
bit[13:7] = check-bits for way-3.
bit[6:0] = check-bits for way-4.

0x80020: Tag 2, way-1
0x80024: ...

0x200000 - 0x3FFFFC Diagnostic interface (Data)
0x200000 - 0x27FFFC: Data or check-bits way-1
0x280000 - 0x2FFFFF: Data or check-bits way-2
0x300000 - 0x27FFFC: Data or check-bits way-3
0x380000 - 0x3FFFFF: Data or check-bits way-4

When check-bits are read out:

Only 32-word at offset 0x0, 0x10, 0x20,... are valid check-bits.
bit[27:21] = check-bits for data word at offset 0x0.
bit[20:14] = check-bits for data word at offset 0x4.
bit[13:7] = check-bits for data word at offset 0x8.
bit[6:0] = check-bits for data word at offset 0xc.

Table 939.L2C Control register (address offset 0x00)
31 30 29 28 27 16 15 12 11 8 7 6 5 4 3 2 1 0

EN EDAC REPL RES INDEX-WAY LOCK RES HPRHB HPB UC HC WP HP

31 Cache enable. When set, the cache controller is enabled. When disabled, the cache is bypassed.
Default disabled. Reset value is set by the cen VHDL generic, default value 0.
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30 EDAC enable

29 : 28 Replacement policy: (Reset value is set by the repl VHDL generic, default value 00)
00: LRU
01: (pseudo-) random
10: Master-index using index-replace field
11: Master-index using the modulus function

27 :16 RESERVED

15 : 12 Way to replace when Master-index replacement policy and master index is larger then number of
ways in the cache (default value 0)

11 : 8 Number of locked ways (default value 0)

7 : 6 RESERVED

5 When set, a non-cacheable and non-bufferable read access will bypass the cache on a cache hit and
return data from memory. Only used with HPROT support. (default value 0)

4 When HPROT is used to determine cachability and this bit is set, all accesses is marked bufferable.
(default value 0)

3 Bus usage status mode. 0 = wrapping mode, 1 = shifting mode. Default value 0.

2 Hit rate status mode. 0 = wrapping mode, 1 = shifting mode. Default value 0.

1 Write policy. When set, the cache controller uses the write-through write policy. When not set, the
write policy is copy-back. Default copy-back Reset value is set by the wp VHDL generic, default
value 0.

0 When set, use HPROT to determine cachability. Reset value is set by the hprot VHDL generic,
default value 0.

Table 940.L2C Status register (Read only) (address offset 0x04)
31 25 24 23 22 21 16 15 13 12 2 1 0

RESERVED LSIZE FTTIME EDAC MTRR BBus width Cache set size Way

31 :25 RESERVED

24 Cache line size. 1 = 64 bytes, 0 = 32 bytes.

23 Access timing is simulated as if memory protection is implemented. (Read only)

22 Memory protection implemented (Read only)

21 : 16 Number of MTRR registers implemented (0 - 32) (Read only)

15 : 13 Backend bus width: 1 = 128-bit, 2 = 64-bit, 4 = 32-bit. (Read only)

12 : 2 Cache Set size configuration in kBytes (Read only)

1 : 0 Multi-Way configuration (Read only)
“00“: Direct mapped
“01“: 2-way
“10“: 3-way
“11“: 4-way

Table 941.L2C Flush (Memory address) register (address offset 0x08)
31 5 4 3 2 0

Memory Address RES DI Flush

31 : 5 Memory Address (For flush all cache lines, this field should be set to zero)

4 RESERVED

Table 939.L2C Control register (address offset 0x00)
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3 Cache disable. Setting this bit to ‘1’ is equal to setting the Cache enable bit to ‘0’ in the Cache Con-
trol register.

2 : 0 Flush mode:
“001“: Invalidate one line, “010”: Write-back one line, “011“: Invalidate & Write-back one
line.
“101“: Invalidate all lines, “110”: Write-back all lines, “111“: Invalidate & Write-back all
lines.
Only dirty cache lines are written back to memory.

Table 942.L2C Flush (set, index) register (address offset 0x0C)
31 16 .. 10 9 8 7 6 5 4 3 2 1 0

Cache line index / TAG Fetch Valid Dirty RES Way DI WF Flush

31 : 16 Cache line index, used when a specific cache line is flushed

31 : 10 TAG used when “way flush” is issued. If a specific cache line is flushed, bit 15 : 10 should be set to
zero

9 If set to ‘1’ data is fetched form memory when a “way flush” is issued. If a specific cache line is
flushed, this bit should be set to zero

8 Valid bit used when “way flush” is issued. If a specific cache line is flushed, this bit should be set to
zero

7 Dirty bit used when “way flush” is issued. If a specific cache line is flushed, this bit should be set to
zero

6 RESERVED

5 : 4 Cache way

3 Cache disable. Setting this bit to ‘1’ is equal to setting the Cache enable bit to ‘0’ in the Cache Con-
trol register.

2 Issue a Way-flush, If a specific cache line should be flushed, this bit should be set to zero

1 : 0 Flush mode (line flush):
“01“: Invalidate one line
“10”: Write-back one line (if line is dirty)
“11“: Invalidate & Write-back one line (if line is dirty).

Flush mode (way flush):
“01“: Update Valid/Dirty bits according to register bit[8:7]
“10”: Write-back dirty lines to memory
“11“: Update Valid/Dirty bits according to register bit[8:7] & Write-back dirty lines to mem-
ory.

Table 943.L2C Access counter register (address offset 0x10)
31 0

Access counter

31 : 0 Access counter. Write 0 to clear internal access/hit counter and update access/hit counter register.

Table 944.L2C Hit counter register (address offset 0x14)
31 0

Hit counter

31 : 0 Hit counter.

Table 941.L2C Flush (Memory address) register (address offset 0x08)
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Table 945.L2C Front-side bus cycle counter register (address offset 0x18)
31 0

Bus cycle counter

31 : 0 Bus cycle counter. Write 0 to clear internal bus cycle/usage counter and update bus cycle/usage
counter register.

Table 946.L2C Front-side bus usage counter register (address offset 0x1C)
31 0

Bus usage counter

31 : 0 Bus usage counter.

Table 947.L2C Error status/control (address offset 0x20)
31 28 27 26 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 2 1 0

AHB
master
index

S
C
R
U
B

TYPE T
A
G
/
D
A
T
A

C
O
R
/
U
C
O
R

M
U
L
T
I

V
A
L
I
D

D
I
S
E
R
E
S
P

Correctable
error

counter

IRQ
pending

IRQ
mask

Select
CB

Select
TCB

X
C
B

R
C
B

C
O
M
P

R
S
T

31: 28 AHB master that generated the access

27 Indicates that the error was trigged by the scrubber.

26: 24 Access/Error Type: (Read only)
000: cache read, 001: cache write, 010: memory fetch, 011: memory write,
100: Write-protection hit, 101: backend read AHB error, 110: backend write AHB error

23 0 tag error, 1: data error (Read only)

22 0: correctable error, 1: uncorrectable error (Read only)

21 Multiple error has occurred (Read only)

20 Error status register contains valid error (Read only)

19 Disable error responses for uncorrectable EDAC error.

18: 16 Correctable EDAC error counter (read only)

15: 12 Interrupt pending (read only)
bit3: Backend AHB error
bit2: Write-protection hit
bit1: Uncorrectable EDAC error
bit0: Correctable EDAC error

11: 8 Interrupt mask (if set this interrupt is unmasked)
bit3: Backend AHB error
bit2: Write-protection hit
bit1: Uncorrectable EDAC error
bit0: Correctable EDAC error

7: 6 Selects the data-check-bits for diagnostic data write:
00: use generated check-bits
01: use check-bits in the data-check-bit register
10: XOR check-bits with the data-check-bit register
11: use generated check-bits
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4: 5 Selects the tag-check-bits for diagnostic tag write:
00: use generated check-bits
01: use check-bits in the tag-check-bit register
10: XOR check-bits with the tag-check-bit register
11: use generated check-bits

3 If set, the check-bits for the next data write or tag replace will be XOR:ed withe the check-bit regis-
ter. Default value is 0.

2 If set, a diagnostic read to the cache data area will return the check-bits related to that data Default
value is 0.

1 If set, a read access matching a uncorrectable error stored in the error status register will generate a
AHB error response. Default value is 0.

0 Resets the status register to be able to store a new error

Table 948.L2C Error address register (address offset 0x24)
31 0

Error address

31 : 0 Error address

Table 949.L2C Tag-check-bit register (address offset 0x28)
31 7 6 0

RESERVED TCB

31 : 7 RESERVED

6 : 0 Check-bits which can be selected by the “Select check-bit“ field in the error status/control register
for TAG updates

Table 950.L2C Data-check-bit register (address offset 0x2C)
31 28 27 0

RESERVED DCB

31 : 28 RESERVED

27 : 0 Check-bits which can be selected by the “Select tag-check-bit“ field in the error status/control regis-
ter for TAG updates

Table 951.L2C Scrub control/status register (address offset 0x30)
31 16 15 4 3 2 1 0

INDEX RESERVED Way PEN EN

31 :16 Index for the next line scrub operation

15 : 4 RESERVED

3:2 Way for the next line scrub operation

1 Indicates when a line scrub operation is pending. When the scrubber is disabled, writing ‘1’
to this bit scrubs one line.

0 Enables / disables the automatic scrub functionality.

Table 947.L2C Error status/control (address offset 0x20)



AEROFLEX GAISLER 742 GRIP

Table 952.L2C Scrub delay register (address offset 0x34)
31 16 15 0

RESERVED Delay

31 :16 RESERVED

15 : 0 Delay the scrubber waits before issue the next line scrub operation

Table 953.L2C Error injection register (address offset 0x38)
31 2 1 0

Address RES INJECT

31 :2 Address to inject error at.

1 RESERVED

0 Set to ‘1’ to inject a error at “address”.

Table 954.L2C Memory type range register (address offset 0x80-0xFC)
31 18 17 16 15 2 1 0

Address field ACC Address mask CTRL

31 : 18 Address field to be compared to the cache address [31:18]

17 : 16 Access field. 00: uncached, 01: write-through

15 : 2 Address mask. Only bits set to 1 will be used during address comparison

1 Write-protection. 0: disabled, 1: enabled

0 Access control field. 0: disabled, 1: enabled



AEROFLEX GAISLER 743 GRIP

66.5 Configuration options
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Table 955 shows the configuration options of the core (VHDL generics).

Table 955.Configuration options

Generic name Function Allowed range Default

memtech The memory technology used for the internal FIFOs. 0 - NTECH 0

hmstndx AHB master index. 0 - NAHBMST-1 0

hslvndx AHB slave index. 0 - NAHBSLV-1 0

haddr ADDR filed of the AHB BAR (for data access). 0 - 16#FFF# 16#F00#

hmask MASK filed of the AHB BAR. 0 - 16#FFF# 16#F00#

ioaddr ADDR filed of the AHB BAR (for register and diagnos-
tic access).

0 - 16#FFF# 16#F00#

cached Fixed cachability mask. 0 - 16#FFFF# 16#0000#

hirq Interrupt line used by the core. 0 - NAHBIRQ-1 0

cen Reset value for cache enable. 1 = cache enabled. 0 - 1 0

hproten Reset value for enabling hprot functionality 0 - 1 0

wp Reset value for write-policy: 0 = copy-back, 1 = write-
through

0 - 1 0

repl Reset value for replacement policy: 0 = LRU, 1 =
pseudo-random

0 - 1 0

ways Number of cache ways 1 - 4 1

waysize Size of each cache way in kBytes 1 - 512 1

linesize Cache line size in bytes 32, 64 32

bbuswidth Maximum bus width on master AHB interface 32, 64, 128 128

bioaddr ADDR filed of the AHB BAR (for backend ioarea).
Appears in the bridge’s slave interface user-defined reg-
ister 1.

0 - 16#FFF# 0

biomask MASK filed of the AHB BAR. 0 - 16#FFF# 0

sbus The number of the AHB bus to which the slave interface
is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 1

stat Enables the statistics counters. 0 all counters is disabled.
1 enables the access/hit counter. 2 enables the bus usage
counter in addition to the access/hit counter.

0-2 0

arch Selects between separate (0) or shared (1) RAM in
multi-way configurations (see text below)

0 - 1 0

mtrr Number of MTRR registers 0 - 32 0

edacen Default value for the EDACEN field in the cache control
register

0 - 1 0

rmw Enables Read-Modify-Write for sub-word writes. 0 - 1 0

ft Enables the memory protection (EDAC) implementation 0 - 1 0

fttiming Simulate access timing as if memory protection was
enabled. (Only for prototype testing)

0 - 1 0

wbmask Wide-bus mask. Each bit in this value represent a
256Mbyte address range. To enabled wide accesses
(>32-bit) to an address range, set the corresponding bit to
‘1’.

0 - 16#FFFF# 16#FFFF#
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66.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x04B. For description of
vendor and device identifier see GRLIB IP Library User’s Manual

66.7 RAM usage

The L2C uses single-port RAM to implement both cache tags and data memory. The tags are imple-
mented using the SYNCRAM core, with the width and depth depending on the cache size configura-
tion. The data memory is implemented using the SYNCRAM_128BW or SYNCRAM_156BW core,
which is a 128-bit or 156-bit wide RAM wrapper with byte enables. The SYNCRAM_156BW is used
when memory protection (EDAC) is implemented. For multi-way caches, each way’s tag is imple-
mented with a separate SYNCRAM block. The data memory can be implemented with separate
SYNCRAM_128BW/156BW cores, or merged into the same SYNCRAM_128BW/156BW if the
ARCH generic is set to 1. This will reduce the number of SYNCRAM_128BW/156BW core in multi-
ways cache to one. The valid/dirty bits are stored in a SYNCRAM_2PFT core.

66.8 Signal descriptions

Table 956 shows the interface signals of the core (VHDL ports).

66.9 Library dependencies

Table 957 shows the libraries used when instantiating the core (VHDL libraries).

66.10 Instantiation

This example shows how the core can be instantiated.

library ieee;

Table 956.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSOV * Input Vector of all AHB slave outputs on the backend
AHB bus.

STO bit[2]: Access
bit[1]: Miss
bit[0]: Hit

Output Statistic output.

*) see GRLIB IP Library User’s Manual.

Table 957.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER L2CACHE Component Component declaration
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use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.l2cache.all;

entity l2c_ex is
  port (

clk : in std_ulogic;
    rst : in std_ulogic

);
end;
.
.
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal ahbsi2 : ahb_slv_in_type;
signal ahbso2 : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi2 : ahb_mst_in_type;
signal ahbmo2 : ahb_mst_out_vector := (others => ahbm_none);

architecture rtl of l2c_ex is

begin

...

l2c0 : l2c
  generic map(hslvidx => 5, hmstidx => 1, cen => 0, haddr => 16#400#, hmask => 16#C00#,
              ioaddr => 16#FF4#, cached => 16#00F3#, repl => 0, ways => 1,
              linesize => 32, waysize => 512, memtech => 0, bbuswidth => 64)
  port map(rst => rst, clk => clk, ahbsi => ahbsi, ahbso => ahbso(5),
           ahbmi => ahbmi2, ahbmo => ahbmo2(1), ahbsov => ahbso2);

...

end;
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67 L4STAT - LEON4 Statistics Unit

67.1 Overview

The LEON4 Statistics Unit (L4STAT) is used count events in the LEON4 processor and the AHB
bus, in order to create performance statistics for various software applications.

L4STAT consists of a configurable number of 32-bit counters, which increment on a certain event.
The counters roll over to zero when reaching their maximum value, but can also be automatically
cleared on reading to facilitate statistics building over longer periods. Each counter has a control reg-
ister where the event type is selected. In multi-processor systems, the control registers also indicates
which particular processor core is monitored. The table 958 below shows the event types that can be
monitored.

NOTE: L4STAT does currently not support double-clocked processor configurations. The processors
and statistics unit must be run on the same frequency as the AMBA buses for L4STAT to function cor-
rectly.

Table 958.Event types and IDs

ID Event description

Processor events:

0x00 Instruction cache miss

0x01 Instruction MMU TLB miss

0x02 Inctruction cache hold

0x03 Instruction MMU hold

0x08 Data cache miss

0x09 Data MMU TLB miss

0x0A Data cache hold

0x0B Data MMU hold

0x10 Data write buffer hold

0x11 Total instruction count

0x12 Integer instructions

0x13 Floating-point unit instruction count

0x14 Branch prediction miss

0x15 Execution time, excluding debug mode

0x17 AHB utilization (per AHB master) (implementation depedent)

0x18 AHB utilization (total) (implementation dependent)

0x22 Integer branches

0x28 CALL instructions

0x30 Regular type 2 instructions

0x38 LOAD and STORE instructions

0x39 LOAD instructions

0x3A STORE instructions

AHB events (only available if core is connected to a LEON4 Debug Support Unit):

0x40 AHB IDLE cycles

0x41 AHB BUSY cycles

0x42 AHB NON-SEQUENTIAL transfers

0x43 AHB SEQUENTIAL transfers

0x44 AHB read accesses

0x45 AHB write accesses
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Note that IDs 0x39 (LOAD instructions) and 0x3A (STORE instructions) will both count all LDST
and SWAP instructions. The sum of events counted for 0x39 and 0x3A may therefore be larger than
the number of events counted with ID 0x38 (LOAD and STORE instructions).

Event 0x00 - 0x3A can be counted of the core has been connected to one or several LEON4 processor
cores. Counting of events 0x40 - 0x5F requires that the core is connected to a LEON4 Debug Support
Unit (DSU). The core’s Counter control registers have a field that shows if the core has been imple-
mented with this connection. The documentation for the Debug Support Unit contains more informa-
tion on events 0x40 - 0x5F. Please note that the statistical outputs from the DSU may be subject to
AHB trace buffer filters.

The core can also be implemented with support for counting up to 15 external events. These events
can come from any source, but should be clocked by a clock which is synchronous with the AMBA
clock used for the L4STAT core.

67.2 Multiple APB interfaces

The core can be implemented with two AMBA APB interfaces. The first APB interface always has
precedence when both interfaces handle write operations to the same address.

67.3 Registers

The L4STAT core is programmed through registers mapped into APB address space.

0x46 AHB byte accesses

0x47 AHB half-word accesses

0x48 AHB word accesses

0x49 AHB double word accesses

0x4A AHB quad word accesses

0x4B AHB eight word accesses

0x4C AHB waitstates

0x4D AHB RETRY responses

0x4E AHB SPLIT responses

0x4F AHB SPLIT delay

0x50 AHB bus locked

0x51-0x5F Reserved

Implementation specific events:

0x60 - 0x6F External event 0 - 15

Table 959. L4STAT counter control register

APB address offset Register

0x00 Counter 0 value register

0x04 Counter 1 value register

4 * n Countern value register

0x80 Counter 0 control register

0x84 Counter 1 control register

0x80 + (4 *n) Countern control register

Table 958.Event types and IDs

ID Event description
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67.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x047. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 960.Counter value register
31 0

CVAL

31: 0 Counter value (CVAL) - This register holds the current value of the counter. If the core has been
implemented with support for keeping the maximum count (MC field of Counter control register is
‘1’) and the Counter control register field CD is ‘1’, then the value displayed by this register will be
the maximum counter value reached with the settings in the counter’s control register. Writing to this
register will write both to the counter and, if implemented, the hold register for the maximum
counter value.

Table 961.Counter control register
31 28 27 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 0

NCPU NCNT MC IA DS EE R EL CD SU CL EN EVENT ID CPU/AHBM

31: 28 Number of CPU (NCPU) - Number of supported processors - 1

27: 23 Number of counters (NCNT) - Number of implemented counters - 1

22 Maximum count (MC) - If this field is ‘1’ then this counter has support for keeping the maximum
count value

21 Internal AHB count (IA) - If this field is ‘1’ the core supports events 0x17 and 0x18

20 DSU support (DS) - If this field is ‘1’ the core supports events 0x40-0x5F

19 External events (EE) - If this field is ‘1’ the core supports external events (events 0x60 - 0x6F)

18 Reserved for future use

17 Event Level (EL) - The value of this field determines the level where the counter keeps running
when the CD field below has been set to ‘1’. If this field is ‘0’ the counter will count the time
between event assertions. If this field is ‘1’ the counter will count the cycles where the event is
asserted. This field can only be set if the MC field of this register is ‘1’.

16 Count maximum duration (CD) - If this bit is set to ‘1’ the core will save the maximum time the
selected event has been at the level specified by the EL field. This also means that the counter will be
reset when the event is activated or deactivated depending on the value of the EL field.

When this bit is set to ‘1’, the value shown in the counter value register will be the maximum current
value which may be different from the current value of the counter.

This field can only be set if the MC field of this register is ‘1’.

15: 14 Supervisor/User mode filter (SU) - “01” - Only count supervisor mode events, “10” - Only count
user mode events, others values - Count events regardless of user or supervisor mode. This setting
only applies to events 0x0 - 0x3A

: 13 Clear counter on read (CL) - If this bit is set the counter will be cleared when the counter’s value is
read. The register holding the maximum value will also be cleared, if implemented.

12 Enable counter (EN) - Enable counter

11: 4 Event ID to be counted

3: 0 CPU or AHB master to monitor.(CPU/AHBM) - The value of this field does not matter when select-
ing one of the events coming from the Debug Support Unit or one of the external events.
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67.5 Configuration options

Table 962 shows the configuration options of the core (VHDL generics).

67.6 Signal descriptions

Table 963 shows the interface signals of the core (VHDL ports).

Table 962.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to
access the statistical unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

ncnt Defines the number of counters 1 to 32 4

ncpu Defines the number of CPUs monitored 1 - 16 1

nmax If this generic is > 0, the core will include functionality
for tracking the longest consecutive time that an event is
active or inactive. The functionality will be available for
thenmax first counters.

0 - 32 0

lahben If this generic is 1, the core makes use of the AHBSI
input for events 0x17 and 0x18, otherwise the AHBSI
input is unused and events 0x17 and 0x18 will never
increment a counter.

0 - 1 0

dsuen If this generic is 1, the core makes use of the DSUO
input for events 0x40 - 0x5F, otherwise the DSUO input
is unused and events 0x40 - 0x5F will never increment a
counter.

0 - 1 0

nextev Defines the number of external events monitored 0 - 16 0

apb2en Enables the second APB port on the core. 0 - 1 0

pindex2 Selects which APB select signal (PSEL) will be used to
access the second interface of the statistical unit

0 to NAPBMAX-1 0

paddr2 The 12-bit MSB APB address for second interface 0 to 16#FFF# 0

pmask2 The APB address mask for second interface 0 to 16#FFF# 16#FFF#

Table 963.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBSI * Input AHB slave input signals -

DBGO Input LEON4 debug output signals -

DSUO ASTAT Input DSU4 output signals -

STATI EVENT[15:0] Input Input for 16 user defined events High

APB2I * Input Secondary APB slave input signals -

APB2O * Output Secondary APB slave output signals -

* see GRLIB IP Library User’s Manual
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67.7 Library dependencies

Table 964 shows libraries used when instantiating the core (VHDL libraries).

67.8 Component declaration

The core has the following component declaration.

library gaisler;
use gaisler.leon3.all;
use gausler.leon4.all;

entity l4stat is
  generic (
    pindex      : integer := 0;
    paddr       : integer := 0;
    pmask       : integer := 16#fff#;
    ncnt        : integer := 4;
    ncpu        : integer := 1
    );
  port (
    rstn   : in std_ulogic;
    clk    : in std_ulogic;
    apbi   : in apb_slv_in_type;
    apbo   : out apb_slv_out_type;
    ahbsi  : in  ahb_slv_in_type;
    dbgo   : in l4_debug_out_vector(0 to NCPU-1));
end;

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon4.all;

begin

l4sgen : if CFG_L4S_ENABLE = 1 generate
    l4stat0 : l4stat
      generic map (pindex => 11, paddr => 11, ncnt => CFG_L4S_CNT, ncpu => CFG_NCPU)
      port map (rstn, clkm, apbi, apbo(11), ahbsi, dbgo);
end generate;

Table 964.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals Signal definitions

GAISLER LEON4 Signals, component Component declaration
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68 LEON3 - High-performance SPARC V8 32-bit Processor

68.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions.

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

68.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

68.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch
pad ram can be added to both the instruction and data cache controllers to allow 0-waitstates access
memory without data write back.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 188. LEON3 processor core block diagram

SRMMU DTLBITLB
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68.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU (available from Aerof-
lex Gaisler) and one for the Meiko FPU core (available from Sun Microsystems). The floating-point
processors and co-processor execute in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

68.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and physical memory. A three-level hardware table-walk is imple-
mented, and the MMU can be configured to up to 64 fully associative TLB entries per implemented
TLB.

68.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

68.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

68.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are generated
to optimise the data transfer.

68.1.8 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the application
is idle, and does not require tool-specific support in form of clock gating. To implement clock-gating,
a suitable clock-enable signal is produced by the processor.

68.1.9 Multi-processor support

LEON3 is designed to be used in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.

68.1.10 Performance

Using 8K + 4K caches, 16x16 multiplier and branch prediction, the dhrystone 2.1 benchmark reports
1.4 DMIPS/MHz using the gcc-4.4.2 compiler (-O3 -mcpu=v8).



AEROFLEX GAISLER 754 GRIP

68.2 LEON3 integer unit

68.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON3 integer unit has the following
main features:

• 7-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator

• Radix-2 divider (non-restoring)

• Static branch prediction

• Single-vector trapping for reduced code size

Figure 189 shows a block diagram of the integer unit.

Figure 189. LEON3 integer unit datapath diagram
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68.2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the instruction cache.
Otherwise, the fetch is forwarded to the AHB bus. The instruction is valid at the end of this stage and is latched
inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are generated.
3. RA (Register access): Operands are read from the register file or from internal data bypasses.
4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and for JMPL/

RETT, the address is generated.
5. ME (Memory): Data cache is read or written at this time.
6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appropriate.
7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the register file.

Table 965 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 1 clock (1 clock issue rate, 2 clock data latency), for the 32x32 multiplier and 4 clocks (issue
rate, 4/5 clocks data latency for standard/pipelined version) for the 16x16 version.

The processor pipeline can be configured for one or two cycles load delay. A branch interlock occurs
if an instruction that modifies the ICC bits in %psr is followed by a BICC or TICC instructions within
two clocks, unless branch prediction has been enabled.

68.2.3 SPARC Implementor’s ID

Aeroflex Gaisler is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %psr.

68.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

68.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-

Table 965.Instruction timing

Instruction Cycles (MMU disabled) Cycles (MMU fast-write) Cycles (MMU slow-write)

JMPL, RETT 3 3 3

Double load 2 2 2

Single store 2 2 4

Double store 3 3 5

SMUL/UMUL 1/4* 1/4* 1/4*

SDIV/UDIV 35 35 35

Taken Trap 5 5 5

Atomic load/store 3 3 5

All other instructions 1 1 1
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plier which is iterated four times. To improve the timing, the 16x16 multiplier can optionally be pro-
vided with a pipeline stage.

68.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umacrs1, reg_imm, rd
smacrs1, reg_imm, rd

Operation:

prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

68.2.7 Compare and Swap instruction (CASA)

LEON3 implements the SPARC V9 Compare and Swap Alternative (CASA) instruction. The CASA
is enabled when the integer load delay is set to 1 and the NOTAG generic is 0. The CASA operates as
described in the SPARC V9 manual. The instruction is privileged but setting ASI = 0xA (user data)
will allow it to be used in user mode.

68.2.8 Branch prediction

Static branch prediction can be optionally be enabled, and reduces the penalty for branches preceded
by an instruction that modifies the integer condition codes. The predictor uses a branch-always strat-
egy, and starts fetching instruction from the branch address. On a prediction hit, 1 or 2 clock cycles
are saved. No extra penalty incurs for mis-prediction. Branch prediction improves the performance
with 10 - 20% on most control-type applications.

68.2.9 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/29 and %asr30/31)
registers; one with the break address and one with a mask:
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Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap 0x0B is gener-
ated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

68.2.10 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode

• Instruction result

• Load/store data and address

• Trap information

• 30-bit time tag

The operation and control of the trace buffer is further described in section 25.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.

68.2.11 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The
value in this field is identical to thehindex generic parameter in the VHDL model.

value in this field is identical to thehindex generic parameter in the VHDL model.
[17]: Clock switching enabled (CS). If set, switching between AHB and CPU frequency is available.
[16:15]: CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 190. Watch-point registers
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Figure 191. LEON3 configuration register (%asr17)
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[14]: Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero after reset.
[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not

implemented. Set to zero after reset.
[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from

the lddel generic parameter in the VHDL model.
[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU, “11” = GRFPU-Lite
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 4)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.
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68.2.12 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

68.2.13 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

Table 966.Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error during data store

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during data load, MMU page fault

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)
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68.2.14 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, alternative address spaces can be accessed. The table shows the ASI usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation.

68.2.15 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:

wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.

68.2.16 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is always aligned on a 4 kbyte boundary. If
RSTADDR is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RSTVEC. This
allows the reset address to be changed dynamically.

68.2.17 Multi-processor support

The LEON3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the first processor will
start. All other processors will remain halted in power-down mode. After the system has been initial-
ized, the remaining processors can be started by writing to the ‘MP status register’, located in the
multi-processor interrupt controller. The halted processors start executing from the reset address (0 or

Table 967.ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache (and also data cache when system is implemented with MMU)

0x11 Flush data cache

Table 968.Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
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RSTADDR generic). Enabling SMP is done by setting thesmpgeneric to 1 or higher. Cache snooping
should always be enabled in SMP systems to maintain data cache coherency between the processors.

68.2.18 Cache sub-system

The LEON3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativity
of 2 - 4. The set size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-set configurations, one of three replacement policies can be selected: least-recently-
used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm can only be
used when the cache is 2-way associative. A cache line can be locked in the instruction or data cache
preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU algo-
rithm needs extra flip-flops per cache line to store access history. The random replacement algorithm
is implemented through modulo-N counter that selects which line to evict on cache miss.

Cachability for both caches is controlled through the AHB plug&play address information. The mem-
ory mapping for each AHB slave indicates whether the area is cachable, and this information is used
to (statically) determine which access will be treated as cacheable. This approach means that the cach-
ability mapping is always coherent with the current AHB configuration. The AMBA plug&play cach-
ability can be overridden using the CACHED generic. When this generic is not zero, it is treated as a
16-bit field, defining the cachability of each 256 Mbyte address block on the AMBA bus. A value of
16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.

68.2.19 AHB bus interface

The LEON3 processor uses one AHB master interface for all data and instruction accesses. Instruc-
tions are fetched with incremental bursts if the IB bit is set in the cache control register, otherwise sin-
gle READ cycles are used.

Data is accessed using byte, half-word and word accesses. A double load/store data access will gener-
ate an incremental burst with two accesses. When the data cache is enabled, cacheable data is fetched
using one word access for each read miss in the data cache.

The HPROT signals of the AHB bus are driven to indicate if the accesses is instruction or data, and if
it is a user or supervisor access.

68.3 Instruction cache

68.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On an instruction
cache miss to a cachable location, the instruction is fetched and the corresponding tag and data line
updated. In a multi-set configuration a line to be replaced is chosen according to the replacement pol-
icy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed instructions due
to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is completed. If
the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) during the line fill,
the line fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction
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streaming is enabled even when the cache is disabled. In this case, the fetched instructions are only
forwarded to the IU and the cache is not updated. During cache line refill, incremental burst are gener-
ated on the AHB bus.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in the
cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache miss
will occur, triggering a new access to the failed address. If the error remains, an instruction access
error trap (tt=0x1) will be generated.

68.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 192:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history, otherwise 0.
[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. A FLUSH instruction will clear all valid bits. V[0] corresponds to address 0 in the cache line, V[1] to
address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits and 20
tag bits. The cache rams are sized automatically by the ram generators in the model.

68.4 Data cache

68.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a data cache
read-miss to a cachable location 4 bytes of data are loaded into the cache from main memory. The
write policy for stores is write-through with no-allocate on write-miss. In a multi-set configuration a
line to be replaced on read-miss is chosen according to the replacement policy. Locked AHB transfers
are generated for LDST and SWAP instructions. If a memory access error occurs during a data load,
the corresponding valid bit in the cache tag will not be set. and a data access error trap (tt=0x9) will be
generated.

Figure 192. Instruction cache tag layout examples

07891031

VALIDATAG LRR LOCK

03891231

VALIDATAG LRR LOCK

Tag for 1 Kbyte set, 32 bytes/line

Tag for 4 Kbyte set, 16bytes/line

00 0000
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68.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being read
in to the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b.

Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

68.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 193:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if LRR is not used.
[8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the configuration.
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. V[0] corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits and 21
tag bits. The cache rams are sized automatically by the ram generators in the model.

68.5 Additional cache functionality

68.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, while the data cache is also
flushed by setting the FD bit in the cache control register. When the processor is implemented with an
MMU, both I and D caches can be flushed by writing to any location with ASI=0x10.

Cache flushing takes one cycle per cache line, during which the IU will not be halted, but during
which the caches are disabled. When the flush operation is completed, the cache will resume the state
(disabled, enabled or frozen) indicated in the cache control register. Diagnostic access to the cache is
not possible during a FLUSH operation and will cause a data exception (trap=0x09) if attempted.

68.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC, 0xD,
0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache offset will be

Figure 193. Data cache tag layout

07891031

VALIDATAG LRR LOCK
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used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the address tag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG field (see above) and the valid bits are written with the D[7:0] of
the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written into the lock bit (if
enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be written in the
indexed cache line and set is selected by A[4:2].

In multi-way caches, the address of the tags and data of the ways are concatenated. The address of a
tag or data is thus:

ADDRESS = WAY & LINE & DATA & “00”

Examples: the tag for line 2 in way 1 of a 2x4 Kbyte cache with 16 byte line would be:

A[13:12] = 1 (WAY)

A[11:5] = 2 (TAG)

=> TAG ADDRESS = 0x1040

The data of this line would be at addresses 0x1040 - 0x104C

68.5.3 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with optional
lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the replacement
algorithm. A cache line is locked by performing a diagnostic write to the instruction tag on the cache
offset of the line to be locked setting the Address Tag field to the address tag of the line to be locked,
setting the lock bit and clearing the valid bits. The locked cache line will be updated on a read-miss
and will remain in the cache until the line is unlocked. The first cache line on certain cache offset is
locked in the set 0. If several lines on the same cache offset are to be locked the locking is performed
on the same cache offset and in sets in ascending order starting with set 0. The last set can not be
locked and is always replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line locking
was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking was
enabled otherwise it will be 0.

68.5.4 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of the
local instruction is configurable from 1-256 kB. The local instruction ram can be mapped to any 16
Mbyte block of the address space. When executing in the local instruction ram all instruction fetches
are performed from the local instruction ram and will never cause IU pipeline stall or generate an
instruction fetch on the AHB bus. Local instruction ram can be accessed through load/store integer
word instructions (LD/ST). Only word accesses are allowed, byte, halfword or double word access to
the local instruction ram will generate data exception.
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68.5.5 Local scratch pad ram

Local scratch pad ram can optionally be attached to both instruction and data cache controllers. The
scratch pad ram provides fast 0-waitstates ram memories for both instructions and data. The ram can
be between 1 - 256 kbyte, and mapped on any 16 Mbyte block in the address space. Accessed per-
formed to the scratch pad ram are not cached, and will not appear on the AHB bus. The scratch pads
rams do not appear on the AHB bus, and can only be read or written by the processor. The instruction
ram must be initialized by software (through store instructions) before it can be used. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000. See section 68.10 for
additional configuration details. Note: local scratch pad ram can only be enabled when the MMU is
disabled.

68.5.6 Data Cache snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled through
thedsnoopgeneric. When enabled, the data cache monitors write accesses on the AHB bus to cache-
able locations. If an other AHB master writes to a cacheable location which is currently cached in the
data cache, the corresponding cache line is marked as invalid.

68.5.7 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 194). Each cache can be in one of three modes: disabled, enabled and frozen. If
disabled, no cache operation is performed and load and store requests are passed directly to the mem-
ory controller. If enabled, the cache operates as described above. In the frozen state, the cache is
accessed and kept in sync with the main memory as if it was enabled, but no new lines are allocated
on read misses.

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[17]: Separate snoop tags (ST). This read-only bit is set if separate snoop tags are implemented.
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation

is in progress.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by

Figure 194. Cache control register
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enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

68.5.8 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches.

[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least recently used

(LRU), 10 - least recently replaced (LRR), 11 - random
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (SETS). Number of sets in the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-way

associative, 011 - 4-way associative
[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 2SIZE

[19]: Local ram (LR). Set if local scratch pad ram is implemented.
[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[15:12]: Local ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad ram. Local ram size =
2LRSZ

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.
[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

68.5.9 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:

flush
set 0x81000f, %g1
sta %g1, [%g0] 2

68.6 Memory management unit

A SPARC V8 reference MMU (SRMMU) can optionally be enabled in the LEON3 configuration. For
details on the SRMMU operation, see the SPARC V8 manual.

Table 969.ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register

Figure 195. Cache configuration register
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68.6.1 MMU/Cache operation

When the MMU is disabled, the MMU is bypassed and the caches operate with physical address map-
ping. When the MMU is enabled, the caches tags store the virtual address and also include an 8-bit
context field. Both the tag address and context field must match to generate a cache hit.

If cache snooping is desired when the MMU is enabled, bit 2 of thedsnoopgeneric must be set. This
will also store the physical address in each cache tag, which is then used for snooping. The size of
each data cache way has to be smaller or equal to the MMU page size, which typically is 4 Kbyte (see
below). This is necessary to avoid aliasing in the cache since the virtual tags are indexed with a virtual
offset while the physical tags are indexed with a physical offset. Physical tags and snoop support is
needed for SMP systems using the MMU (linux-2.6).

Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load hit. In
case of a cache miss or store hit (write-through cache), 2 extra clock cycles are used to generate the
physical address if there is a TLB hit. If there is a TLB miss the page table must be traversed, resulting
in up to four AMBA read accesses and one possible writeback operation. If a combined TLB is used
by the instruction cache, the translation is stalled until the TLB is free. If fast TLB operation is
selected (tlb_type = 2), the TLB will be accessed simultaneously with tag access, saving 2 clocks on
cache miss. This will increase the area somewhat, and may reduce the timing, but usually results in
better overall throughput.

An MMU page fault will generate trap 0x09, and update the MMU status registers as defined in the
SPARC V8 Manual. The cache and memory will not be modified on an MMU page fault.

68.6.2 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries (for each implemented TLB) can be set to 2 - 64 in the configuration record.
The organisation of the TLB and number of entries is not visible to the software and does thus not
require any modification to the operating system.

68.6.3 Variable minimum page sizes

The standard minimum page size for the SRMMU is 4 Kbyte. The minimum page size can also be
configured to 8, 16 or 32 Kbyte in order to allow for large data cache ways. The page sizes for level 1,
2 and 3 is seen in the table below:

The layouts of the indexes are chosen so that PTE pagetables can be joined together inside one MMU
page without leaving holes. The page size can optionally also be choose by the program at run-time by
setting genericmmupgszto 1. In this case the page size is choose by bit [17:16] in the MMU control
register.

Table 970.MMU page size

Scheme Level-1 Level-2 Level-3

4 Kbyte (default) 16 Mbyte 256 Kbyte 4 Kbyte

8 Kbyte 32 Mbyte 512 Kbyte 8 Kbyte

16 Kbyte 64 Mbyte 1 Mbyte 16 Kbyte

32 Kbyte 256 Mbyte 2 Mbyte 32 Kbyte
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68.6.4 MMU registers

The following MMU registers are implemented:

The MMU control register layout can be seen below, while the definition of the remaining MMU reg-
isters can be found in the SPARC V8 manual.

[31:28]: MMU Implementation ID. Hardcoded to “0000”.
[27:24]: MMU Version ID. Hardcoded to “0001”.
[23:21]: Number of ITLB entries. The number of ITLB entries is calculated as 2ITLB . If the TLB is shared between

instructions and data, this field indicates to total number of TLBs.
[20:18]: Number of DTLB entries. The number of DTLB entries is calculated as 2DTLB. If the TLB is shared between

instructions and data, this field is zero.
[17:16]: Page size. The size of the smallest MMU page. 0 = 4 Kbyte; 1 = 8 Kbyte; 2 = 16 Kbyte; 3 = 32 Kbyte. If the page

size is programmable, this field is writable, otherwise it is read-only.
[15]: TLB disable. When set to 1, the TLB will be disabled and each data access will generate an MMU page table walk.
[14]: Separate TLB. This bit is set to 1 if separate instruction and data TLBs are implemented.
[1]: No Fault. When NF= 0, any fault detected by the MMU causes FSR and FAR to be updated and causes a fault to be

generated to the processor. When NF= 1, a fault on an access to ASI 9 is handled as when NF= 0; a fault on an access
to any other ASI causes FSR and FAR to be updated but no fault is generated to the processor.

[0]: Enable MMU. 0 = MMU disabled, 1 = MMU enabled.

68.6.5 ASI mappings

When the MMU is used, the following ASI mappings are added:

Table 971.MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

Table 972.MMU ASI usage

ASI Usage

0x10 Flush I and D cache

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x18 Flush TLB and I/D cache

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

0x1E MMU snoop tags diagnostic access

Figure 196. MMU control register
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68.6.6 Snoop tag diagnostic access

If the MMU has been configured to use separate snoop tags, they can be accessed via ASI 0x1E. This
is primarily useful for RAM testing, and should not be performed during normal operation. The figure
below shows the layout of the snoop tag for a 1 Kbyte data cache:

[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag. LEON3FT only.
[0]: Invalid. When set, the cache line is not valid and will cause a cache miss if accessed by the processor. Only present

if fast snooping is enabled.

68.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. Two different FPU’s can be interfaced the LEON3 pipeline: Aeroflex
Gaisler’s GRFPU and GRFPU-Lite. Selection of which FPU to use is done through the VHDL
model’s generic map. The characteristics of the FPU’s are described in the next sections.

68.7.1 Aeroflex Gaisler’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements
all SPARC V8 FPU instructions. The FPU is interfaced to the LEON3 pipeline using a LEON3-spe-
cific FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with inte-
ger instructions. Only in case of a data or resource dependency is the integer pipeline held. The
GRFPU is fully pipelined and allows the start of one instruction each clock cycle, with the exception
is FDIV and FSQRT which can only be executed one at a time. The FDIV and FSQRT are however
executed in a separate divide unit and do not block the FPU from performing all other operations in
parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2.

Table 973.GRFPU instruction timing with GRFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25

Figure 197. Snoop cache tag layout
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68.7.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

When the GRFPU-Lite is enabled in the model, the version field in %fsr has the value of 3.

68.8 Vendor and device identifiers

The core has vendor identifiers 0x01 (Aeroflex Gaisler) and device identifiers 0x003. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

68.9 Implementation

68.9.1 Area and timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations.

68.9.2 Technology mapping

LEON3 has two technology mapping generics,fabtechandmemtech. Thefabtechgeneric controls the
implementation of some pipeline features, whilememtechselects which memory blocks will be used
to implement cache memories and the IU/FPU register file.Fabtechcan be set to any of the provided
technologies (0 - NTECH) as defined in the GRPIB.TECH package. See the GRLIB Users’s Manual
for available settings formemtech.

68.9.3 RAM usage

The LEON3 core maps all usage of RAM memory on thesyncram, syncram_2pand syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.

Register file

Table 974.GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65

Table 975.Area and timing

Configuration

Actel AX2000 ASIC (0.13 um)

Cells RAM64 MHz Gates MHz

LEON3, 8 + 8 Kbyte cache 6,500 40 30 25,000 400

LEON3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 30,000 400
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The register file is implemented with twosynram_2pblocks for all technologies where the
regfile_3p_inferconstant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
is shown in the following table:

If regfile_3p_inferis set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:

Number of flip-flops = ((NWINDOWS *16) + 8) * 32

FP register file

If FPU support is enabled, the FP register file is implemented with foursynram_2pblocks when the
regfile_3p_inferconstant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32.

If regfile_3p_inferis set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.

Cache memories

RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.

The tag memory is implemented with onesyncramper cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:

Depth = (cache way size in bytes) / (cache line size in bytes)

Width = 32 - log2(cache way size in bytes) + (cache line size in bytes)/4 + lrr + lock

For a 2 Kbyte cache way with lrr replacement and 32 bytes/line, the tag RAM depth will be (2048/32)
= 64. The width will be: 32 - log2(2048) + 32/4 + 1 = 32 - 11 + 8 + 1 = 28. The tag RAM organization
will thus be 64x28 for the configuration. If the MMU is enabled, the tag memory width will increase
with 8 to store the process context ID, and the above configuration will us a 64x36 RAM.

If snooping is enabled, the tag memories will be implemented using thesyncram_dpcomponent
(dual-port RAM). One port will be used by the processor for cache access/refill, while the other port
will be used by the snooping and invalidation logic. The size of thesyncram_dpblock will be the
same as when snooping is disabled. If physical snooping is enabled (separate snoop tags), one extra
RAM block per data way will be instatiated to hold the physical tags. The width of the RAM block
will be the same as the tag address: 32 - log2(way size). A 4 Kbyte data cache way will thus require a
32 - 12 = 20 bit wide RAM block for the physical tags. If fast snooping is enabled, the tag RAM (vir-
tual and physical) will be implemented usingsyncram_2pinstead ofsyncram_dp. This can be used to
implement snooping on technologies which lack dual-port RAM but have 2-port RAM.

The data part of the caches (storing instructions or data) is always 32 bit wide. The depth is equal to
the way size in bytes, divided by 4. A cache way of 2 Kbyte will thus usesyncramcomponent with
and organization of 512x32.

Table 976.syncram_2p sizes for LEON3 register file

Register windows Syncram_2p organization

2 - 3 64x32

4 - 7 128x32

8 - 15 256x32

16-31 512x31

32 1024x32
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Instruction Trace buffer

The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the TBUF generic,
which indicates the total size of trace buffer in Kbytes. If TBUF = 1 (1 Kbyte), then four RAM blocks
of 64x32 will be used. If TBUF = 2, then the RAM blocks will be 128x32 and so on.

Scratch pad RAM

If the instruction scratch pad RAM is enabled, asyncramblock will be instantiated with a 32-bit data
width. The depth of the RAM will correspond to the configured scratch pad size. An 8 Kbyte scratch
pad will use asyncramwith 2048x32 organization. The RAM block for the data scratch pad will be
configured in the same way as the instruction scratch pad.

68.9.4 Double clocking

The LEON3 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
quency. The two clocks have to be synchronous and a multicycle paths between the two clock
domains have to be defined at synthesis tool level. A separate component (leon3s2x) is provided for
the double clocked core. Double clocked versions of DSU (dsu3_2x) and MP interrupt controller
(irqmp2x) are used in a double clocked LEON3 system. An AHB clock qualifier signal (clkeninput)
is used to identify end of AHB cycle. The AHB qualifier signal is generated in CPU clock domain and
is high during the last CPU clock cycle under AHB clock low-phase. Sampleleon3-clk2xdesign pro-
vides a module that generates an AHB clock qualifier signal.

Double-clocked design has two clock domains: AMBA clock domains (HCLK) and CPU clock
domain (CPUCLK). LEON3 (leon3s2x component) and DSU3 (dsu3_2x) belong to CPU clock
domain (clocked by CPUCLK), while the rest of the system is in AMBA clock domain (clocked by
HCLK). Paths between the two clock domains (paths starting in CPUCLK domain and ending in
HCLK and paths starting in HCLK domain and ending in CPUCLK domain) are multicycle paths
with propagation time of two CPUCLK periods (or one HCLK period) with following exceptions:

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK 2 CPUCLK

CPUCLK ahbsi CPUCLK 2 CPUCLK

CPUCLK ahbso CPUCLK 2 CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK
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68.9.5 Clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To ensure proper start-up state, the clock should not be gated during reset and at
least 3 clocks after that reset has been de-asserted.

The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3) is used, the DSUO.pwd signal should be used instead of
DBGO.idle. This will ensure that the clock also is re-enabled when the processor is switched from

Start point Through End point Propagation time

dsu3_2x core

CPUCLK ahbmi  CPUCLK 2 CPUCLK

CPUCLK ahbsi  CPUCLK 2 CPUCLK

dsui  CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register)  r[*] (register) 1 CPUCLK

Figure 198. Examples of LEON3 clock gating
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power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
ensure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template designleon3-clock-gatingshows an example of a clock-gated system.
The leon3cgentity should be used when clock gating is implemented. This entity has one input more
(GCLK) which should be driven by the gated clock. Using the double-clocked version of leon3
(leon3s2x), the GCLK2 is the gated double-clock while CLK and CLK2 should be continuous.

68.9.6 Scan support

If the SCANTEST generic is set to 1, support for scan testing is enabled. This will make use of the
AHB scan support signals in the following manner: when AHBI.testen and AHBI.scanen are both ‘1’,
the select signals to all RAM blocks (cache RAM, register file and DSU trace buffers) are disabled.
This means that when the scan chain is shifted, no accidental write or read can occur in the RAM
blocks. The scan signal AHBI.testrst is not used as there are no asynchronous resets in the LEON3
core.
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68.10 Configuration options

Table 977 shows the configuration options of the core (VHDL generics).

Table 977.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit

0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier, 4 - Technology specific multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10
- non-blocking FPC
15: Meiko

16 - 31: as above (modulo 16) but use netlist

0 - 31 0

v8 Generate SPARC V8 MUL and DIV instructions

0 : No multiplier or divider

1 : 16x16 multiplier

2 : 16x16 pipelined multiplier

16#32# : 32x32 pipelined multiplier

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Disable tagged arithmetic and CASA instructions 0 - 1 0

nwp Number of watchpoints 0 - 4 0

icen Enable instruction cache 0 - 1 1

irepl Instruction cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

isets Number of instruction cache sets 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache set in kByte 1 - 256 1

isetlock Enable instruction cache line locking 0 - 1 0

dcen Data cache enable 0 - 1 1

drepl Data cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

dsets Number of data cache sets 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4

dsetsize Size of each data cache set in kByte 1 - 256 1

dsetlock Enable data cache line locking 0 - 1 0
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dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: slow, 2: fast (see text)

Bit 2: 0: simple snooping, 1: save extra physical tags (MMU
snooping)

0 - 6 0

ilram Enable local instruction RAM 0 - 1 0

ilramsize Local instruction RAM size in kB 1 - 512 1

ilramstart 8 MSB bits used to decode local instruction RAM area 0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0

dlramsize Local data RAM size in kB 1 - 512 1

dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type 0 : separate TLB with slow write
1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but might create a
critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance
with about 5%.

Note that lddel = 1 is required for CASA.

1 - 2 2

disas Print instruction disassembly in VHDL simulator console. 0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address 0 - (2**20-1) 0

smp Enable multi-processor support 0 - 15 0

cached Fixed cacheability mask 0 - 16#FFFF# 0

scantest Enable scan test support 0 - 1 0

mmupgsz MMU Page size. 0 = 4K, 1 = 8K, 2 = 16K, 3 = 32K, 4 = pro-
grammable.

0 - 4 0

bp Enable branch prediction 0 - 1 0

Table 977.Configuration options

Generic Function Allowed range Default
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68.11 Signal descriptions

Table 978 shows the interface signals of the core (VHDL ports).

68.12 Library dependencies

Table 979 shows the libraries used when instantiating the core (VHDL libraries).

68.13 Component declaration

The core has the following component declaration.

entity leon3s is
  generic (
    hindex    : integer               := 0;
    fabtech   : integer range 0 to NTECH  := 0;
    memtech   : integer range 0 to NTECH  := 0;

Table 978.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input AMBA and processor clock (leon3s, leon3cg) -

CLK2 Input Processor clock in 2x mode (leon3sx2)

GCLK2 Input Gated processor clock in 2x mode (leon3sx2)

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Reset power-down and error mode High

RUN Input Start after reset (SMP system only) High

RSTVEC[31:12] Input Reset start addr. (SMP and dynamic reset addr.) -

IACT Input Unused -

INDEX[3:0] Input Unused -

HRDRST Input Unused -

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

PWD Output Processor in power-down mode High

FPEN Output Floating-point unit enabled High

IDLE Output Always low High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low

GCLK Input Gated processor clock for leon3cg

* see GRLIB IP Library User’s Manual

Table 979.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals LEON3 component declaration, interrupt and
debug signals declaration
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    nwindows  : integer range 2 to 32 := 8;
    dsu       : integer range 0 to 1  := 0;
    fpu       : integer range 0 to 3  := 0;
    v8        : integer range 0 to 2  := 0;
    cp        : integer range 0 to 1  := 0;
    mac       : integer range 0 to 1  := 0;
    pclow     : integer range 0 to 2  := 2;
    notag     : integer range 0 to 1  := 0;
    nwp       : integer range 0 to 4  := 0;
    icen      : integer range 0 to 1  := 0;
    irepl     : integer range 0 to 2  := 2;
    isets     : integer range 1 to 4  := 1;
    ilinesize : integer range 4 to 8  := 4;
    isetsize  : integer range 1 to 256 := 1;
    isetlock  : integer range 0 to 1  := 0;
    dcen      : integer range 0 to 1  := 0;
    drepl     : integer range 0 to 2  := 2;
    dsets     : integer range 1 to 4  := 1;
    dlinesize : integer range 4 to 8  := 4;
    dsetsize  : integer range 1 to 256 := 1;
    dsetlock  : integer range 0 to 1  := 0;
    dsnoop    : integer range 0 to 6:= 0;
    ilram      : integer range 0 to 1 := 0;
    ilramsize  : integer range 1 to 512 := 1;
    ilramstart : integer range 0 to 255 := 16#8e#;
    dlram      : integer range 0 to 1 := 0;
    dlramsize  : integer range 1 to 512 := 1;
    dlramstart : integer range 0 to 255 := 16#8f#;
    mmuen     : integer range 0 to 1  := 0;
    itlbnum   : integer range 2 to 64 := 8;
    dtlbnum   : integer range 2 to 64 := 8;
    tlb_type  : integer range 0 to 1 := 1;
    tlb_rep   : integer range 0 to 1 := 0;
    lddel     : integer range 1 to 2  := 2;
    disas     : integer range 0 to 1  := 0;
    tbuf      : integer range 0 to 64 := 0;
    pwd       : integer range 0 to 2  := 2;     -- power-down
    svt       : integer range 0 to 1  := 1;     -- single vector trapping
    rstaddr   : integer               := 0;
    smp       : integer range 0 to 15 := 0;    -- support SMP systems
    cached    : integer               := 0;     -- cacheability table
    scantest  : integer               := 0

mmupgsz   : integer range 0 to 5  := 0;
    bp        : integer               := 1
);

port (
    clk    : in  std_ulogic;
    rstn   : in  std_ulogic;
    ahbi   : in  ahb_mst_in_type;
    ahbo   : out ahb_mst_out_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : in  ahb_slv_out_vector;
    irqi   : in  l3_irq_in_type;
    irqo   : out l3_irq_out_type;
    dbgi   : in  l3_debug_in_type;
    dbgo   : out l3_debug_out_type
  );
end;
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69 LEON3FT - Fault-Tolerant SPARC V8 Processor

69.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, on-chip debug support and multi-processor extensions.

The LEON3FT processor is a derivative of the standard LEON3 SPARC V8 processor, enhanced with
fault-tolerance against SEU errors. The fault-tolerance is focused on the protection of on-chip RAM
blocks, which are used to implement IU/FPU register files and the cache memory.

The LEON3FT processor is functionally identical to the standard LEON3 with the exception that
LEON3FT can be implemented with different behaviour for the data cache. This chapter only outlines
the FT features and the differences in data cache.

69.2 Register file SEU protection

69.2.1 IU SEU protection

The SEU protection for the integer unit register file can be implemented in four different ways,
depending on target technology and available RAM blocks. The SEU protection scheme is selected
during synthesis, using theiuft VHDL generic. Table 980 below shows the implementation character-
istics of the four possible SEU protection schemes.

The SEU error detection has no impact on behavior, but a correction cycle (scheme 1 and 3) will delay
the current instruction with 6 clock cycles. An uncorrectable error in the IU register file will cause
trap 0x20 (register_access_error).

69.2.2 FPU SEU protection

The FPU register file has similar SEU protection as the IU register file, but with less configuration
options. When the GRFPU is selected and the FPU register file protection is enabled, the protection
scheme is always 8-bit parity without pipeline restart. For GRFPU-Lite the protection scheme is
always 4-bit parity with pipeline restart. An uncorrectable error in the FPU register file will cause an
(deferred) FPU exception with %fsr.ftt set to 5 (hardware_error). When FPU register file protection is
disabled the FPU register file is implemented using flip-flops.

Table 980.Integer unit SEU protection schemes

ID Implementation Description

0 Hardened flip-flops or TMR Register file implemented with SEU hardened flip-flops. No error checking.

1 4-bit parity with restart 4-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits
per word). Pipeline restart on correction.

2 8-bit parity without restart 8-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits
per word). Correction on-the-fly without pipeline restart.

3 7-bit BCH with restart 7-bit BCH checksum per 32-bit word. Detects 2 bits and corrects 1 bit per
word. Pipeline restart on correction.
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69.2.3 ASR16 register

ASR register 16 (%asr16) is used to control the IU/FPU register file SEU protection. It is possible to
disable the SEU protection by setting the IDI/FDI bits, and to inject errors using the ITE/FTE bits.
Corrected errors in the register file are counted, and available in ICNT and FCNT fields. The counters
saturate at their maximum value (7), and should be reset by software after read-out.

[31:30]: FP FT ID - Defines which SEU protection is implemented in the FPU (table 980).
[29:27]: FP RF error counter - Number of detected parity errors in the FP register file.
[26:18]: Reserved
[17]: FPU RF Test Enable - Enables FPU register file test mode. Parity bits are xored with TB before written to the FPU

register file.
[16]: FP RF protection disable (FDI) - Disables FP RF parity protection when set.
[15:14]: IU FT ID - Defines which SEU protection is implemented in the IU (table 980).
[13:11]: IU RF error counter - Number of detected parity errors in the IU register file.
[10:3]: RF Test bits (FTB) - In test mode, these bits are xored with correct parity bits before written to the register file.
[2]: DP ram select (DP) - Only applicable if the IU or FPU register files consists of two dual-port rams. See table below.
[1]: IU RF Test Enable - Enables register file test mode. Parity bits are xored with TB before written to the register file.
[0]: IU RF protection disable (IDI) - Disables IU RF parity protection when set.

69.2.4 Register file EDAC/parity bits diagnostic read-out

The register file EDAC/parity bits can be read out through the DSU address space at 0x300800, or by
the processor using an LDUHA instruction to ASI 0x0F. The ECC bits are read out for both read ports
simultaneously as defined in the figure below:

When the checkbits are read out using LDUHA, bit 29 (RFT) in the cache control register should be
set to 1. The desired register should be used as address, as shown below (%l0):

lduha [%l0 + %l0] 0x0F, %g1

Bit 0 (RF EDAC disable) in %asr16 should be set to 1 during diagnostic read-out with LDUHA, to
avoid EDAC correction cycles or error traps.

Table 981.DP ram select usage

ITE/FTE DP Function

1 0 Write to IU register (%i, %l, %o, %g) will only write location of %rs2

Write to FPU register (%f) will only write location of %rs2

1 1 Write to IU register (%i, %l, %o, %g) will only write location of %rs1

Write to FPU register (%f) will only write location of %rs1

0 X IU and FPU registers written nominally

Figure 199. %asr16 - Register protection control register
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69.2.5 IU/FPU register file error injection

For test purposes, the IU and FPU register file EDAC/parity checkbits can be modified by software.
This is done by setting the ITE or FTE bits to ‘1’. In this mode, the EDAC/parity bits are first XORed
with the contents of %asr16.FTB before written to the register files.

69.3 Cache memory protection

Each word in the tag or data memories is protected by four check bits. An error during cache access
will cause a cache line flush, and a re-execution of the failing instruction. This will ensure that the
complete cache line (tags and data) is refilled from external memory. For every detected error, a
counter in the cache control register is incremented. The counters saturate at their maximum value (3),
and should be reset by software after read-out. The cache memory check bits can be diagnostically
read by setting the PS bit in the cache control register and then perform a normal tag or data diagnos-
tic read.

69.3.1 Cache Control Register

[29]: Register file test select (RFT). If set, will allow the read-out of IU register file checkbits via ASI 0x0F.
[28]: Parity Select [PS] - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data word is

returned.
[27:24]: Test Bits [TB] - if set, check bits will be xored with test bits TB during diagnostic write
[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[20:19]: FT scheme: “00” = no FT, “01” = 4-bit checking implemented
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
[13:12]: Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
[11:10]: Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
[9:8]: Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache.
[7:6]: Data Data Errors (IDE) - Number of detected parity errors in the data data cache.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the following: X0= disabled, 01

= frozen, 11 = enabled.

69.3.2 Diagnostic cache access

The context and parity bits for data and instruction caches can be read out via ASI 0xC - 0xF when the
PS bit in the cache control register is set. The data will be organized as shown below:

Figure 201. Cache control register
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Figure 202.Data cache tag diagnostic access when CCR.PS = ‘1’
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69.4 Additional considerations for protection

69.4.1 Data scrubbing

There is generally no need to perform data scrubbing on either IU/FPU register files or the cache
memory. During normal operation, the active part of the IU/FPU register files will be flushed to mem-
ory on each task switch. This will cause all registers to be checked and corrected if necessary. Since
most real-time operating systems performs several task switches per second, the data in the register
files will be frequently refreshed.

The similar situation arises for the cache memory. In most applications, the cache memory is signifi-
cantly smaller than the full application image, and the cache contents is gradually replaced as part of
normal operation. For very small programs, the only risk of error build-up is if a part of the applica-
tion is resident in the cache but not executed for a long period of time. In such cases, executing a
cache flush instruction periodically (e.g. once per minute) is sufficient to refresh the cache contents.

69.4.2 Initialization

After power-on, the check bits in the IU and FPU register files are not initialized. This means that
access to an un-initialized (un-written) register could cause a register access trap (tt = 0x20). Such
behavior is considered as a software error, as the software should not read a register before it has been
written. It is recommended that the boot code for the processor writes all registers in the IU and FPU
register files before launching the main application.

The check bits in the cache memories do not need to be initialized as this is done automatically during
cache line filling.

69.5 Data cache and AMBA AHB interface

The LEON3FT processor uses one AHB master interface for all data and instruction accesses.
Instructions are fetched with incremental bursts if the IB bit is set in the cache control register, other-
wise single READ cycles are used.

Data is accessed using byte, half-word and word accesses. A double load/store data access will gener-
ate an incremental burst with two accesses. Depending on the data cache implementation, cachable
data is either fetched using one word access for each accessed word (LEON3FTv1) or by a burst of
word accesses fetching the complete cache line (LEON3FTv2). Only LEON3FTv2 is included as part
of the GRLIB IP library and is the only model supported for new implementations.

The HPROT signals of the AHB bus are driven to indicate if the accesses is instruction or data, and if
it is a user or supervisor access.

Processor operation
Area not

cacheable1

LEON3FTv1 LEON3FTv2

Area is cacheable1 Area is cacheable1

Cache enabled2 Cache disabled Cache enabled2 Cache disabled

Data load <= 32-bit Read access
with size speci-
fied by load
instruction

Word access Read access with
size specified by
load instruction

Burst of 32-bit
accesses to fetch
full cache line.

Read access with
size specified by
load instruction

Data load 64-bit (LDD) Burst of two 32-bit accesses Burst of two 32-
bit accesses

Data store <= 32-bit Store access with size specified by store instruction.

Data store 64-bit (STD) Burst of two 32-bit store accesses

1 Cachability is determined by CACHED generic, if CACHED is zero then cachability is determined via AMBA PnP.
2 Bus accesses for reads will only be made on L1 cache miss or forced cache miss.
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69.6 DSU memory map

The FPU register file check bits can be accessed at address 0x301800 - 0x30187C.

Table 982.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file, port1 (%asr16.dpsel = 0)

IU register file, port 2 (%asr16.dpsel = 1)

0x300800 - 0x300FFC IU register file check bits

0x301000 - 0x30107C

0x301800 - 0x30187C

FPU register file

FPU register file check bits

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])

ASI = 0x9 : Local instruction RAM

ASI = 0xB : Local data RAM

ASI = 0xC : Instruction cache tags

ASI = 0xD : Instruction cache data

ASI = 0xE : Data cache tags

ASI = 0xF : Instruction cache data
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69.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x053. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

69.8 Configuration options

In addition to the configuration of the standard LEON3 processor, the LEON3FT processor has the
following configuration options.

Table 983 shows the configuration options of the core (VHDL generics).

69.9 Limitations

The LEON3FT core does not support the following functions present in the LEON3 model:

- Local instruction/data scratch pad RAM

- Cache locking

- Dynamic reset start address (set via interrupt controller)

Table 983.Configuration options

Generic Function Range Default

iuft, fpft Register file SEU protection. (0: no protection; 1 : 4-bit parity, 2
: 8-bit parity; 3 : 7-bit BCH)

0 - 3 0

cft Enable cache memory SEU protection. 0 - 1 0

ceinj Error injection. Used for simulation only. 0 - 3 0

netlist Use netlist rather then RTL code 0 - 1 0
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70 LEON4 - High-performance SPARC V8 32-bit Processor

70.1 Overview

LEON4 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON4 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions.

Note: this manual describes the full functionality of the LEON4 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

70.1.1 Integer unit

The LEON4 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

70.1.2 Cache sub-system

LEON4 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 ways, 1 - 256 kbyte/way. The instruction cache contains 16
or 32 bytes/line while the data cache uses 16 byte/line. The data cache uses write-through policy and
implements a double-word write-buffer. The data cache can also perform bus-snooping on the AHB
bus.

70.1.3 Floating-point unit

The LEON4 integer unit provides an interface for the high-performance GRFPU floating-point unit.
The floating-point unit executes in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32/64/128-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Figure 203. LEON4 processor core block diagram

SRMMU DTLBITLB
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70.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and physical memory. A three-level hardware table-walk is imple-
mented, and the MMU can be configured to up to 64 fully associative TLB entries per implemented
TLB.

70.1.5 On-chip debug support

The LEON4 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

70.1.6 Interrupt interface

LEON4 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

70.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are generated
to optimise the data transfer. The AMBA interface can be configured to use 64 or 128-bit bus on cache
line fills.

70.1.8 Power-down mode

The LEON4 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the application
is idle, and does not require tool-specific support in form of clock gating. To implement clock-gating,
a suitable clock-enable signal is produced by the processor.

70.1.9 Multi-processor support

LEON4 is designed to be used in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.
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70.2 LEON4 integer unit

70.2.1 Overview

The LEON4 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON4 integer unit has the following
main features:

• 7-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator

• Radix-2 divider (non-restoring)

• Single-vector trapping for reduced code size

Figure 204 shows a block diagram of the integer unit.

Figure 204. LEON4 integer unit datapath diagram
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70.2.2 Instruction pipeline

The LEON4 integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the instruction cache.
Otherwise, the fetch is forwarded to the memory controller. The instruction is valid at the end of this stage and is
latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL/Branch target addresses are generated.
3. RA (Register access): Operands are read from the register file or from internal data bypasses.
4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and for JMPL/

RETT, the address is generated.
5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the data cache at this

time.
6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned.
7. WR (Write): The result of ALU and cache operations are written back to the register file.

Table 984 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 1 clock (1 clock issue rate, 2 clock data latency), for the 32x32 multiplier and 4 clocks (issue
rate, 4/5 clocks data latency for standard/pipelined version) for the 16x16 version.

Additional events that affects instruction timing are listed below:

70.2.3 SPARC Implementor’s ID

Aeroflex Gaisler is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON4 is 3, which is hard-
coded in to bits 27:24 of the %psr.

Table 984.Instruction timing

Instruction Cycles (MMU disabled)

JMPL, RETT 3

SMUL/UMUL 1/4*

SDIV/UDIV 35

Taken Trap 5

Atomic load/store 5

All other instructions 1

Table 985.Event timing

Event Cycles

Instruction cache miss processing, MMU disabled 3 + mem latency

Instruction cache miss processing, MMU enabled 5 + mem latency

Data cache miss processing, MMU disabled (read), L2 hit 3 + mem latency

Data cache miss processing, MMU disabled (write), write-buffer empty 0

Data cache miss processing, MMU enabled (read) 5 + mem latency

Data cache miss processing, MMU enabled (write), write-buffer empty 0

MMU page table walk 10 + 3 * mem latency

Branch prediction miss, branch follows ICC setting 2

Branch prediction miss, one instruction between branch and ICC setting 1

Pipeline restart due to register file or cache error correction 7
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70.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

70.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-
plier which is iterated four times. To improve the timing, the 16x16 multiplier can optionally be pro-
vided with a pipeline stage.

70.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umac rs1, reg_imm, rd
smac rs1, reg_imm, rd

Operation:

prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

70.2.7 Compare and Swap instruction (CASA)

LEON4 implements the SPARC V9 Compare and Swap Alternative (CASA) instruction. The CASA
operates as described in the SPARC V9 manual and will be enabled in implementations that have the
integer load delay set to 1. The instruction is privileged, except when setting ASI = 0xA (user data).

70.2.8 Branch prediction

LEON4 implements branch-always speculative execution, potentially saving 1 - 2 clocks if the
%psr.icc field was updated in the two instructions preceding a conditional branch. On miss-prediction,
no extra instruction delay is incurred.

70.2.9 Register file data protection

The integer and FPU register files can optionally be protected against soft errors using triple modular
redundancy TMR. Data errors will then be transparently corrected without impact at application level.
DMR can correct up to four errors per 32-bit register while TMR can correct any number of errors.
The protection scheme is enabled through the FT generic.
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70.2.10 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/29 and %asr30/31)
registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap 0x0B is gener-
ated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

70.2.11 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode

• Instruction result

• Load/store data and address

• Trap information

• 30-bit time tag

The operation and control of the trace buffer is further described in section 26.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.

70.2.12 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 205. Watch-point registers
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Figure 206. LEON4 configuration register (%asr17)
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Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The
value in this field is identical to thehindexgeneric parameter in the VHDL model ifsmp= 1, or from the irqi.index
signal ifsmp = 16.

[17]: Clock switching enabled (CS). If set switching between AHB and CPU frequency is available.
[16:15]: CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.
[14]: Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero after reset.
[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not

implemented. Set to zero after reset.
[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from

the lddel generic parameter in the VHDL model.
[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “11” = GRFPU-Lite
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 4)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.
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70.2.13 Exceptions

LEON4 adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

70.2.14 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

Table 986.Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)
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70.2.15 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON4 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, alternative address spaces can be accessed. The table shows the ASI usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation.

70.2.16 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR %asr19 instruction.
The data value written to %asr19 must be zero to ensure compatibility with future extensions of the
processor. During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the
processor pipeline and caches are then static, reducing power consumption from dynamic switching.

70.2.17 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is always aligned on a 4 kbyte boundary. If
RSTADDR is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RSTVEC. This
allows the reset address to be changed dynamically. The processor will also use the (possibly
dynamic) reset address when it is in error mode and the IRQI.RST signal is asserted.

70.2.18 Multi-processor support

The LEON4 processor supports symmetric multi-processing (SMP) configurations, with up to 16 pro-
cessors attached to the same AHB bus. In multi-processor systems, only the first processor will start.
All other processors will remain halted in power-down mode. After the system has been initialized,
the remaining processors can be started by writing to the ‘MP status register’, located in the multi-
processor interrupt controller. The halted processors start executing from the reset address (0 or

Table 987.ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache (and also data cache when system is implemented with MMU)

0x11 Flush data cache

Table 988.Processor reset values

Register Reset value

TBR (trap base register) TBA = 0x0 (set to reset start address)

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
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RSTADDR generic). Enabling SMP is done by setting thesmpgeneric to 1 or higher. Cache snooping
should always be enabled in SMP systems to maintain data cache coherency between the processors.

70.2.19 Cache sub-system

The LEON4 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-way cache with an associativity
of 2 - 4. The way size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-way configurations, one of two replacement policies can be selected: least-recently-
used (LRU) or (pseudo-) random. The LRU hardware configuration also supports LRR and random
replacement configurable through software.

The LRU algorithm needs extra flip-flops per cache line to store access history. The random replace-
ment algorithm is implemented through modulo-N counter that selects which line to evict on cache
miss.

Cachability for both caches is controlled through the AHB plug&play address information. The mem-
ory mapping for each AHB slave indicates whether the area is cachable, and this information is used
to (statically) determine which accesses that will be treated as cacheable. This approach means that
the cachability mapping is always coherent with the current AHB configuration. The AMBA
plug&play cachability can be overridden using the CACHED generic. When this generic is not zero, it
is treated as a 16-bit field, defining the cachability of each 256 Mbyte address block on the AMBA
bus. A value of 16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 -
0x80000000.

The type of AMBA accesses used, and supported by the processor, for a memory area depends on the
area’s cachability and the values of the WBMASK and BUSW VHDL generics, see section 70.5.8 for
more information.

70.3 Instruction cache

70.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-way cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy. The way size is config-
urable to 1 - 256 kbyte and divided into cache lines of 16 or 32 bytes. Each line has a cache tag
associated with it consisting of a tag field and valid field with one valid bit for each cache line. To
maintain backward compatibility with LEON3, the valid bit is replicated when the tag is read to show
one valid bit for each four-byte sub-block of the cache line. On an instruction cache miss to a cachable
location, the full cache line is fetched from memory and the corresponding on-chip tag and data mem-
ories are updated. In a multi-way configuration, the line to be replaced is chosen according to the
replacement policy. During cache line fill, the instructions are simultaneously forwarded to the pro-
cessor (streaming). If a memory access error occurs during a line fetch, the corresponding valid bit in
the cache tag will be cleared and an instruction access error trap (tt=0x1) will be generated.
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70.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 207:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[7:0]: Valid (V) - When set, the cache line contains valid data. These bits are set when a line is filled due to a successful

cache miss; a cache fill which results in a memory error will leave the valid bit unset. A FLUSH instruction will
clear the valid bits.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only show four valid bits and
have 20 tag bits. The cache rams are sized automatically by the ram generators in the model.

70.4 Data cache

70.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-way cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy. The way size is config-
urable to 1 - 64 kbyte and divided into cache lines of 16 or 32 bytes. Each line has a cache tag associ-
ated with it consisting of a tag field and a valid field with one valid bit for the entire cache line. To
maintain backward compatibility with LEON3, the valid bit is replicated when the tag is read to show
one valid bit for each four-byte sub-block of the cache line. On a data cache read-miss to a cachable
location, the full cache line is loaded into the cache from main memory. The write policy for stores is
write-through with no-allocate on write-miss. In a multi-way configuration, the line to be replaced on
read-miss is chosen according to the replacement policy.

Locked AHB transfers are generated for LDSTUB, SWAP and CASA instructions. Locked transfers
are always uncacheable.

If a memory access error occurs during a data load, the corresponding valid bit in the cache tag will be
cleared, and a data access error trap (tt=0x9) will be generated.

70.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being read
in to the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b.

Figure 207. Instruction cache tag layout examples
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VALIDATAG

031231

VALIDATAG

Tag for 1 Kbyte way, 32 bytes/line

Tag for 4 Kbyte way, 16bytes/line
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Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

70.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 208:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.

[7:0]: Valid (V) - When set, the cache line contains valid data. These bits are set when a cache line is filled due to a
successful cache miss; a cache fill which results in a memory error will leave the valid bit unset.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 16 bytes per line would have four valid bits and 21 tag
bits. The cache rams are sized automatically by the ram generators in the model.

70.5 Additional cache functionality

70.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, while the data cache is also
flushed by setting the FD bit in the cache control register. When the processor is implemented with an
MMU, both I and D caches can be flushed by writing to any location with ASI=0x10.

Cache flushing takes one cycle per cache line, during which the IU will not be halted, but during
which the caches are disabled. When the flush operation is completed, the cache will resume the state
(disabled, enabled or frozen) indicated in the cache control register. Diagnostic access to the cache is
not possible during a FLUSH operation and will cause a data exception (trap=0x09) if attempted.

70.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC, 0xD,
0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache offset will be
used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the address tag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG field (see above) and the valid bits are written with the D[7:0] of
the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written into the lock bit (if

Figure 208. Data cache tag layout
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VALIDATAG
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enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be written in the
indexed cache line and set is selected by A[4:2].

In multi-way caches, the address of the tags and data of the ways are concatenated. The address of a
tag or data is thus:

ADDRESS = WAY & LINE & DATA & “00”

Examples: the tag for line 2 in way 1 of a 2x4 Kbyte cache with 16 byte line would be:

A[13:12] = 1 (WAY)

A[11:4] = 2 (LINE)

=> TAG ADDRESS = 0x1020

The data of this line would be at addresses 0x1020 - 0x102C

70.5.3 Data Cache snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled through
thedsnoopgeneric. When enabled, the data cache monitors write accesses on the AHB bus to cache-
able locations. If an other AHB master writes to a cacheable location which is currently cached in the
data cache, the corresponding cache line is marked as invalid. Snooping can be implemented in two
different ways:

1. Using dual-port data tag RAMs. A snoop hit will clear the valid bits in the corresponding tag.

2. Using two 2-port RAMs for the data tags, one for virtual addresses and one for physical.

Option 1 is suitable for systems that do not require snooping when the MMU is enabled, and which do
not contain AHB slaves capable of zero-waitstates write access. Option 2 allows snooping under all
conditions, but requires separate snoop tags.

70.5.4 Cache memory data protection

The cache memories (tags and data) can optionally be protected agains soft errors using byte-parity
codes. On a detected parity error, the corresponding cache (I or D) will be flushed and the data will be
refetched from external memory. This is done transparently to execution, and incur the same timing
penalty as a regular cache miss. Enabling of the data protection is done through the FT generic.

70.5.5 Local instruction and data RAM

Local instruction and data RAM is currently not supported by LEON4 at this time. The VHDL gener-
ics to enable these features are present in the LEON4 component declaration, but are unused.

70.5.6 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 209). Each cache can be in one of three modes: disabled, enabled and frozen. If
disabled, no cache operation is performed and load and store requests are passed directly to the mem-
ory controller. If enabled, the cache operates as described above. In the frozen state, the cache is
accessed and kept in sync with the main memory as if it was enabled, but no new lines are allocated
on read misses.

Figure 209. Cache control register
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[28]: Parity Select [PS] - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data word is
returned.

[27:24]: Test Bits [TB] - if set, check bits will be xored with test bits TB during diagnostic write
[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[20:19]: Data protection scheme (DP). “00” = none, “01” = byte-parity checking implemented
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
[13:12]: Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
[11:10]: Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
[9:8]: Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache.
[7:6]: Data Data Errors (IDE) - Number of detected parity errors in the data data cache.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

70.5.7 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only, except for the REPL field, and indicate the size and configura-
tion of the caches.

[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - reserved, 01 - least recently used (LRU), 10 - least recently replaced (LRR),

11 - random. This field is writable when LRU policy is implemented.
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (WAYS). Number of ways in the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-

way associative, 011 - 4-way associative
[23:20]: Way size (WSIZE). Indicates the size (Kbytes) of each cache way. Size = 2SIZE

[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

Figure 210. Cache configuration register
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All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

70.5.8 AMBA AHB interface

The LEON4 processor contains a single AHB master interface. The types of AMBA accesses sup-
ported and performed by the processor depend on the accessed memory area’s cachability, the maxi-
mum bus width, if the corresponding cache is enabled, and if the accessed memory area has been
marked as being on the wide bus.

Cacheable instructions are fetched with a burst of 32-bit accesses, or 64- or 128-bit accesses depend-
ing on the cache line size and the AHB bus width.

Cacheable data is fetched in a burst of 64- or 128-bit accesses, depending on the cache line size and
AHB bus width. Data access to uncacheable areas may only be done with 8-, 16- and 32-bit accesses,
i.e. the LDD and STD instructions may not be used. If an area is marked as cacheable then the data
cache will automatically try to use 64- or 128-bit accesses. This means that if a slave does not support
64- or 128-bit accesses and is mapped as cacheable then software should only perform data acceesses
with forced cache miss and no 64-bit loads (LDD) when accessing the slave. One example of how to
use forced cache miss for loads is given by the following function:

static inline int load(int addr)
{
    int tmp;
    asm volatile(" lda [%1]1, %0 "
        : "=r"(tmp)
        : "r"(addr)
        );
    return tmp;
}

The area which supports 64- or 128-bit access is indicated in the WBMASK generic. This generic is
treated as a 16-bit field, defining the 64/128-bit capability of each 256 Mbyte address block on the
AMBA bus. A value of 16#00F3# will thus define areas in 0 - 0x20000000 and 0x40000000 -
0x80000000 to be 64/128-bit capable. The maximum access size to be used in the area(s) marked with
WBMASK is determined by the BUSW generic.

Store instructions result in a AMBA access with size corresponding to the executed instruction, 64-bit
store instructions (STD) are always translated to 64-bit accesses (never converted into two 32-bit

Table 989.ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register
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stores as is done for LEON3). The table below indicates the access types used for instruction and data
accesses depending on cachability, wide bus mask (wbmask), and cache configuration.

70.5.9 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:

flush
set 0x81000f, %g1
sta %g1, [%g0] 2

70.6 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can optionally
be configured. For details on operation, see the SPARC V8 manual.

Processor
operation

Accessed memory area is 32-bit only,
wbmask(address) = 0

Accessed memory area is on wide bus
wbmask(address) = 1

Area not

cacheable1

Area is cacheable1
Area not

cacheable1

Area is cacheable1

Cache

enabled2
Cache
disabled

Cache

enabled2
Cache
disabled

Instruction
fetch

Burst of 32-bit read accesses Burst of 64- or 128-bit accesses5

Data load <=
32-bit

Read access
with size speci-
fied by load
instruction

Illegal3,6

Burst of 32-bit
accesses, soft-
ware may get
incorrect data

Read access
with size speci-
fied by load
instruction

Read access
with size speci-
fied by load
instruction

Burst of 64- or
128-bit

accesses5

Read access
with size speci-
fied by load
instruction

Data load 64-
bit (LDD)

Illegal4

Single 64-bit
access will be
performed

Illegal3

Burst of 64- or
128-bit

accesses5

Illegal3

Single 64-bit
access will be
performed

Illegal4

Single 64-bit
access will be
performed

Burst of 64- or
128-bit

accesses5

Single 64-bit
read access

Data store <=
32-bit

Store access with size specified by store instruction.

Data store 64-
bit (STD)

Illegal (64-bit store performed to 32-bit area)
64-bit store access will be performed.

64-bit store access

1 Cachability is determined by CACHED generic, if CACHED is zero then cachability is determined via AMBA PnP.
2 Bus accesses for reads will only be made on L1 cache miss or on load with forced cache miss.
3 LEON4 is designed to always make use of wide bus accesses for cacheable data. Cacheable data can only be handled
with 64- or 128 bit accesses.
4 Data accesses to uncachable areas may only be done with 8-, 16- and 32-bit accesses.
5 64- or 128-bit accesses depending on BUSW generic.
6 Loads with forced cache miss can be used to perform single accesses to cachable slaves in 32-bit memory area.
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70.6.1 ASI mappings

When the MMU is used, the following ASI mappings are added:

70.6.2 MMU/Cache operation

When the MMU is disabled, the caches operate as normal with physical address mapping. When the
MMU is enabled, the caches tags store the virtual address and also include an 8-bit context field. If
cache snooping is desired, bit 2 of thedsnoopgeneric has to be set. This will store the physical tag in
a separate RAM block, which then is used for snooping. In addition, the size of each data cache way
has to be smaller or equal to 4 kbyte (MMU page size). This is necessary to avoid aliasing in the cache
since the virtual tags are indexed with a virtual offset while the physical tags are indexed with a phys-
ical offset. Physical tags and snoop support is needed for SMP systems using the MMU (linux-2.6).

Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load hit. In
case of a cache miss, at least 2 extra clock cycles are used if there is a TLB hit. If there is a TLB miss
the page table must be traversed, resulting in up to 4 AMBA read accesses and one possible writeback
operation. If a combined TLB is used by the instruction cache, the translation is stalled until the TLB
is free. If fast TLB operation is selected (tlb_type = 2), the TLB will be accessed simultaneously with
tag access, saving 2 clocks on cache miss. This will increase the area somewhat, and may reduce the
timing, but usually results in better overall throughput.

70.6.3 MMU registers

The following MMU registers are implemented:

The MMU control register layout can be seen below, while the definition of the remaining MMU reg-
isters can be found in the SPARC V8 manual.

Table 990.MMU ASI usage

ASI Usage

0x10 Flush I and D cache

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x18 Flush TLB and I/D cache

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

0x1E MMU snoop tags diagnostic access

Table 991.MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

Figure 211. MMU control register
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[31:28]: MMU Implementation ID. Hardcoded to “0000”.
[27:24]: MMU Version ID. Hardcoded to “0000”.
[23:21]: Number of ITLB entries. The number of ITLB entries is calculated as 2ITLB . If the TLB is shared between

instructions and data, this field indicates to total number of TLBs.
[20:18]: Number of DTLB entries. The number of DTLB entries is calculated as 2DTLB. If the TLB is shared between

instructions and data, this field is zero.
[15]: TLB disable. When set to 1, the TLB will be disabled and each data access will generate an MMU page table walk.
[14]: Separate TLB. This bit is set to 1 if separate instruction and data TLBs are implemented.
[1]: No Fault. When NF= 0, any fault detected by the MMU causes FSR and FAR to be updated and causes a fault to be

generated to the processor. When NF= 1, a fault on an access to ASI 9 is handled as when NF= 0; a fault on an access
to any other ASI causes FSR and FAR to be updated but no fault is generated to the processor.

[0]: Enable MMU. 0 = MMU disabled, 1 = MMU enabled.

70.6.4 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries (for each implemented TLB) can be set to 2 - 64 in the configuration record.
The organisation of the TLB and number of entries is not visible to the software and does thus not
require any modification to the operating system.

70.6.5 Snoop tag diagnostic access

If the MMU has been configured to use separate snoop tags, they can be accessed via ASI 0x1E. This
is primarily useful for RAM testing, and should not be performed during normal operation. The figure
below shows the layout of the snoop tag for a 1 Kbyte data cache:

[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag.
[0]: Snoop hit. When set, the cache line is not valid and will cause a cache miss if accessed by the processor.

70.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. The LEON4 pipeline provides an interface port for Aeroflex Gaisler’s
GRFPU and GRFPU-Lite. The characteristics of the two FPU’s are described in the next sections.

70.7.1 Aeroflex Gaisler’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements
all SPARC V8 FPU instructions. The FPU is interfaced to the LEON4 pipeline using a LEON4-spe-
cific FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with inte-
ger instructions. Only in case of a data or resource dependency is the integer pipeline held. The
GRFPU is fully pipelined and allows the start of one instruction each clock cycle, with the exception
is FDIV and FSQRT which can only be executed one at a time. The FDIV and FSQRT are however
executed in a separate divide unit and do not block the FPU from performing all other operations in
parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON4 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a

Figure 212. Snoop cache tag layout
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latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2. When the GRFPU/FPC are enabled, the proces-
sor pipeline is effectively extended to 8 stages. This however not visible to software and does not
impact integer operations.

70.7.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

When the GRFPU-Lite is enabled in the model, the version field in %fsr has the value of 3.

70.8 Vendor and device identifiers

The core has vendor identifiers 0x01 (Aeroflex Gaisler) and device identifiers 0x048. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

70.9 Implementation

70.9.1 Technology mapping

LEON4 has two technology mapping generics,fabtechandmemtech. Thefabtechgeneric controls the
implementation of some pipeline features, whilememtechselects which memory blocks will be used
to implement cache memories and the IU/FPU register file.Fabtechcan be set to any of the provided

Table 992.GRFPU instruction timing with GRFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25

Table 993.GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65
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technologies (0 - NTECH) as defined in the GRPIB.TECH package. See the GRLIB Users’s Manual
for available settings formemtech.

70.9.2 RAM usage

The LEON4 core maps all usage of RAM memory on thesyncram, syncram_2pand syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.

Register file

The register file is implemented with sixsynram_2pblocks for all technologies where the
regfile_3p_inferconstant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
is shown in the following table:

If regfile_3p_inferis set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:

Number of flip-flops = ((NWINDOWS *16) + 8) * 32

FP register file

If FPU support is enabled, the FP register file is implemented with foursynram_2pblocks when the
regfile_3p_inferconstant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32.

If regfile_3p_inferis set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.

Cache memories

RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.

The tag memory is implemented with onesyncramper cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:

Depth = (cache way size in bytes) / (cache line size in bytes)

Width = 32 - log2(cache way size in bytes) + (cache line size in bytes)/4 + lrr + lock

For a 2 Kbyte cache way with 32 bytes/line, the tag RAM depth will be (2048/32) = 64. The width
will be: 32 - log2(2048) + 1 = 32 - 11 + 1 = 22. The tag RAM organization will thus be 64x22 for the
configuration. If the MMU is enabled, the tag memory width will increase with 8 to store the process
context ID, and the above configuration will us a 64x30 RAM.

If snooping is enabled, the tag memories will be implemented using thesyncram_dpcomponent
(dual-port RAM). One port will be used by the processor for cache access/refill, while the other port
will be used by the snooping and invalidation logic. The size of thesyncram_dpblock will be the

Table 994.syncram_2p sizes for LEON4 register file

Register windows Syncram_2p organization

2 - 3 32x32

4 - 7 64x32

8 - 15 128x32

16-31 256x31

32 512x32
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same as when snooping is disabled. If physical snooping is enabled (separate snoop tags), one extra
RAM block per data way will be instatiated to hold the physical tags. The width of the RAM block
will be the same as the tag address: 32 - log2(way size). A 4 Kbyte data cache way will thus require a
32 - 12 = 20 bit wide RAM block for the physical tags. If fast snooping is enabled, the tag RAM (vir-
tual and physical) will be implemented usingsyncram_2pinstead ofsyncram_dp. This can be used to
implement snooping on technologies which lack dual-port RAM but have 2-port RAM.

The data part of the caches (storing instructions or data) is either 64 or 128 bit wide, depending on the
setting of the BUSW generic. The depth is equal to the way size in bytes, divided by 8 (BUSW=64) or
16 (BUSW=128). A 64-bit cache way of 4 Kbyte will use twosyncramcomponents with and organi-
zation of 512x32. If the 128-bit AHB bus option is used, the data RAM will be divided on four 32-bit
RAM blocks to allow loading of a 16-bit cache line in one clock. A 4 Kbyte data cache will then use
four 256x32 RAM blocks.

Instruction Trace buffer

The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the TBUF generic,
which indicates the total size of trace buffer in Kbytes. If TBUF = 1 (1 Kbyte), then four RAM blocks
of 64x32 will be used. If TBUF = 2, then the RAM blocks will be 128x32 and so on.

70.9.3 Double clocking

The LEON4 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
quency. The two clocks have to be synchronous and a multicycle paths between the two clock
domains have to be defined at synthesis tool level. A separate component (LEON4s2x) is provided for
the double clocked core. Double clocked versions of DSU (dsu4_2x) and MP interrupt controller
(irqmp2x) are used in a double clocked LEON4 system. An AHB clock qualifier signal (clkeninput)
is used to identify end of AHB cycle. The AHB qualifier signal is generated in CPU clock domain and
is high during the last CPU clock cycle under AHB clock low-phase. SampleLEON4-clk2xdesign
provides a module that generates an AHB clock qualifier signal.

Double-clocked design has two clock domains: AMBA clock domains (HCLK) and CPU clock
domain (CPUCLK). LEON4 (LEON4s2x component) and DSU4 (dsu4_2x) belong to CPU clock
domain (clocked by CPUCLK), while the rest of the system is in AMBA clock domain (clocked by
HCLK). Paths between the two clock domains (paths starting in CPUCLK domain and ending in
HCLK and paths starting in HCLK domain and ending in CPUCLK domain) are multicycle paths
with propagation time of two CPUCLK periods (or one HCLK period) with following exceptions:

Start point Through End point Propagation time

LEON4s2x core

CPUCLK ahbi CPUCLK 2 CPUCLK

CPUCLK ahbsi CPUCLK 2 CPUCLK

CPUCLK ahbso CPUCLK 2 CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK
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70.9.4 Clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To insure proper start-up state, the clock should not be gated during reset.

The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU4) is used, the DSUO.pwd signal should be used instead of
DBGO.idle. This will insure that the clock also is re-enabled when the processor is switched from
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per

Start point Through End point Propagation time

dsu4_2x core

CPUCLK ahbmi  CPUCLK 2 CPUCLK

CPUCLK ahbsi  CPUCLK 2 CPUCLK

dsui  CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register)  r[*] (register) 1 CPUCLK

Figure 213. Examples of LEON4 clock gating
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CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
insure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must insure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template designleon4-clock-gatingshows an example of a clock-gated system.
The leon4cgentity should be used when clock gating is implemented. This entity has one input more
(GCLK) which should be driven by the gated clock. Using the double-clocked version of LEON4
(leon4s2x), the GCLK2 is the gated double-clock while CLK and CLK2 should be continuous.

70.9.5 Scan support

If the SCANTEST generic is set to 1, support for scan testing is enabled. This will make use of the
AHB scan support signals in the following manner: when AHBI.testen and AHBI.scanen are both ‘1’,
the select signals to all RAM blocks (cache RAM, register file and DSU trace buffers) are disabled.
This means that when the scan chain is shifted, no accidental write or read can occur in the RAM
blocks. The scan signal AHBI.testrst is not used as there are no asynchronous resets in the LEON4
core.
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70.10 Configuration options

Table 995 shows the configuration options of the core (VHDL generics).

Table 995.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit

0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10
- non-blocking FPC

16 - 31: as above (modulo 16) but use netlist

32 - 63: as above (modulo 32) but uses shared GRFPU interface

0 - 63 0

v8 Generate SPARC V8 MUL and DIV instructions

0 : No multiplier or divider

1 : 16x16 multiplier

2: 16x16 pipelined multiplier

16#32# : 32x32 pipelined multiplier

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Disable tagged instructions. 0 - 1 0

nwp Number of watchpoints 0 - 4 0

icen Enable instruction cache 0 - 1 1

irepl Instruction cache replacement policy.

0 - least recently used (LRU)/LRR/random, 2 - random only

0, 2 0

isets Number of instruction cache ways 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache way in kByte 1 - 256 1

isetlock Unused 0 - 1 0

dcen Data cache enable 0 - 1 1

drepl Data cache replacement policy.

0 - least recently used (LRU)/LRR/random, 2 - random only

0, 2 0

dsets Number of data cache ways 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4

dsetsize Size of each data cache way in kByte 1 - 256 1

dsetlock Unused 0 - 1 0

dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: slow, 2: fast (see text)

Bit 2: 0: simple snooping, 1: separate tags

0 - 6 0



AEROFLEX GAISLER 809 GRIP

ilram Enable local instruction RAM (not used at this point) 0 - 1 0

ilramsize Local instruction RAM size in kB (not used at this point) 1 - 512 1

ilramstart 8 MSB bits used to decode local instruction RAM area (not used
at this point)

0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) (not used at this
point)

0 - 1 0

dlramsize Local data RAM size in kB (not used at this point) 1 - 512 1

Table 995.Configuration options

Generic Function Allowed range Default
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dlramstart 8 MSB bits used to decode local data RAM area (not used at this
point)

0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type 0 : separate TLB with slow write
1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but might create a
critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance
with about 5%.

Note that lddel = 1 is required for CASA.

1 - 2 2

disas Print instruction disassembly in VHDL simulator console. 0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address. If this generic is set to 16#fffff# the
processor will read its start address from the interrupt controller
interface signal IRQI.RSTVEC (dynamic reset start address).

0 - (2**20-1) 0

smp Enable multi-processor support

0: SMP support disabled

1- 15: SMP enabled, cpu index is taken from hindex generic

16-31: SMP enabled, cpu index is taken from irqi.index signal

0 - 31 0

cached Fixed cacheability mask. See sections 70.2.19 and 70.5.8 for
more information.

0 - 16#FFFF# 0

clk2x Enables double-clocking. See section 70.9.3 and the LEON/
GRLIB Design and Configuration Guide. Not present on all top-
level entites.

0 - 15 0

scantest Enable scan test support 0 - 1 0

wbmask Wide-bus mask. Indicates which address ranges are 64/128 bit
capable. Treated as a 16-bit vector with LSB bit (right-most)
indicating address 0 - 0x10000000. See section 70.5.8 for more
information.

0 - 16#FFFF# 0

busw Bus width of the wide bus area (64 or 128). See section 70.5.8
for more information.

64, 128 64

netlist Use technology specific netlist 0 - 1 0

ft Register file and cache memory protection, 4-bit bitfield

Bit3: enable cache memory parity protection
Bit2: enable register file TMR
Bit1,0: unused

Note

0 - 15 0

Table 995.Configuration options

Generic Function Allowed range Default
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70.11 Signal descriptions

Table 996 shows the interface signals of the core (VHDL ports).

70.12 Library dependencies

Table 997 shows the libraries used when instantiating the core (VHDL libraries).

Table 996.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input AMBA and processor clock. -

CLK2 Input Processor clock in 2x mode (LEON4sx2)

GCLK2 Input Gated processor clock in 2x mode (LEON4sx2)

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Reset power-down and error mode High

RUN Input Start after reset (SMP system only) High

RSTVEC[31:12] Input Reset start addr. (SMP and dynamic reset addr.) -

IACT Input Unused -

INDEX[3:0] Input CPU index when SMP = 2 -

HRDRST Input Resets processor High

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

PWD Output Processor in power-down mode High

FPEN Output Floating-point unit enabled High

IDLE Output Processor idle High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low

GCLK Input Gated processor clock for LEON4cg

* see GRLIB IP Library User’s Manual

Table 997.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3, LEON4 Component, signals LEON4 component declaration, interrupt and
debug signals declaration



AEROFLEX GAISLER 812 GRIP

70.13 Component declaration

The LEON4 core has the following component declaration. There are also LEON4 top-levels that
support clock gating (leon4cg), double-clocking (leon4s2x), shared FPU (leon4sh) and all available
interfaces (leon4x). See the GRLIB template designs for instantiation examples.

entity leon4s is
  generic (
    hindex    : integer               := 0;
    fabtech   : integer range 0 to NTECH  := DEFFABTECH;
    memtech   : integer range 0 to NTECH  := DEFMEMTECH;
    nwindows  : integer range 2 to 32 := 8;
    dsu       : integer range 0 to 1  := 0;
    fpu       : integer range 0 to 31 := 0;
    v8        : integer range 0 to 63 := 0;
    cp        : integer range 0 to 1  := 0;
    mac       : integer range 0 to 1  := 0;
    pclow     : integer range 0 to 2  := 2;
    notag     : integer range 0 to 1  := 0;
    nwp       : integer range 0 to 4  := 0;
    icen      : integer range 0 to 1  := 0;
    irepl     : integer range 0 to 2  := 2;
    isets     : integer range 1 to 4  := 1;
    ilinesize : integer range 4 to 8  := 4;
    isetsize  : integer range 1 to 256 := 1;
    isetlock  : integer range 0 to 1  := 0;
    dcen      : integer range 0 to 1  := 0;
    drepl     : integer range 0 to 2  := 2;
    dsets     : integer range 1 to 4  := 1;
    dlinesize : integer range 4 to 8  := 4;
    dsetsize  : integer range 1 to 256 := 1;
    dsetlock  : integer range 0 to 1  := 0;
    dsnoop    : integer range 0 to 6  := 0;
    ilram      : integer range 0 to 1 := 0;
    ilramsize  : integer range 1 to 512 := 1;
    ilramstart : integer range 0 to 255 := 16#8e#;
    dlram      : integer range 0 to 1 := 0;
    dlramsize  : integer range 1 to 512 := 1;
    dlramstart : integer range 0 to 255 := 16#8f#;
    mmuen     : integer range 0 to 1  := 0;
    itlbnum   : integer range 2 to 64 := 8;
    dtlbnum   : integer range 2 to 64 := 8;
    tlb_type  : integer range 0 to 3  := 1;
    tlb_rep   : integer range 0 to 1  := 0;
    lddel     : integer range 1 to 2  := 2;
    disas     : integer range 0 to 2  := 0;
    tbuf      : integer range 0 to 64 := 0;
    pwd       : integer range 0 to 2  := 2;     -- power-down
    svt       : integer range 0 to 1  := 1;     -- single vector trapping
    rstaddr   : integer               := 0;
    smp       : integer range 0 to 15 := 0;     -- support SMP systems
    cached    : integer               := 0;  -- cacheability table
    scantest  : integer               := 0;
    wbmask    : integer               := 0;  -- Wide-bus mask
    busw      : integer               := 64;  -- AHB/Cache data width (64/128)

ft        : integer               := 0
);
  port (
    clk    : in  std_ulogic;
    rstn   : in  std_ulogic;
    ahbi   : in  ahb_mst_in_type;
    ahbo   : out ahb_mst_out_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : in  ahb_slv_out_vector;
    irqi   : in  l3_irq_in_type;
    irqo   : out l3_irq_out_type;
    dbgi   : in  l3_debug_in_type;
    dbgo   : out l3_debug_out_type
  );
end;
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71 LOGAN - On-chip Logic Analyzer

71.1 Introduction

The LOGAN core implements an on-chip logic analyzer for tracing and displaying of on-chip signals.
LOGAN consists of a circular trace buffer and a triggering module. When armed, the logic analyzers
stores the traced signals in the circular buffer until a trigger condition occurs. A trigger condition will
freeze the buffer, and the traced data can then be read out via an APB interface.

The depth and width of the trace buffer is configurable through VHDL generics, as well as the number
of trigger levels.

Figure 214. On-chip Logic Analyzer block diagram

71.2 Operation

71.2.1 Trace buffer

When the logic analyzer is armed, the traced signals are sampled and stored to the trace buffer on the
rising edge of the sample clock (TCLK). The trace buffer consists of a circular buffer with an index
register pointing to the next address in the buffer to be written. The index register is automatically
incremented after each store operation to the buffer.

71.2.2 Clocking

LOGAN uses two clocks: TCLK and the APB clock. The trace signals are sampled on the rising edge
of the sample clock (TCLK), while the control unit and the APB interface use the APB clock. TCLK
and the APB clock does not need to be synchronized or have the same frequency.

On-chip Logic Analyzer core

AMBA APB

Control unit with
APB slave interface

Trace buffer

On-chip RAM

Read port

Write port

Trigger engineTraced
signals



AEROFLEX GAISLER 814 GRIP

71.2.3 Triggering

The logic analyzer contains a configurable number of trig levels. Each trig level is associated with a
pattern and a mask. The traced signals are compared with the pattern, only comparing the bits set in
the mask. This allows for triggering on any specific value or range. Furthermore each level has a
match counter and a boolean equality flag. The equality flag specifies whether a match means that the
pattern should equal the traced signals or that it should not be equal. It is possible to configure the trig-
ger engine to stay at a certain level while the traced signals have a certain value using this flag. The
match counter is a 6 bit counter which can be used to specify how many times a level should match
before proceeding to the next. This is all run-time configurable through registers described in the reg-
ister section.

To specify post-, center- or pre-triggering mode, the user can set a counter register that controls when
the sampling stops relative to the triggering event. It can be set to any value in the range 0 todepth-1
thus giving total control of the trace buffer content.

To support the tracing of slowly changing signals, the logic analyzer has a 16-bit sample frequency
divider register that controls how often the signals are sampled. The default divider value of 1 will
sample the signals every clock cycle.

Theusequalconfiguration option has a similar purpose as the sample frequency divider. The user can
define one of the traced signals as a qualifier bit that has to have a specified value for the current sig-
nals to be stored in the trace buffer. This makes sampling of larger time periods possible if only some
easily distinguished samples are interesting. This option has to be enabled with theusequalgeneric
and the qualifier bit and value are written to a register.

71.2.4 Arming

To start operation, the logic analyzer needs to be armed. This is done by writing to the status register
with bit 0 set to 1. A reset can be performed anytime by writing zero to the status register. After the
final triggering event, the trigged flag will be raised and can be read out from the status register. The
logic analyzer remains armed and trigged until the trigger counter reaches zero. When this happens
the index of the oldest sample can be read from the trace buffer index register.

71.3 Registers

Both trace data and all registers are accessed through an APB interface. The LOGAN core will allo-
cate a 64 kbyte block in the APB address space.

Table 998.APB address mapping

APB address offset Registers

0x0000 Status register

0x0004 Trace buffer index

0x0008 Page register

0x000C Trig counter

0x0010 Sample freq. divider

0x0014 Storage qualifier setting

0x2000 - 0x20FF Trig control settings

0x6000 - 0x6FFF Pattern/mask configuration

0x8000 - 0xFFFF Trace data
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71.3.1 Status register

[31:28] These bits indicate whether an input register and/or storage qualifier is used and if the Logic Analyzer is armed and/
or trigged.

[27:20] Number of traced signals.
[19:6] Last index of trace buffer. Depth-1.
[5:0] Number of trig levels.

71.3.2 Trace buffer index

[31:abits] - Reserved.
[abits-1:0] - The index of the oldest sample in the buffer.abitsis the number of bits needed to represent the configured depth.
Note that this register is written by the trigger engine clock domain and thus needs to be known stable
when read out. Only when the ‘armed’ bit in the status register is zero is the content of this register
reliable.

71.3.3 Page register

[31:4] - Reserved.
[3:0] - This register selects what page that will be used when reading from the trace buffer.

The trace buffer is organized into pages of 1024 samples. Each sample can be
between 1 and 256 bits. If the depth of the buffer is more than 1024 the page register has to be used to
access the other pages. To access the i:th page the register should be set i (where i=0..15).

71.3.4 Trig counter

[31:abits] - Reserved.
[nbits-1:0] - Trig counter value. A counter is incremented by one for each stored sample after the final triggering event and

when it reaches the value stored in this register the sampling stops. 0 means posttrig anddepth-1is pretrig. Any
value in between can be used.

Figure 215. Status register
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Figure 216. Trace buffer index register
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Figure 217. Page register
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71.3.5 Sample frequency divider

[31:16] - Reserved.
[15:0] - A sample is stored on every i:th clock cycle where i is specified through this register. This resets to 1 thus sampling

occurs every cycle if not changed.

71.3.6 Storage qualifier

[31:9] - Reserved.
[8:1] - Which bit to use as qualifier.
[0] - Qualify storage if bit is 1/0.

71.3.7 Trig control registers

This memory area contains the registers that control when the trigger engine shall proceed to the next
level, i.e the match counter and a one bit field that specifies if it should trig on equality or inequality.
There aretrigl  words where each word is used like in the figure below.

[31:7] - Reserved.
[6:1] - Match counter. A counter is increased with one on each match on the current level and when it reaches the value stored

in this register the trigger engine proceeds to the next level or if it is the last level it raises the trigged flag and starts
the count of the trigger counter.

[0] - Specifies if a match is that the pattern/mask combination is equal or inequal compared to the traced signals.

71.3.8 Pattern/mask configuration

In these registers the pattern and mask for each trig level is configured. The pattern and mask can con-
tain up to 8 words (256 bits) each so a number of writes can be necessary to specify just one pattern.
They are stored with the LSB at the lowest address. The pattern of the first trig level is at 0x6000 and
the mask is located 8 words later at 0x6020. Then the next trig levels starts at address 0x6040 and so
on.

71.3.9 Trace data

It is placed in the upper half of the allocated APB address range. If the configuration needs more than
the allocated 32 kB of the APB range the page register is used to page into the trace buffer. Each
stored word isdbits wide but 8 words of the memory range is always allocated so the entries in the
trace buffer are found at multiples of 0x20, i.e. 0x8000, 0x8020 and so on.

Figure 219. Sample freq. divider register
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Figure 220. Storage qualifier register
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71.4 Graphical interface

The logic analyzer is normally controlled by the LOGAN debug driver in GRMON. It is also possible
to control the LOGAN operation using a graphical user interface (GUI) written in Tcl/Tk. The GUI is
provided with GRMON, refer to the GRMON manual for more details.

71.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x062. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

71.6 Configuration options

Table 999 shows the configuration options of the core (VHDL generics).

Table 999.Configuration options

Generic Function Allowed range Default

dbits Number of traced signals 1 - 255 32

depth Number of stored samples 256 - 16384 1024

trigl Number of trigger levels 1 - 63 1

usereg Use input register 0 - 1 1

usequal Use storage qualifier 0 - 1 0

pindex APB slave index 0 - NAPBSLV - 1 0

paddr The 12-bit MSB APB address 0 -16#FFF# 0

pmask The APB address mask 16#000 - 16#F00# F00

memtech Memory technology 0 - NTECH 0
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The usereg VHDL generic specifies whether to use an input register to synchronize the traced signals
and to minimize their fan out. If usereg=1 then all signals will be clocked into a register on the posi-
tive edge of the supplied clock signal, otherwise they are sent directly to the RAM.

71.7 Signal descriptions

Table 1000 shows the interface signals of the core (VHDL ports).

* See GRLIB IP Library users manual

71.8 Library dependencies

Table 1001 shows libraries used when instantiating the core (VHDL libraries).

71.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity logan_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

architecture rtl of logan_ex is

  -- AMBA signals
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);
signal signals : std_logic_vector(63 downto 0);

begin

-- Logic analyzer core

Table 1000.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input System clock -

TCLK N/A Input Sample clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SIGNALS N/A Input Vector of traced signals -

Table 1001.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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  logan0 : logan
  generic map (dbits=>64,depth=>4096,trigl=>2,usereg=>1,usequal=>0,
            pindex => 3, paddr => 3, pmask => 16#F00#, memtech => memtech)
  port map (rstn, clk, clk, apbi, apbo(3), signals);

end;
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72 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller

72.1 Overview

The memory controller handles a memory bus hosting PROM, memory mapped I/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a slave
on the AHB bus. The function of the memory controller is programmed through memory configura-
tion registers 1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus. The memory bus supports
four types of devices: prom, sram, sdram and local I/O. The memory bus can also be configured in 8-
or 16-bit mode for applications with low memory and performance demands.

Chip-select decoding is done for two PROM banks, one I/O bank, five SRAM banks and two SDRAM
banks.

The controller decodes three address spaces (PROM, I/O and RAM) whose mapping is determined
through VHDL-generics.

Figure 222 shows how the connection to the different device types is made.

72.2 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM cycles
can have up to 15 waitstates.

Figure 222. Memory controller conected to AMBA bus and different types of memory devices
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Figure 223. Prom non-consecutive read cyclecs.
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Figure 224. Prom consecutive read cyclecs.
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Figure 225. Prom read access with two waitstates.
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Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSN[0] is asserted
when the lower half of the PROM area as addressed while MEMO.ROMSN[1] is asserted for the
upper half. When the VHDL model is configured to boot from internal prom, MEMO.ROMSN[0] is
never asserted and all accesses to the lower half of the PROM area are mapped on the internal prom.

72.3 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a additional
waitstates can be inserted by de-asserting the MEMI.BRDYN signal. The I/O select signal
(MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is asserted.

Figure 226. Prom write cycle (0-waitstates)
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Figure 227. Prom write cycle (2-waitstates)

data

address

romsn

data

rwen

cb

lead-out

clk

A1

D1

CB1

lead-in datadata



AEROFLEX GAISLER 823 GRIP

72.4 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (RAMSN[4]) decodes the upper 512 Mbyte
(controlled by means of thesdraselVHDL generic) and cannot be used simultaneously with SDRAM
memory. A read access to SRAM consists of two data cycles and between zero and three waitstates.
Accesses to MEMO.RAMSN[4] can further be stretched by de-asserting MEMI.BRDYN until the
data is available. On non-consecutive accesses, a lead-out cycle is added after a read cycle to prevent
bus contention due to slow turn-off time of memories or I/O devices. Figure 230 shows the basic read
cycle waveform (zero waitstate).

Figure 228. I/O read cycle (0-waitstates)
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For read accesses to MEMO.RAMSN[4:0], a separate output enable signal (MEMO.RAMOEN[n]) is
provided for each RAM bank and only asserted when that bank is selected. A write access is similar to
the read access but takes a minimum of three cycles:

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be driven
until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow efficient
byte and half-word writes. If the memory uses a common write strobe for the full 16- or 32-bit data,
the read-modify-write bit in the MCFG2 register should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

72.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not neces-
sary to always have full 32-bit memory banks. The SRAM and PROM areas can be individually con-
figured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory
configuration registers. Since read access to memory is always done on 32-bit word basis, read access
to 8-bit memory will be transformed in a burst of four read cycles while access to 16-bit memory will

Figure 230. SRAM non-consecutive read cyclecs.
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Figure 231. Sram write cycle (0-waitstates)
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generate a burst of two 16-bits reads. During writes, only the necessary bytes will be writen. Figure
232 shows an interface example with 8-bit PROM and 8-bit SRAM. Figure 233 shows an example of
a 16-bit memory interface.

72.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer.

Figure 232. 8-bit memory interface example
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Figure 233. 16-bit memory interface example
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72.7 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bit mode. However,
the I/O device will NOT be accessed by multiple 8/16 bit accesses as the memory areas, but only with
one single access just as in 32-bit mode. To access an I/O device on a 16-bit bus, LDUH/STH instruc-
tions should be used while LDUB/STB should be used with an 8-bit bus.

72.8 SDRAM access

72.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Aeroflex Gaisler, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices. When the VHDL genericmobile is set to a value not equal to 0, the controller supports
mobile SDRAM.

72.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is
enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is not set. If the
SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are mapped into the
lower half of the RAM area.

72.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled the initialization sequence is appended by a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
and single location access on write.

72.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2) The pro-
grammable SDRAM parameters can be seen in tabel 1002.

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

Table 1002.SDRAM programmable timing parameters

Function Parameter Range Unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks
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When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

72.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

72.9.1 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile SDRAM
functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving
configuration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-Sav-
ing configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available then the
VHDL genericmobile >=1.

72.9.2 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deactivated.
All data in the SDRAM is retained during this operation. To enable the power-down mode, set the
PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller will
enter power-down mode after every memory access (when the controller has been idle for 16 clock
cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the control-
ler in this mode. When exiting this mode a delay of one clock cycles are added before issue any com-
mand to the memory. This mode is only available then the VHDL genericmobile >=1.

72.9.3 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available then the VHDL genericmobile >=1 and mobile SDRAM function-
ality is enabled.

Table 1003.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Self Refresh mode to first valid command (tXSR) tXSR
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72.9.4 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This
functionality is only available then the VHDL genericmobile >=1 and mobile SDRAM functionality
is enabled.

72.9.5 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available then the VHDL genericmobile >=1 and mobile SDRAM functionality
is enabled.

72.9.6 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR) and LOAD-EXTMODE-
REG (EMR). If the LMR command is issued, the CAS delay as programmed in MCFG2 will be used,
remaining fields are fixed: page read burst, single location write, sequential burst. If the EMR com-
mand is issued, the DS, TCSR and PASR as programmed in Power-Saving configuration register will
be used. To issue the EMR command, the EMR bit in the MCFG4 register has to be set. The com-
mand field will be cleared after a command has been executed. Note that when changing the value of
the CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time.

72.9.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

72.9.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

72.9.9 Address bus connection

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

72.9.10 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
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timing problems with the output delay when a separate SDRAM bus is used. SDRAM bus signals are
described in section 72.13, for configuration options refer to section 72.15.

72.9.11 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Xilinx and Altera
device, the GR Clock Generator can be configured to produce a properly synchronised SDRAM
clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

72.10 Using bus ready signalling

The MEMI.BRDYN signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at least the pre-programmed number
of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched until
MEMI.BRDYN is asserted. MEMI.BRDYN should be asserted in the cycle preceding the last one.
The use of MEMI.BRDYN can be enabled separately for the I/O and RAM areas.

72.11 Access errors

An access error can be signalled by asserting the MEMI.BEXCN signal, which is sampled together
with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register 1, an error

Figure 234. READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is
only applicable for I/O accesses.
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Figure 235. Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous
sampling).
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response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled or disabled
through memory configuration register 1, and is active for all areas (PROM, I/O an RAM).

72.12 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it allows the cycle
time to vary through the use of MEMI.BRDYN. In this way, delays can be inserted as required for
opening of banks and refresh.

72.13 Registers

The memory controller is programmed through registers mapped into APB address space.

Table 1004.Memory controller registers

APB address offset Register

0x0 MCFG1

0x4 MCFG2

0x8 MCFG3

0xC MCFG4 (Power-Saving configuration register)

Figure 236. Read cycle with BEXCN.
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Figure 237. Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses.
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72.13.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

During power-up, the prom width (bits [9:8]) are set with value on MEMI.BWIDTH inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All other
fields are undefined.

72.13.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

Table 1005.Memory configuration register 1.
31 29 28 27 26 25 24 23 20 19 18

RESERVED IOBUSW IBRDY BEXCN IO WAITSTATES IOEN

12 11 10 9 8 7 4 3 0

RESERVED PWEN PROM WIDTH PROM WRITE WS PROM READ WS

31 : 29 RESERVED

28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).

26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to
‘0’.

25 Bus error enable (BEXCN) - Enables bus error signalling. Reset to ‘0’.

24 RESERVED

23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0,
“0001”=1, “0010”=2,..., “1111”=15).

19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area.

18:12 RESERVED

11 PROM write enable (PWEN) - Enables write cycles to the PROM area.

10 RESERVED

9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16,
“10”=32).

7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write cycles
(“0000”=0, “0001”=1, “0010”=2,..., “1111”=15).

3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles
(“0000”=0, “0001”=1, “0010”=2,...,”1111”=15). Reset to “1111”.

Table 1006.Memory configuration register 2.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 RES MS

15 14 13 12 9 8 7 6 5 4 3 2 1 0

RES SE SI RAM BANK SIZE RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.

30 SDRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1).

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4
Mbyte, “001”=8 Mbyte, “010”=16 Mbyte.... “111”=512 Mbyte).

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=4096 when bit
25:23=”111” 2048 otherwise.
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72.13.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command.
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM
data bus width, ‘0’ otherwise. Read-only.

17 RESERVED

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 RESERVED

14 SDRAM enable (SE) - Enables the SDRAM controller.

13 SRAM disable (SI) - Disables accesses RAM if bit 14 (SE) is set to ‘1’.

12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8 kbyte, “0001”=16
kbyte, ..., “1111”=256 Mbyte).

8 RESERVED

7 RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit
32-bit areas with common write strobe (no byte write strobe).

5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).

3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles
(“00”=0, “01”=1, “10”=2, “11”=3).

1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles
(“00”=0, “01”=1, “10”=2, “11”=3).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED SDRAM REFRESH RELOAD VALUE RESERVED

31: 27 RESERVED

26: 12 SDRAM refresh counter reload value (SDRAM
REFRESH RELOAD VALUE)

11: 0 RESERVED

Table 1007.MCFG4 Power-Saving configuration register
31 30 29 28 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE EM Reserved tXSR res PMODE Reserved DS TCSR PASR

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29 EMR. When set, the LOAD-COMMAND-REGISTER command issued by the SDRAM command
filed in MCFG2 will be interpret as a LOAD-EXTENDED-COMMAND-REGISTER command.

28: 24 Reserved

Table 1006.Memory configuration register 2.
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72.14 Vendor and device identifiers

The core has vendor identifier 0x04 (ESA) and device identifier 0x00F. For description of vendor and
device identifier see GRLIB IP Library User’s Manual.

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
SDR support is disabled).

19 Reserved

18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved

6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 1007.MCFG4 Power-Saving configuration register
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72.15 Configuration options

Table 1008 shows the configuration options of the core (VHDL generics).

72.16 Signal descriptions

Table 1009 shows the interface signals of the core (VHDL ports).

Table 1008.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space.
Default PROM area is 0x0 - 0x1FFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#E00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space.
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#

ramaddr ADDR field of the AHB BAR2 defining RAM address space.
Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR field of the APB BAR configuration registers address
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

romasel log2(PROM address space size) - 1. E.g. if size of the PROM
area is 0x20000000 romasel is log2(2^29)-1 = 28.

0 - 31 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM and SRAM access. 0 - 1 0

ram16 Enable 16-bit PROM and SRAM access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

oepol Select polarity of drive signals for data pads. 0 = active low, 1 =
active high.

0 - 1 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0

Table 1009.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low
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MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width
field in the MCFG1 register

High

SD[31:0] Input SDRAM separate data bus High

MEMO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate
sdram bus.

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

Table 1009.Signal descriptions

Signal name Field Type Function Active
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72.17 Library dependencies

Table 1010 shows libraries used when instantiating the core (VHDL libraries).

72.18 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
library esa;
use esa.memoryctrl.all;

entity mctrl_ex is

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 1010.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

SDMCTRL component

ESA MEMORYCTRL Component Memory controller component declaration

Table 1009.Signal descriptions

Signal name Field Type Function Active



AEROFLEX GAISLER 837 GRIP

  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;

    -- memory bus
    address  : out   std_logic_vector(27 downto 0); -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdram_out_type;

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;

begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  -- Memory controller
  mctrl0 : mctrl generic map (srbanks => 1, sden => 1)
    port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

  -- memory controller inputs not used in this configuration
  memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
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  memi.sd <= sd;

  -- prom width at reset
  memi.bwidth <= "10";

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

  -- connect memory controller outputs to entity output signals
  address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
  sa <= memo.sa;
  writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
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73 MEMSCRUB - AHB Memory Scrubber and Status Register

73.1 Overview

The memory scrubber monitors an AMBA AHB bus for accesses triggering an error response, and for
correctable errors signaled from fault tolerant slaves on the bus. The core can be programmed to scrub
a memory area by reading through the memory and writing back the contents using a locked read-
write cycle whenever a correctable error is detected. It can also be programmed to initialize a memory
area to known values.

The memory scrubber core is largely backwards compatible with the AHBSTAT core, and can replace
it in many cases. Unlike AHBSTAT, the scrubber’s registers are accessed through the AMBA AHB
bus.

73.2 Operation

73.2.1 Errors

All AMBA AHB bus transactions are monitored and current HADDR, HWRITE, HMASTER and
HSIZE values are stored internally. When an error response (HRESP = “01”) is detected, an internal
counter is increased. When the counter exceeds a user-selected threshold, the status and address regis-
ter contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gen-
erated, as described hereunder.

The default threshold is zero and enabled on reset so the first error on the bus will generate an inter-
rupt.

Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

73.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only
difference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected. Correctable and uncorrectable errors use separate counters and threshold values.

Scrubber DMA

Registers

AHB Error monitorMemory with EDAC

ce

AMBA AHB

Figure 238. Memory scrubber block diagram
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When the CE bit is set, the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the CE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.

The correctable error signals from the fault tolerant units should be connected to thescrubi.cerror
input signal vector of the AHB status register core, which is or-ed internally and if the resulting signal
is asserted, it will have the same effect as an AHB error response.

73.2.3 Scrubbing

The memory scrubber can be commanded to scrub a certain memory area, by writing a start and end
address to the scrubbers start/end registers, followed by writing “00” to the scrub mode field and ‘1’ to
the scrub enable bit in the scrubber control register.

After starting, the core will proceed to read the memory region in bursts. The burst size is fixed (set by
theburstlengeneric) and typically tuned to match the cache-line size or native block size of the slave.
When a correctable error is detected, the scrubber performs a locked read-write cycle to correct the
error, and then resumes the scrub operation.

If the correctable error detected is in the middle of a burst, the following read in the burst is completed
before the read-write cycle begins. The core can handle the special case where that access also had a
correctable error within the same locked scrub cycle.

If an uncorrectable error is detected, that location is left untouched.

Note that the status register functionality is running in parallel with the scrubber, so correctable and
uncorrectable errors will be logged as usual. To prevent double logging, the core masks out the
(expected) correctable error arising during the locked correction cycle.

To allow normal access to the bus, the core sleeps for a number of cycles between each burst. The
number of cycles can be adjusted in the config register.

If the ID bit is set in the config register, the core will interrupt when the complete scrub is done.

73.2.4 Scrubber error counters

The core keeps track of the number of correctable errors detected during the current scrub run and the
number of errors detected during processing of the current “count block”. The size of the count block
is a fixed power of two equal or larger than the burst length (set by thecountlen generic).

The core can be set up to interrupt when the counters exceed given thresholds. When this happens, the
NE bit, plus one of the SEC/SBC bits, is set in the status register.

73.2.5 External start and clear

If the ES bit is set in the config register, the scrub enable bit is set automatically when the start input
signal goes high. This can be used to set up periodic scrubbing.

The external input signal clrerr can be used to clear the global error counters. If this is connected to a
timer, it is possible to count errors that have occurred within a specific unit of time. This signal can be
disabled through the EC bit in the config register.

73.2.6 Memory regeneration

The regeneration mode performs the same basic function as the scrub mode, but is optimised for the
case where many (or all) locations have correctable errors.

In this mode, the whole memory area selected is scrubbed using locked read/write bursts.

If an uncorrectable error is encountered during the read burst, that burst block is processed once again
using the regular scrub routine, and the regeneration mode resumes on the following block. This
avoids overwriting uncorrectable error locations.
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73.2.7 Initialization

The scrubber can be used to write a pre-defined pattern to a block of memory. This is often necessary
on EDAC memory before it can be used.

Before running the initialization, the pattern to be written to memory should be written into the scrub-
ber initialization data register. The pattern has the same size as the burst length, so the corresponding
number of writes to the initialization data register must be made.

73.2.8 Interrupts

The interrupt is generated on the line selected by thehirq VHDL generic. The interrupt is connected
to the interrupt controller to inform the processor of the event.

After an interrupt is generated, either the NE bit or the DONE bit in the status register is set, to indi-
cate which type of event caused the interrupt.

The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit in the AHB status register or the DONE bit
in the scrubber status register, and the monitoring becomes active again. Error interrupts can be gener-
ated for both AMBA error responses and correctable errors as described above.

73.2.9 Mode switching

Switching between scrubbing and regeneration modes can be done on the fly during a scrub by modi-
fying the MODE field in the scrubber configuration register. The mode change will take effect on the
following scrub burst.

If the address range needs to be changed, then the core should be stopped before updating the regis-
ters. This is done by clearing the SCEN bit, and waiting for the ACTIVE bit in the status register to go
low. An exception is when making the range larger (i.e. increasing the end address or decreasing the
start address), as this can be done on the fly.

73.2.10 Dual range support

The scrubber can work over two non-overlapping memory ranges. This feature is enabled by writing
the start/end addresses of the second range into the scrubber’s second range start/end registers and set-
ting the SERA bit in the configuration register. The two address ranges should not overlap.
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73.3 Registers

The core is programmed through registers mapped into an I/O region in the AHB address space. Only
32-bit accesses are supported.

Table 1011.Memory scrubber registers

AHB address offset Registers

0x00 AHB Status register

0x04 AHB Failing address register

0x08 AHB Error configuration register

0x0C Reserved

0x10 Scrubber status register

0x14 Scrubber configuration register

0x18 Scrubber range low address register

0x1C Scrubber range high address register

0x20 Scrubber position register

0x24 Scrubber error threshold register

0x28 Scrubber initialization data register

0x2C Scrubber second range start address register

0x30 Scrubber second range end address register

Table 1012. AHB Status register
31 22 21 14 13 12 11 10 9 8 7 6 3 2 0

CECNT UECNT DONE RES SEC SBC CE NE HWRITE HMASTER HSIZE

31: 22 CECNT: Global correctable error count

21: 14 UECNT: Global uncorrectable error count

13 DONE: Scrubber run completed. (read-only)

This is a read-only copy of the DONE bit in the scrubber status register.

12 RESERVED

11 SEC: Scrubber error counter threshold exceeded. Asserted together with NE.

10 SBC: Scrubber block error counter threshold exceeded. Asserted together with NE.

9 CE: Correctable Error. Set if the detected error was caused by a correctable error and zero otherwise.

8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by
writing a zero to it.

7 The HWRITE signal of the AHB transaction that caused the error.

6: 3 The HMASTER signal of the AHB transaction that caused the error.

2: 0 The HSIZE signal of the AHB transaction that caused the error

Table 1013. AHB Failing address register
31 0

AHB FAILING ADDRESS

31: 0 The HADDR signal of the AHB transaction that caused the error.
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Table 1014. AHB Error configuration register
31 22 21 14 13 2 1 0

CORRECTABLE ERROR COUNT THRESHOLD UNCORR. ERROR COUNT THRESH. RESERVED CECTE UECTE

31: 22 Interrupt threshold value for global correctable error count

21: 14 Interrupt threshold value for global uncorrectable error count

13: 2 RESERVED

1 CECTE: Correctable error count threshold enable

0 UECTE: Uncorrectable error count threshold enable

Table 1015. Scrubber status register
31 22 21 14 13 12 5 4 1 0

SCRUB RUN ERROR COUNT BLOCK ERROR COUNT DONE RESERVED BURSTLEN ACTIVE

31: 22 Number of correctable errors in current scrub run (read-only(

21: 14 Number of correctable errors in current block (read-only)

13 DONE: Scrubber run completed.

Needs to be cleared (by writing zero) before a new scrubber done interrupt can occur.

12: 5 RESERVED

4: 1 Burst length in 2-log of AHB bus cycles; “0000”=1, “0001”=2, “0010”=4, “0011”=8, ...

0 Current scrubber state: 0=Idle, 1=Running (read-only)

Table 1016. Scrubber configuration register
31 16 15 8 7 6 5 4 3 2 1 0

RESERVED DELAY IRQD EC SERA LOOP MODE ES SCEN

31: 16 RESERVED

15: 8 Delay time between processed blocks, in cycles

7 Interrupt when scrubber has finished

6 External clear counter enable

5 Second memory range enable

4 Loop mode, restart scrubber when run finishes

3: 2 Scrubber mode (00=Scrub, 01=Regenerate, 10=Initialize, 11=Undefined)

1 External start enable

0 Scrubber enable

Table 1017. Scrubber range low address register
31 0

SCRUBBER RANGE LOW ADDRESS

31: 0 The lowest address in the range to be scrubbed

The address bits below the burst size alignment are constant ‘0’

Table 1018. Scrubber range high address register
31 0

SCRUBBER RANGE HIGH ADDRESS

31: 0 The highest address in the range to be scrubbed

The address bits below the burst size alignment are constant ‘1’
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73.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x057. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 1019. Scrubber position register
31 0

SCRUBBER POSITION

31: 0 The current position of the scrubber while active, otherwise zero.

The address bits below the burst size alignment are constant ‘0’

Table 1020. Scrubber error threshold register
31 22 21 14 13 2 1 0

SCRUB RUN ERROR COUNT THRESHOLD BLOCK ERROR COUNT THRESH. RESERVED RECTE BECTE

31: 22 Interrupt threshold value for current scrub run correctable error count

21: 14 Interrupt threshold value for current scrub block correctable error count

13: 2 RESERVED

1 RECTE: Scrub run correctable error count threshold enable

0 BECTE: Scrub block uncorrectable error count threshold enable

Table 1021. Scrubber initialization data register (write-only)
31 0

SCRUBBER INITIALIZATION DATA

31: 0 Part of data pattern to be written in initialization mode.

Table 1022. Scrubber second range low address register
31 0

SCRUBBER RANGE LOW ADDRESS

31: 0 The lowest address in the second range to be scrubbed (if SERA=1)

The address bits below the burst size alignment are constant ‘0’

Table 1023. Scrubber second range high address register
31 0

SCRUBBER RANGE HIGH ADDRESS

31: 0 The highest address in the second range to be scrubbed (if SERA=1)

The address bits below the burst size alignment are constant ‘1’
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73.5 Configuration options

Table 1024 shows the configuration options of the core (VHDL generics).

73.6 Signal descriptions

Table 1025shows the interface signals of the core (VHDL ports).

73.7 Library dependencies

Table 1026 shows libraries used when instantiating the core (VHDL libraries).

73.8 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory scrubber. There are three Fault Tolerant units with EDAC connected to the
scrubber’scerror vector. The connection of the different memory controllers to external memory is
not shown.

Table 1024.Configuration options

Generic Function Allowed range Default

hmindex AHB master index 0 - NAHBMST-1 0

hsindex AHB slave index 0 - NAHBSLV-1 0

ioaddr AHB slave register area address 0 - 16#FFF# 0

iomask AHB slave register area address mask 0 - 16#FFF# 16#FFF#

hirq Interrupt line driven by the core 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3

memwidth Width of accesses to scrubbed memory slave in bits 32, 64, ..., 1024 AHBDW

burstlen Length of burst accesses to scrubbed memory slave 2, 4, 8, 16, ... 2

countlen Length of blocks used for block error count burstlen x (1,2,4,8 ...) 8

Table 1025.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signal -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SCRUBI CERROR Input Correctable Error Signals High

CLRCOUNT Input Clear global error counters High

START Input External start signal High

* see GRLIB IP Library User’s Manual

Table 1026.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component  Component declaration



AEROFLEX GAISLER 846 GRIP

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    --other signals
    ....
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo, sdo2: sdctrl_out_type;

  signal sdi : sdctrl_in_type;

  signal aramo : ahbram_out_type;

  -- correctable error vector
  signal scrubi : memscrub_in_type;

begin

  -- AMBA Components are defined here ...

  -- AHB Memory Scrubber and Status Register
  mscrub0 : memscrub
    generic map(hmindex => 4, hsindex => 5, ioaddr => 16#C00#,
                hirq => 11, nftslv => 3);
    port map(rstn, clkm, ahbmi, ahbmo(4), ahbsi, ahbso(5), scrubi);

  scrubi.start <= ’0’; scrubi.clrcount <= ’0’;
  scrubi.cerror(3 to NAHBSLV-1) <= (others => ’0’);

  --FT AHB RAM
  a0 : ftahbram
    generic map(hindex => 1, haddr => 1, tech => inferred,  kbytes => 64,
                pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
                errcnt => 1, cntbits => 4)
    port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);

  scrubi.cerror(0) <= aramo.ce;

  -- SDRAM controller
  sdc : ftsdctrl
    generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#, ioaddr => 1,
                 fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
                 cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);



AEROFLEX GAISLER 847 GRIP

  stati.cerror(1) <= sdo.ce;

  -- Memory controller
  mctrl0 : ftsrctrl
    generic map (rmw => 1, pindex => 10, paddr => 10, edacen => 1, errcnt => 1,
                 cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);

  scrubi.cerror(2) <= memo.ce;

end;
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74 MUL32 - Signed/unsigned 32x32 multiplier module

74.1 Overview

The multiplier module is highly configurable module implementing 32x32 bit multiplier. Multiplier
takes two signed or unsigned numbers as input and produces 64-bit result. Multiplication latency and
hardware complexity depend on multiplier configuration. Variety of configuration option makes it
possible to configure the multiplier to meet wide range of requirements on complexity and perfor-
mance.

For DSP applications the module can be configured to perform multiply & accumulate (MAC) opera-
tion. In this configuration 16x16 multiplication is performed and the 32-bit result is added to 40-bit
value accumulator.

74.2 Operation

The multiplication is started when ‘1’ is samples on MULI.START on positive clock edge. Operands
are latched externally and provided on inputs MULI.OP1 and MULI.OP2 during the whole operation.
The result appears on the outputs during the clock cycle following the clock cycle when
MULO.READY is asserted if multiplier if 16x16, 32x8 or 32x16 configuration is used. For 32x32
configuration result appears on the output during the second clock cycle after the MULI.START was
asserted.

Signal MULI.MAC shall be asserted to start multiply & accumulate (MAC) operation. This signal is
latched on positive clock edge. Multiplication is performed between two 16-bit values on inputs
MULI.OP1[15:0] and MULI.OP2[15:0]. The 32-bit result of the multiplication is added to the 40-bit
accumulator value on signal MULI.ACC to form a 40-bit value on output MULO.RESULT[39:0].
The result of MAC operation appears during the second clock cycle after the MULI.MAC was
asserted.

74.3 Synthesis

Table 1027 shows hardware complexity in ASIC gates and latency for different multiplier configura-
tions.

Table 1027.Multiplier latencies and hardware complexity

Multiplier size
(multype) Pipelined (pipe) Latency (clocks) Approximate area (gates)

16x16 1 5 6 500

16x16 0 4 6 000

32x8 - 4 5 000

32x16 - 2 9 000

32x32 - 1 15 000
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74.4 Configuration options

Table 1028 shows the configuration options of the core (VHDL generics).

Table 1028.Configuration options

Generic Function Allowed range Default

infer If set the multipliers will be inferred by the synthesis tool. Use
this option if your synthesis tool i capable of inferring efficient
multiplier implementation.

0 to 1 1

multype Size of the multiplier that is actually implemented. All configu-
ration produce 64-bit result with different latencies.

0 - 16x16 bit multiplier

1 - 32x8 bit multiplier

2 - 32x16 bit multiplier

3 - 32x32 bit multiplier

0 to 3 0

pipe Used in 16x16 bit multiplier configuration with inferred option
enabled. Adds a pipeline register stage to the multiplier. This
option gives better timing but adds one clock cycle to latency.

0 to 1 0

mac Enable multiply & accumulate operation. Use only with 16x16
multiplier option with no pipelining (pipe = 0)

0 to 1 0
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74.5 Signal descriptions

Table 1029 shows the interface signals of the core (VHDL ports).

74.6 Library dependencies

Table 1030 shows the libraries used when instantiating the core (VHDL libraries).

74.7 Component declaration

The core has the following component declaration.

component mul32
generic (
    infer   : integer := 1;
    multype : integer := 0;
    pipe    : integer := 0;

Table 1029.Signal declarations

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

MULI OP1[32:0] Input Operand 1

OP1[32] - Sign bit.

OP1[31:0] - Operand 1 in 2’s complement for-
mat

High

OP2[32:0] Operand 2

OP2[32] - Sign bit.

OP2[31:0] - Operand 2in 2’s complement format

High

FLUSH Flush current operation High

SIGNED Signed multiplication High

START Start multiplication High

MAC Multiply & accumulate High

ACC[39:0] Accumulator. Accumulator value is held exter-
nally.

High

MULO READY Output Result is ready during the next clock cycle for
16x16, 32x8 and 32x16 configurations. Not used
for 32x32 configuration or MAC operation.

High

NREADY Not used -

ICC[3:0] Condition codes

ICC[3] - Negative result (not used in 32x32 conf)

ICC[1] - Zero result (not used in 32x32 conf)

ICC[1:0] - Not used

High

RESULT[63:0] Result. Available at the end of the clock cycle if
MULO.READY was asserted in previous clock
cycle. For 32x32 configuration the result is avail-
able during second clock cycle after the
MULI.START was asserted.

High

Table 1030.Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Signals, component declaration
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    mac     : integer := 0
);
port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    holdn   : in  std_ulogic;
    muli    : in  mul32_in_type;
    mulo    : out mul32_out_type
);
end component;

74.8 Instantiation

This example shows how the core can be instantiated.

The module is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal muli  : mul32_in_type;
signal mulo  : mul32_out_type;

begin

mul0 : mul32 generic map (infer => 1, multype => 0, pipe => 1, mac => 1)
    port map (rst, clk, holdn, muli, mulo);

end;
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75 MULTLIB - High-performance multipliers

75.1 Overview

The GRLIB.MULTLIB VHDL-library contains a collection of high-performance multipliers from the
Arithmetic Module Generator at Norwegian University of Science and Technology. 32x32, 32x8,
32x16, 16x16 unsigned/signed multipliers are included. 16x16-bit multiplier can be configured to
include a pipeline stage. This option improves timing but increases latency with one clock cycle.

75.2 Configuration options

Table 1031 shows the configuration options of the core (VHDL generics).

75.3 Signal descriptions

Table 1032 shows the interface signals of the core (VHDL ports).

75.4 Library dependencies

Table 1033 shows libraries used when instantiating the core (VHDL libraries).

Table 1031.Configuration options

Generic Function Allowed range Default

mulpipe Include a pipeline stage

(0 -pipelining disabled, 1 - pipelining enabled)

0 - 1 0

Table 1032.Signal descriptions

Signal name Type Function Active

CLK

(16x16 multiplier only)

Input Clock -

HOLDN

(16x16 multiplier only)

Input Hold. When active, the pipeline register is not
updates

Low

X[16:0] (16x16 mult)

X[32:0] (32x8 mult)

X[32:0] (32x16 mult)

X[32:0] (32x32 mult)

Input Operand 1. MBS bit is sign bit. High

Y[16:0] (16x16 mult)

Y[8:0] (32x8 mult)

Y[16:0] (32x16 mult)

Y[32:0] (32x32 mult)

Input Operand 2. MSB bit is sign bit. High

P[33:0] (16x16 mult)

P[41:0] (32x8 mult)

P[49:0] (32x16 mult)

P[65:0] (32x32 mult)

Result. Two MSB bits are sign bits. High

Table 1033.Library dependencies

Library Package Imported unit Description

GRLIB MULTLIB Component Multiplier component declarations
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75.5 Component declaration

The core has the following component declaration.

component mul_33_33
  port (
    x    : in  std_logic_vector(32 downto 0);
    y    : in  std_logic_vector(32 downto 0);
    p    : out std_logic_vector(65 downto 0)
  );
end component;

75.6 Instantiation

This example shows how the core can be instantiated.

The core is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.multlib.all;

.

.

signal op1, op2 : std_logic_vector(32 downto 0);
signal prod : std_logic_vector(65 downto 0);

begin

m0 : mul_33_33
         port map (op1, op2, prod);

end;
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76 NANDFCTRL - NAND Flash Memory Controller

76.1 Overview

The NAND Flash Memory Controller (NANDFCTRL) core provides a bridge between external
NAND flash memory and the AMBA bus. The memory controller is an Open NAND Flash Interface
(ONFI) 2.2 command compliant core (see exceptions below) and it can communicate with multiple
parallel flash memory devices simultaneously, where each device in turn can consist of up to four
individually addressable targets, one target addressed at a time. The core is configured through a set of
AMBA APB registers, described in section 76.5, and data is written to / read from the flash memory
by accessing internal buffers mapped over AMBA AHB.

This document mainly describes the NANDFCTRL core’s functionality. For details about the actual
flash memory interface, flash memory architecture and ONFI 2.2 command set please refer to the
Open NAND Flash Interface specification, revision 2.2, hereafter called the ONFI 2.2 specification.

76.2 Operation

76.2.1 System overview

A block diagram of the core can be seen in figure 239. Features and limitations of the core are listed
below:

• All commands defined in the ONFI 2.2 standard are supported, except Synchronous Reset.

• The core does not implement support for the source synchronous data interface, only asynchro-
nous data inferface.

• The core does not place any other limitation on the device architecture other than those specified
in the ONFI 2.2 standard. For example, the core does not need to know how many LUNs, blocks,
or pages a connected flash memory device has. (See the ONFI 2.2 specification for information
about LUNs, blocks, and pages.)

• Multiple parallel data lanes are supported, which gives the possibility to read / write several flash
memory devices at the same time.

• To support interleaving of flash memory accesses and AMBA accesses and give greater through-
put, two buffers for reading / writing flash memory data are implemented.

Figure 239. Block diagram
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with individual write enable signals controlling each 8-bit/16-bit data lane.
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• The data interface timing can either be fixed (set at implementation time) or programmable
through AMBA APB registers. With fixed data interface timing support for ONFI timing modes
0 - 5 can be implemented and then switched between during run-time. Programmable timing
interface allows for clock frequencies unknown at implementation time, as well as custom tim-
ing.

• The core does not implement any wear-leveling or bad block management.

• The core does not implement any direct access to flash memory devices from the AMBA AHB
bus. Instead accesses are performed through two temporary buffers by initiating command and
data transfers through control registers via the AMBA APB bus.

• The temporary buffers are mapped into AMBA AHB memory space. Note that the buffer
addresses are not directly mapped to the flash memory, but are mapped specific addressing regis-
ters. This allows large amount of flash memory to be address, exceeding the 4 Gbyte address
space of the AMBA bus.

76.2.2 Internal buffer structure

The number of buffers implemented in the core depends on wheter or not the core is implemented
with separate buffers for each parallel 8-bit/16-bit data lane or not. This is indicated by thesepbfield
in the Capability register.How many data lanes the core implements can be found by reading the
nlanefield of theCapability registerand adding one. If separate buffers are used then for each data
lane there are four different buffers implemented. Two buffers are used for data that are read from /
written to any page area in the flash memory device (hereafter called page buffer), and the other two
are used for data read from / written to any page’s spare area (hereafter called spare buffer). The size
of each page buffer (in bytes) is 2^(pbits+1), where pbits is the value of thepbitsfield in theCapability
register. The size of each spare buffer (in bytes) is 2^(sbits+1), where sbits is the value of thesbitsfield
in the Capability register. If separate buffers aren’t used, then the core implements one set of the
above mentioned four buffers and uses them for all data lanes.

One page buffer and one spare buffer for each data lane (or all lanes if separate buffers aren’t used) are
grouped together into what in this document is called buffer 0. The other set of page buffers and spare
buffers are grouped into buffer 1. For example, if the core has support for eight data lanes with sepa-
rate buffers, and the page buffers are 4096 bytes, and the spare buffers are 256 bytes, then buffer 0 and
buffer 1 will each be 32768 + 2048 bytes large. Buffer 0 and buffer 1 are associated with their own set
of control registers, described in section 76.5. All buffers are mapped into AHB address space, and the
core supports two different mapping schemes, with their own designated AHB address space:

• For the first address map, calledConsecutive address map, the first part of the assigned AHB
memory area is mapped to the page buffer corresponding to the first 8-bit/16-bit data lane, fol-
lowed by the page buffer corresponding to the second 8-bit/16-bit data lane etc. After all the page
buffers the spare buffers follow in the same manner. See table 1034 for an example.

• For the second address map, calledBy page address map, the first part of the assigned AHB
memory area is mapped to the page buffer corresponding to the first 8-bit/16-bit data lane, fol-
lowed by the spare buffer corresponding to the same data lane. After that follows the page buffer
and spare buffer pairs for all other data lanes. Note that since the spare buffers normally are much
smaller than the page buffers there is normally a gap between the last address of a spare buffer
and the first address of the next page buffer. The size of the gap is page buffer size - spare buffer
size. See table 1035 for an example.
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Note that the page and spare buffer areas might be larger than the size of the page and spare memory
implemented in the actual flash memory device. Thus, there might be gaps in the above addressing
schemes.

76.2.3 Data interface timing

The ONFI timing parameters that the core explicitly handles are:

• tCCS - Change Column setup time

• tADL - ALE to data loading time

• tCS - CE setup time

• tRP - RE pulse width

• tRR - Ready to RE low (data only)

Table 1034.Buffer memory map, consecutive addressing (example with 4096 +256 byte page size and separate buffers).

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

0x00000 0x00FFF Buffer 0, 4096 byte page data, lane 0 0x10000 0x10FFF Buffer 1, 4096 byte page data, lane 0

0x01000 0x01FFF Buffer 0, 4096 byte page data, lane 1 0x11000 0x11FFF Buffer 1, 4096 byte page data, lane 1

0x02000 0x02FFF Buffer 0, 4096 byte page data, lane 2 0x12000 0x12FFF Buffer 1, 4096 byte page data, lane 2

0x03000 0x03FFF Buffer 0, 4096 byte page data, lane 3 0x13000 0x13FFF Buffer 1, 4096 byte page data, lane 3

0x04000 0x04FFF Buffer 0, 4096 byte page data, lane 4 0x14000 0x14FFF Buffer 1, 4096 byte page data, lane 4

0x05000 0x05FFF Buffer 0, 4096 byte page data, lane 5 0x15000 0x15FFF Buffer 1, 4096 byte page data, lane 5

0x06000 0x06FFF Buffer 0, 4096 byte page data, lane 6 0x16000 0x16FFF Buffer 1, 4096 byte page data, lane 6

0x07000 0x07FFF Buffer 0, 4096 byte page data, lane 7 0x17000 0x17FFF Buffer 1, 4096 byte page data, lane 7

0x08000 0x080FF Buffer 0, 256 byte spare data, lane 0 0x18000 0x180FF Buffer 1, 256 byte spare data, lane 0

0x08100 0x081FF Buffer 0, 256 byte spare data, lane 1 0x18100 0x181FF Buffer 1, 256 byte spare data, lane 1

0x08200 0x082FF Buffer 0, 256 byte spare data, lane 2 0x18200 0x182FF Buffer 1, 256 byte spare data, lane 2

0x08300 0x083FF Buffer 0, 256 byte spare data, lane 3 0x18300 0x183FF Buffer 1, 256 byte spare data, lane 3

0x08400 0x084FF Buffer 0, 256 byte spare data, lane 4 0x18400 0x184FF Buffer 1, 256 byte spare data, lane 4

0x08500 0x085FF Buffer 0, 256 byte spare data, lane 5 0x18500 0x185FF Buffer 1, 256 byte spare data, lane 5

0x08600 0x086FF Buffer 0, 256 byte spare data, lane 6 0x18600 0x186FF Buffer 1, 256 byte spare data, lane 6

0x08700 0x087FF Buffer 0, 256 byte spare data, lane 7 0x18700 0x187FF Buffer 1, 256 byte spare data, lane 7

Table 1035.Buffer memory map, by page addressing (example with 4096 +256 byte page size and separate buffers).

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

0x00000 0x00FFF Buffer 0, 4096 byte page data, lane 0 0x10000 0x10FFF Buffer 1, 4096 byte page data, lane 0

0x01000 0x010FF Buffer 0, 256 byte spare data, lane 0 0x11000 0x110FF Buffer 1, 256 byte spare data, lane 0

0x02000 0x02FFF Buffer 0, 4096 byte page data, lane 1 0x12000 0x12FFF Buffer 1, 4096 byte page data, lane 1

0x03000 0x030FF Buffer 0, 256 byte spare data, lane 1 0x13000 0x130FF Buffer 1, 256 byte spare data, lane 1

0x04000 0x040FF Buffer 0, 4096 byte page data, lane 2 0x14000 0x140FF Buffer 1, 4096 byte page data, lane 2

0x05000 0x050FF Buffer 0, 256 byte spare data, lane 2 0x15000 0x150FF Buffer 1, 256 byte spare data, lane 2

0x06000 0x06FFF Buffer 0, 4096 byte page data, lane 3 0x16000 0x16FFF Buffer 1, 4096 byte page data, lane 3

0x07000 0x070FF Buffer 0, 256 byte spare data, lane 3 0x17000 0x170FF Buffer 1, 256 byte spare data, lane 3

0x08000 0x080FF Buffer 0, 4096 byte page data, lane 4 0x18000 0x180FF Buffer 1, 4096 byte page data, lane 4

0x09000 0x090FF Buffer 0, 256 byte spare data, lane 4 0x19000 0x190FF Buffer 1, 256 byte spare data, lane 4

0x0A000 0x0AFFF Buffer 0, 4096 byte page data, lane 5 0x1A000 0x1AFFF Buffer 1, 4096 byte page data, lane 5

0x0B000 0x0B0FF Buffer 0, 256 byte spare data, lane 5 0x1B000 0x1B0FF Buffer 1, 256 byte spare data, lane 5

0x0C000 0x0C0FF Buffer 0, 4096 byte page data, lane 6 0x1C000 0x1C0FF Buffer 1, 4096 byte page data, lane 6

0x0D000 0x0D0FF Buffer 0, 256 byte spare data, lane 6 0x1D000 0x1D0FF Buffer 1, 256 byte spare data, lane 6

0x0E000 0x0E0FF Buffer 0, 4096 byte page data, lane 7 0x1E000 0x1E0FF Buffer 1, 4096 byte page data, lane 7

0x0F000 0x0F0FF Buffer 0, 256 byte spare data, lane 7 0x1F000 0x1F0FF Buffer 1, 256 byte spare data, lane 7
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• tWP - WE pulse width

• tWB - WE high to SR[6] low

• tRHW - RE high to we WE low

• tWH - WE high hold time

• tWHR - WE high to RE low

• tWW - WP transition to WE low

All other timing requirements are either fulfilled through design, or are handled by the flash memory
devices. See the ONFI specification for details about the different timing parameters.

The data interface timing can be either fixed (set at implementation time) or programmable to allow
both system clock frequencies unknown at implementation time as well as custom timing parameters.

When the timing is fixed all timing parameters are calculated on implementation time based on the
specified system clock frequency. When programmable timing is used the timing parameters are pro-
grammed through AMBA APB registers, described in section 76.5. The registers power-up / reset val-
ues are set at implementation time.

Note that the timing parameter tCCS is always programmable, even if fixed timing is used for all other
parameters. This is because the ONFI specification says that after initialization is complete, the value
for tCCS specified in the flash memory’s parameter page should be used.

76.2.4 Accessing the NAND flash memory devices

The steps that need to be taken to access (i.e. send an ONFI 2.2 command to) the flash memory
devices are:

1. Make sure that the chosen buffer is not busy by checking therun andbsybits in theBuffer control /
statusregister. If both therun bit andbsybits are set then the core is currently executing a command
associated with that buffer, and the buffer can not be used. If only thebsybit is set then the core is
done executing a command but the corresponding data buffer and control bits are still write protected.
Software then needs to clear thebsy bit by writing ‘1’ to it.

2. If the command requires a row address to be sent, write it to theBuffer row address register. Other-
wise this step can be skipped.

3. If the command requires a column address to be sent, write it to thecoladdrfield of theBuffer col-
umn address register. Bits 7:0 of thecoladdrfield also need to be written with the one byte address
used for SET FEATURES, GET FEATURES, READ ID, READ UNIQUE ID, and READ PARAME-
TER PAGE commands. Otherwise this step can be skipped.

4. Write the command value to theBuffer command register, and possibly set the control bitssel, cd,
or sc2 if needed. See table 1043 in section 76.5 for a description of these bits.

5. If the command should include a data phase then set the size of the data by writing to thesizefield
of theBuffer column address register. This step is not necessary for the SET FEATURES, GET FEA-
TURES, READ STATUS, and READ STATUS ENHANCED commands since they always have a
fixed size data phase.

6. If data should be written to the flash memory devices then write this data to the corresponding buff-
ers. Note that the core uses thecoladdr field in theBuffer column address registerto index into the
buffers, which means that data that should be written with an offset into a flash memory page (i.e. col-
umn address is not zero) need to be written with the same offset into the buffers. The exception is the
commands mentioned in step 3. They always read from the beginning of the buffers. This step can be
skipped if no data are to be written.

7. Select which data lanes and targets the command should be sent to, if an interrupt should be gener-
ated when the command is finished, and start execution by writing to thelanesel, targsel, irqmsk, and
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exebits in theBuffer control / status register. See table 1044 in section 76.5 for a description of these
bits.

Once command execution has been started software can monitor therun bit in theBuffer control / sta-
tus register(or wait for an interrupt if the core was configured to generate one) to learn when the com-
mand is finished. If data was read from the flash memory then it can be found in the buffers. Note that
the core uses thecoladdrfield in theBuffer column address registerto index into the buffers, which
means that data that was read from a flash memory page with an offset (i.e. column address is not
zero) was written into the buffers with the same offset. The exception are the commands mentioned in
step 3. They always place their data in the beginning of the buffers.

76.3 EDAC

76.3.1 EDAC operation

The optional NAND Flash Memory controller EDAC automatically encode and decode data being
stored in the NAND Flash memory with an error correcting code. Theedacbit in theCapabilityregis-
ter shows if the EDAC is implemented or not. If implemented, the EDAC is enabled by setting the
edacenbit in the Core control register. Optional AHB error responses can be generated upon an
uncorrectable error by setting theahberrenbit in the same register. See section 76.5 for more informa-
tion.

The checksum of the code is calculated and stored for each word that is written, via the AMBA inter-
face, into the page data part of the buffer, and automatically stored in parallel in the spare data part of
the buffer. For each word of data written, one byte is stored. Note that half-word and byte writes are
not supported when the EDAC is enabled.

Since the number of spare bytes normall is less than what is sufficient to protect the full page data, the
page data size is limited by the programmalbelpaddr field in theCore controlregister. Thelpaddr
field defines how much user data (i.e. page data) is to be used, with the remaining part of the page data
and spare data being used for checksums. Note that the spare data buffer portion is therefore made
bigger than the actual spare data in the NAND Flash memory. When the NAND Flash memory is
written, the data will be fetched first from the page data buffer up tolpaddr, and then the rest will be
fetched from the spare data buffer. Errors can be detected in the underlying buffer memory when read-
ing them as part of the write operation to the NAND Flash memory.

The reverse applies to when data is fetched from the NAND Flash memory during read. When the
buffer contents are read out, via the AMBA interface, each read page data word is automatically cor-
rected using the corresponding spare buffer checksum byte. Two levels of errors can occur, errors
stemming from the underlying buffer memory protection, or errors stemming from the EDAC protect-
ing the NAND Flash memory contents. All error flags are described in theCore status register.

It is possible to write or read additional dummy words to the page data buffer past the LPADDR
address. This can be used to handle any surplus spare data bytes.

The memory contents are proteced by means of a Bose Chaudhuri Hocquenghem (BCH) type of code.
It is a Quad Error Correction/Quad Error Detection (QEC/QED) code.

The data symbols are 4-bit wide, represented as GF(2^4). The has the capability to detect and correct
a single symbol error anywhere in the codeword.

76.3.2 Code

The code has the following definition:

• there are 4 bits per symbol;

• there are 17 symbols per codeword, of which 2 symbols represent the checksum;

• the code is systematic;

• the code can correct one symbol error per codeword;
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• the field polynomial is

• all multiplications are performed as Galois Field multiplications over the above field polynomial

• all additions/subtractions are performed as Galois Field additions (i.e. bitwise exclusive-or)

Note that only 4 of the 17 symbols are used for data, 2 symbols are used for the checksum, and the
reset are not used, the code is thus shortned by 11 symbols.

76.3.3 Encoding

• a codeword is defined as 17 symbols:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14,c15,c16]

where c0 to c14 represent information symbols and c15 to c16 represent check symbols.

• c15 is calculated as follows

• c16 is calculated as follows

• where the constant vector k is defined as:

k0=0xF, k1=0xE, ..., k14=0x1 (one can assume k15=0x1 and k16=0x1 for correction purposes)

76.3.4 Decoding

• the corrupt codeword is defined as 17 symbols:

[r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14,r15,r16]

• the corrupt codeword can also be defined as 17 uncorrupt symbols and an error:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14,c15,c16] + [ex]

where the error is defined as ex, e being the unknown magnitude and
x being the unknown index position in the codeword

• recalculated checksum rc0 is calculated as follows (ki is as defined above, x being the unknown
index)

• recalculated rc1 is calculated as follows

• syndrome s0 is calculated as follows
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• syndrome s1 is calculated as follows, which gives the magnitude (not applicable to c15 and c16)

• in case s0 and s1 are both non-zero, to located the error in range c0 to c14, multiply error magni-
tude ex with each element of the constant vector defined above:

• search the resulting vector to find the element matching syndrome s0, the resulting index i points
to the error location (applicable only to i in [0, 14])

• finally perform the correction (applicable only to i in [0, 14])

• when s0 is zero and s1 is non-zero, the error is located in checksum r15, no correction is necessary

• when s1 is zero and s0 is non-zero, the error is located in checksum r16, no correction is necessary

when s0 and s1 are both zero, no error has been detected, no correction is necessary

76.4 Scan test support

The VHDL genericscantestenables scan test support. If the core has been implemented with scan test
support and thetesten input signal is high, the core will:

• disable the internal RAM blocks when thescanen signal is asserted.

• use thetestoen signal as output enable signal.

• use thetestrst signal as the reset signal for those registers that are asynchronously reseted.

Thetesten, scanen, testrst, andtestoen signals are routed via the AHB slave interface.
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76.5 Registers

The core is programmed through registers mapped into APB address space.

Table 1036.NANDFCTRL registers

APB address offset Register

0x00 Core control register

0x04 Core status register

0x08 Interrupt pending register

0x0C Capability register

0x10 Buffer 0 row address register

0x14 Buffer 0 column address register

0x18 Buffer 0 command register

0x1C Buffer 0 control / status register

0x20 Buffer 1 row address register

0x24 Buffer 1 column address register

0x28 Buffer 1 command register

0x2C Buffer 1 control / status register

0x30 Programmable timing register 0

0x34* Programmable timing register 1

0x38* Programmable timing register 2

* Only present if programmable timing is implemeted. Indicated byprgt bit in Capability register.

Note: The Buffer 0 and Buffer 1 registers are identical, and therefore only one set of tables describing the registers are pre-
sented below.
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Table 1037.Core control register
15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DW CMDO R AHBERREN EDACEN R ABO
RT

TMODE WP RST

31 16

LPADDR

31:16 Last page address (LPADDR) - This field should be set to the last addressable byte in a flash memory
page, not including the spare area. The core uses these bits to know when to switch to the internal buff-
ers for the page’s spare area. For example: If the flash memory devices have a page size of 4096 bytes
(and an arbitrary sized spare area for each page) this field should be set to 0xFFF (= 4095). The actual
number of bits used for this field depends on the size of the implemented buffers. The number of bits
can be found by reading thepbits field of theCapability register and adding one.

If the EDAC is implemented and enabled this field must be set to the address of the last data byte in the
flash memory page that is protected by the EDAC. Depending on the size of the page and spare areas the
whole page might not be protected by the EDAC. Reset value: 0xF..F

15:13 Reserved (R) - Always reads zero.

12 Data width (DW) - Sets the default data lane width. 0 = Core uses 8-bit data lanes. 1 = Core uses 16-bit
data lanes. This can be overridden for individual commands by setting thedwobit in theBuffer com-
mand register. This bit is only available if thedw16 bit in theCapability register is 1. Reset value 0.

11 Command bit order (CMDO) - When this bit is set to 0 the ONFI command bytes are mapped to the
core’s data lane(s) as follows: Cmd bit 0 -> Data lane bit 7, Cmd bit 1 -> Data lane bit 6., and so on.

When this bit is set to 1 the commands are mapped as follows: Cmd bit 0 -> Data lane bit 0, Cmd bit 1 -
> Data lane bit 1, and so on. Reset value equals the value of thecmdo bit in theCapability register.

10 Reserved (R) - Always reads zero.

9 AHB error response generation (AHBERREN) - If this bit is set then the core will generate an AMBA
error response if the EDAC detects an uncorrectable error, or if the fault tolerance logic for the internal
buffers report and uncorrectable error, upon and AHB read. If this bit is not set when an uncorrectable
error is detected, the core’s ouput signalerror is set high for one clock cycle instead. This bit is only
present when the EDAC is implemented or when the internal buffers are implemented with either byte
parity and DMR or only byte parity. Theft bits in theCapability register shows which fault tolerance
that is implemented, and theedac bit in theCapability register shows if EDAC is implemented. Reset
value 0.

8 EDAC enable (EDACEN) - When this bit is set the EDAC is enabled. This bit is only present when the
EDAC is implemented. Theedac bit in theCapability register shows if EDAC is implemented or not.
Reset value 0.

7 Reserved (R) - Always reads zero.

6 EDO data output (EDO) - If programmable timing is implemented (indicated by theprgt field in the
Capability register) then this bit should be set if EDO data output cycles should be used. See ONFI 2.2
Specification for more information. If programmable timing is not implemented then this bit is not
present. Reset value 0.

5 Command abort (ABORT) - This bit can be set to 1 to abort a command that for some reason has put the
core in a dead lock waiting for therb input signal to go high. This could happen for example if a pro-
gram och erase command was issued while the memory was in write protect mode. This bit is automat-
ically cleared by the core. Reset value 0. Only available if therev field in theCapability register > 0,
otherwise always 0.

4:2 Timing mode (TMODE) - If programmable timing is not implemented (indicated by theprgt field in the
Capability register) then writing this field changes the core’s internal timing mode. See ONFI 2.2 Spec-
ification for more information on the different timing modes. Note that in order to change timing mode
on the flash memory devices a SET FEATURES command needs to be issued. This is not done automat-
ically when writing these bits. Timing mode 0 i always supported. Additional supported timing modes
is indicated by thetm[5:1] bits in theCapability register. Should not be written while a command is in
progress. Note that if this field is written with a value matching a timing mode that is not supported,
then the core will operate in timing mode 0 (even though this field still changes to the invalid value). If
programmable timing is implemented then this field is not present. Reset value: 0b000
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1 Write protect (WP) - When this bit is set to 1 the core puts the flash memory devices in write protect
mode by asserting thewp signal. In write protect mode, the memories won’t respond to PROGRAM or
ERASE commands. If the core is active when software writes this bit there is a delay before the actual
write protect signal goes low. Software can use thewpfield in theCore status register to see when the
signal has changed value. Reset value: 0

0 Software reset (RST) - If software writes this bit to 1 the core is reset, and a RESET (0xFF) command is
issued to all targets on all attached flash memory devices. The only difference between a software reset
and a hardware reset / power up is that the core does not reset it’stmodefield (described above) nor the
Programmable timing registers during software reset. The reason for this is that the flash memory
devices does not change timing mode after receiving a RESET command. This bit is cleared automati-
cally. Reset value: 0

Table 1038.Core status register (read only)
15 12 11 9 8 4 3 2 1 0

EERRFLAGS R STATE R WP RDY

31 24 23 22 21 20 19 18 17 16

R FTNERRFLAGS R FTAERRFLAGS R

31:24 Reserved (R) - Always reads zero.

23:22 Fault tolerance error flags on NAND side (FTNERRFLAGS) - The bits in this field indicates the fol-
lowing errors:

Bit 22: Uncorrectable error in buffer 0.

Bit 23: Uncorrectable error in buffer 1.

If the fault tolerance logic for the internal buffers indicates an error when the buffers are read during
a NAND flash write operation the corresponding error flag in this register is set. These bits can be
cleared by writing a 1 to them. The error flag for each buffer is also automatically cleared when an
AHB write access occurs to that buffer (independent of address). These bits are only present when
the internal buffers are implemented with either byte parity and DMR or only byte parity. Theft bits
in theCapability register shows which fault tolerance that is implemented. Reset value 0.

21:20 Reserved (R) - Always reads zero.

19:18 Fault tolerance error flags on AHB side (FTAERRFLAGS) - The bits in this field indicates the fol-
lowing errors:

Bit 18: Uncorrectable error in buffer 0.

Bit 19: Uncorrectable error in buffer 1.

If the fault tolerance logic for the internal buffers indicates an error when the buffers are read over
AHB the corresponding error flag in this register is set. These bits can be cleared by writing a 1 to
them. The error flag for each buffer is also automatically cleared when an AHB read access occurs to
that buffer with an address which is at offset 0 in the page data buffer for any data lane. For example,
if the core is configured with four data lanes and 4096 byte large page buffers, then an AHB read
access with offsets 0x0000, 0x1000, 0x2000, and 0x3000 (with consecutive address scheme) would
reset the error flag for buffer 0. These bits are only present when the internal buffers are imple-
mented with either byte parity and DMR or only byte parity. Theft bits in theCapability register
shows which fault tolerance that is implemented.

When these bits get set then the core’s output signalerr is also set high for one clock cycle, if the
ahberren bit in theCore control register is not set.

Reset value 0.

17:16 Reserved (R) - Always reads zero.

Table 1037.Core control register
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15:12 EDAC error flags (EERRFLAGS) - The different bits indicate the following errors:

Bit 12: Correctable error in buffer 0.

Bit 13: Correctable error in buffer 1.

Bit14: Uncorrectable error in buffer 0.

Bit 15: Uncorrectable error in buffer 1.

If the EDAC detects an error while an internal buffer is being read over AHB the corresponding error
flag in this register is set. These bits can be cleared by writing a 1 to them. The error flags for each
buffer are also automatically cleared when an AHB read access occurs to that buffer with an address
which is at offset 0 in the page data buffer for any data lane. For example, if the core is configured
with four data lanes and 4096 byte large page buffers, then an AHB read access with offsets 0x0000,
0x1000, 0x2000, and 0x3000 (with the consecutive address scheme) would reset the error flag for
buffer 0. These bits are only present when the EDAC is implemented. Theedacbit in theCapability
register shows if EDAC is implemented or not.

When the correctable error status bits get set then the core’s output signalerr is also set high for one
clock cycle. Theerr output is also set for one cycle if the error flags for uncorrectable errors get set
and theahberren bit in theCore control register is not set.

Reset value 0x0.

11:9 Reserved (R) - Always reads zero.

8:4 Core state - Shows the core’s internal state. Implemented for debugging purposes. 0 = reset, 1-2 =
idle, 3-8 = command state, 9-11 = address state, 12-15 = data in state, 16-18 = data out state, 19-31 =
unused.

3:2 Reserved (R) - Always reads zero.

1 Write protect (WP) - Shows if the flash memory devices are in write protect mode or not. 0 = Not in
write protect mode. 1 = In write protect mode. Reset value: 1

0 Core ready (RDY) - After a power up / reset this bit will be cleared. Once the core is done with it’s
reset procedure (waiting for ready signal from all flash memory devices and issuing a RESET com-
mand) this bit is set to 1. Reset value: 0

Table 1039.Interrupt pending register
31 2 1 0

R B1IRQ B0IRQ

31:2 Reserved (R) - Always reads zero.

1 Buffer 1 interrupt (B1IRQ) - This bit is set to one when an interrupt linked to buffer 1 is generated.
Software can clear this bit by writing 1 to it. Reset value: 0

0 Buffer 0 interrupt (B0IRQ) - This bit is set to one when an interrupt linked to buffer 0 is generated.
Software can clear this bit by writing 1 to it. Reset value: 0

Table 1038.Core status register (read only)
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Table 1040.Capability register (read only)
15 14 13 10 9 8 7 6 5 4 2 1 0

SBITS PBITS TM5 TM4 TM3 TM2 TM1 NLANES NTARGS

31 28 27 26 25 24 23 22 21 20 19 18 17 16
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REV R PRGT SEPB CMDO FT R EDAC DW16 SBITS

31:28 Revision (REV) - Indicates the revision of the core.

27 Reserved (R) - Always reads zero.

26 Programmable timing (PRGT) - 0 = Data interface timing is set at implementation time and not pro-
grammable. 1 = Data interface timing is programmable (only reset values are set at implementation
time). Reflects value of VHDL genericprogtime.

25 Separate buffers (SEPB) - Indicates if the buffers for the data lanes are shared or separate. 0 = All
data lanes share buffers. 1 = All data lanes have their own buffers. When 0 a command with a data in
phase should only be issued to one target and lane. A command with a data out phase can still be
issued to several lanes but with the limitation that the same data will be sent to all lanes. When set to
1 several lanes can be read at the same time, and lanes can be written with individual data simulta-
neously. Reflects value of VHDL genericsepbufs.

24 Command bit order (CMDO) - Indicates the reset value for thecmdobit in theCore control register.
Reflects value of VHDL genericcmdorder.

23:22 Fault tolerant buffers (FT) - These bits indicate if the internal buffers in the core is implemented with
fault tolerance. 0b00 = no fault tolerance, 0b01 = Byte parity DMR, 0b10 = TMR, 0b11 = Byte par-
ity, no DMR. Reflects value of VHDL genericft.

21:20 Reserved (R) - Always reads zero.

19 EDAC support (EDAC) - If this bit is 1 then the core implements error detection and correction on
data read from the NAND flash memory. See section 76.3 for details. Reflects value of VHDL
genericedac.

18 16-bit memory support (DW16) - If this bit is 0 the core only support 8-bit memories. If this bit is 1
the core support both 8-bit and 16-bit memories. Only available if therevfield > 0, otherwise always
0. Reflects value of VHDL genericdwidth16.

17:14 Spare area buffer address bits (SBITS) - This field indicates how many address bits that are imple-
mented for the buffers for the pages spare area. Add one to the value of this field to get the number of

bits. The size of the buffers are 2^(SBITS+1)Reflects value of VHDL genericsbufsize.

13:10 Page buffer address bits (PBITS) - This field indicated how many address bits that are implemented
for the page buffers. Add one to the value of this field to get the number of bits. The size (in bytes) of

the buffers are 2̂(PBITS+1)Reflects value of VHDL genericpbufsize.

9 Timing mode 5 support (TM5) - If the core does not support programmable timing (indicated byprgt
bit described above) then this bit is 1 if the core supports timing mode 5. If programmable timing is
implemented, or if the core does not support timing mode 5 then this bit is 0. Reflects value of
VHDL generictm5.

8 Timing mode 4 support (TM4) - If the core does not support programmable timing (indicated byprgt
bit described above) then this bit is 1 if the core supports timing mode 4. If programmable timing is
implemented, or if the core does not support timing mode 4then this bit is 0. Reflects value of VHDL
generictm4.

7 Timing mode 3 support (TM3) - If the core does not support programmable timing (indicated byprgt
bit described above) then this bit is 1 if the core supports timing mode 3. If programmable timing is
implemented, or if the core does not support timing mode 3then this bit is 0. Reflects value of VHDL
generictm3.

6 Timing mode 2 support (TM2) - If the core does not support programmable timing (indicated byprgt
bit described above) then this bit is 1 if the core supports timing mode 2. If programmable timing is
implemented, or if the core does not support timing mode 2then this bit is 0. Reflects value of VHDL
generictm2.

5 Timing mode 1 support (TM1) - If the core does not support programmable timing (indicated byprgt
bit described above) then this bit is 1 if the core supports timing mode 1. If programmable timing is
implemented, or if the core does not support timing mode 1 then this bit is 0. Reflects value of
VHDL generictm1.

4:2 Number of flash memory devices (NLANES) - This field indicates how many 8-bit/16-bit data lanes
(minus one) the core can access, i.e. number of write enable signals. A write enable signal can be
connected to one or more targets (i.e. one or more flash memory devices). Reflects value of VHDL
genericnlanes.

1:0 Number of targets per device (NTARGS) - This field indicates how many individual targets (minus
one) the core can access, i.e. number of chip enable signals. A flash memory device can have one or
more targets, each with an individual chip enable signal. Reflects value of VHDL genericntargets.

Table 1040.Capability register (read only)



AEROFLEX GAISLER 867 GRIP

Table 1041.Buffer row address register
31 24 23 0

R ROWADDR

31:24 Reserved (R) - Always reads zero.

23:0 Row address (ROWADDR) - This field sets the three byte row address, which is used to address
LUNs, blocks and pages. As described in the ONFI 2.2 specification the least significant part of the
row address is the page address, the middle part block address, and the most significant part is the
LUN address. Exactly how many bits that are used for each part of the address depends on the archi-
tecture of the flash memory. Software needs to write this field prior to issuing any command that has
an address phase that includes the row address. The core ignores this field if the command doesn’t
use the row address. This field can only be written if thebsybit in theBuffer control / status register
is zero.

Table 1042.Buffer column address register
31 16 15 0

SIZE COLADDR

31:16 Command data size (SIZE) - If a command has a data out or data in phase then software needs to set this
field to the size of the data that should be read / written. Software does not need to set this field for the
commands SET FEATURES, GET FEATURES, READ STATUS, or READ STATUS ENHANCED
their data phases are always the same size. The core also ignores this field if the command issued doesn’t
have a data phase, as for example BLOCK ERASE. The actual number of bits used for this field depends
on the size of the implemented buffers. The number of bits can be found by reading thepbitsfield of the
Capability registerand adding one. This field can only be written if thebsybit in theBuffer control / sta-
tus register is zero.

15:0 Column address (COLADDR) - This field sets the two byte column address, which is used to address
into a flash memory page. See the ONFI 2.2 specification for more information about column address.
Software needs to write this field for those commands that have an address phase that includes the col-
umn address, as well as for those special commands that only have a one byte address phase (SET FEA-
TURES; GET FEATURES; READ ID, READ UNIQUE ID, and READ PARAMETER PAGE). The
core uses this field as an offset into the buffers when reading / writing data. The exception is the one byte
address commands mentioned above, which always store their data in the beginning of the buffers. This
field is ignored by the core if the command only uses the row address. This field can only be written if
thebsy bit in theBuffer control / status register is zero.
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Table 1043.Buffer command register
31 20 19 18 17 16 15 8 7 0

R DWO R SEL SC2 CD CMD2 CMD1

31:21 Reserved (R) - Always reads zero.

20 Data width override (DWO) - This bit is XOR:ed with thedwbit in theCore controlregister. If the result
is 0 then only the lower 8-bits of the data lane(s) will be used. If the result if 1 then also the upper 8-bit
of the data lane(s) will be used. This bit is only available if thedw16 bit in theCapability register is 1.
Reset value 0.

19 Reserved (R) - Always reads zero.

18 Command select (SEL) - This bit is used to select between commands that have the same opcode in the
first command cycle. This applies to the CHANGE WRITE COLUMN and COPYBACK PROGRAM
commands, which both have a first command byte with the value of 0x85. If a COPYBACK PROGRAM
is to be executed, this bit should be set to 0. If a CHANGE WRITE COLUMM command is to be exe-
cuted, this bit should be set to 1. If therevfield in theCapability register> 0 then this bit is also used to
select between a PAGE PROGRAM and a SMALL DATA MOVE (with opcode 0x80). If the SMALL
DATA MOVE should be executed then this bit should be set to 1, otherwise it should be set to 0. The
core ignores this bit for all other commands. This field can only be written if thebsy bit in theBuffer
control / status register is zero.

17 Skip second command phase (SC2) - If this bit is set and a program command (PAGE PROGRAM,
COPYBACK PROGRAM, or CHANGE WRITE COLUMN) is being executed the core skips the sec-
ond command phase for that command and jumps back to idle state once all data has been written. This
is done in order to support the CHANGE WRITE COLUMN command, which needs to be executed in
between the first and second phase of the program command. This bit is ignored by the core for all other
commands. See the ONFI 2.2 specification for details on the CHANGE WRITE COLUMN command.
This field can only be written if thebsy bit in theBuffer control / status register is zero.

16 Common data (CD) - Sometimes, for example for the SET FEATURES command, it is desirable to send
the same data on all data lanes. If this is the case, software can write the data to send in the buffer corre-
sponding to the first data lane and then set to this bit to 1. When the core executes the command it will
then send the same data on all lanes without the need for software to fill all the corresponding buffers.
Needs to be set to 0 if individual data should be send to the devices. This field can only be written if the
bsy bit in theBuffer control / status register is zero.

15:8 Second command phase (CMD2) - If the command to execute is a two byte (two phase) command then
software should write the second byte of the command to this field. The core ignores this field for com-
mands that only have one command phase. This field can only be written if thebsybit in theBuffer con-
trol / status register is zero.

7:0 First command phase (CMD1) - Software should write this field with the first byte of the command to
execute. This field can only be written if thebsy bit in theBuffer control / status register is zero.
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Table 1044.Buffer control / status register
31 27 26 25 24 23 16 15 8 7 4 3 2 1 0

R INV BSY RUN R LANESEL TARGSEL R IRQM EXE

31:27 Reserved (R) - Always reads zero.

26 Invalid command (INV) - This bit is set to one if an invalid command is written to theBuffer command reg-
ister when theexe bit is written. This bit is cleared automatically once a new command is started. Reset
value: 0

25 Buffer busy (BSY) - Core sets this bit to 1 when a command is being executed. Once the command is done
(run bit is cleared) software can clear this bit by writing 1 to it. While this bit is set it prevents software
from writing to the buffer. This bit is write clear, but only when therun bit is zero. Reset value: 0

24 Command running (RUN) - Core sets this bit to 1 when a command is being executed, and clears it again
automatically once the command is done. While this bit is set it prevents software from accessing the
buffer. Reset value: 0

23:16 Reserved (R) - Always reads zero.

15:8 Data lane select (LANESEL) - The core uses this field to select which of the connected 8-bit/16-bit data
lanes to send the command to (which write enable (WE) signals to assert). (A write enable signal can be
connected to one or more flash memory devices but only one of the targets is selected at a time.) The least
significant bit in this field corresponds to the first connected data lane (WE(0)) etc. The actual number of
bits implemented equals thenlanes field in theCapability register plus one. This field can only be written
if the bsy bit in theBuffer control / status register is zero.

7:4 Target select (TARGSEL) - The core uses this field to select which targets to send the command to (which
chip enable (CE) signals to assert). The least significant bit in this field corresponds to the first target
(CE(0)) etc. (A chip enable signal can be connected to one or more flash memory devices, all on different
8-bit/16-bit memory lanes. One or more chip enable signals can be connected to a flash memory device,
depending on how many targets the device implements.) The actual number of bits implemented equals the
ntargs field in theCapability register plus one. This field can only be written if thebsy bit in theBuffer
control / status register is zero.

3:2 Reserved (R) - Always reads zero.

1 Interrupt mask (IRQM) - If this bit is set to 1 an interrupt will be generated when the command linked to
the corresponding buffer has been executed. This field can only be written if thebsy bit in theBuffer con-
trol / status register is zero. Reset value: 1

0 Execute command (EXE) - When software writes this bit to 1 the core sends the command programmed
into the correspondingBuffer command registerto the lanes and targets selected by thelaneselandtargsel
field in this register. This field can only be written if thebsybit in theBuffer control / status registeris zero.
Reset value: 0

Table 1045.Programmable timing register 0
15 9 8 0

tCS tCCS

31 30 29 24 23 16

R tRP tRHW

31:30 Reserved (R) - Always reads zero.

29:24 RE pulse width (tRP) - Length of tRP in clock cycles, minus one. See ONFI 2.2 specification for
more information. Field only present if programmable timing is implemeted. Indicated byprgt bit in
Capability register. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

23:16 RE high to WE low (tRHW) - Length of tRHW in clock cycles, minus one. See ONFI 2.2 specifica-
tion for more information. Field only present if programmable timing is implemeted. Indicated by
prgt bit in Capabilityregister. Reset value calculated from VHDL genericsysfreqto match value for
timing mode 0.
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76.6 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x059. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

15:9 CE setup time (tCS) - Length of tCS in clock cycles, minus one. See ONFI 2.2 specification for more
information. Field only present if programmable timing is implemeted. Indicated byprgt bit in
Capability register. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

8:0 Change Column setup time (tCCS) - Length of tCCS in clock cycles, minus one. See ONFI 2.2 spec-
ification for more information. Reset value calculated from VHDL genericsysfreqto match value for
timing mode 0.

Table 1046.Programmable timing register 1 (only present if programmable timing is implemeted. Indicated byprgt bit in
Capability register)

15 14 8 7 5 4 0

R tWHR R tWH

31 30 29 24 23 22 21 16

tWB R tWP

31:24 WE high to SR[6] low (tWB) - Length of tWB in clock cycles, minus one.ee ONFI 2.2 specification
for more information. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

23:22 Reserved (R) - Always reads zero.

21:16 WE pulse width (tWP) - Length of tWP in clock cycles, minus one. See ONFI 2.2 specification for
more information. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

15 Reserved (R) - Always reads zero.

14:8 WE high to RE low (tWHR) - Length of tWHR in clock cycles, minus one. See ONFI 2.2 specifica-
tion for more information. Reset value calculated from VHDL genericsysfreq to match value for
timing mode 0.

7:5 Reserved (R) - Always reads zero.

4:0 WE high hold time (tWH) - Length of tWH in clock cycles, minus one. See ONFI 2.2 specification
for more information. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

Table 1047.Programmable timing register 2 (only present if programmable timing is implemeted. Indicated byprgt bit in
Capability register)

15 14 8 7 6 5 0

R tWW R tRR

31 24 23 16

R tADL

31:24 Reserved (R) - Always reads zero.

23:16 ALE to data loading time (tADL) - Length of tADL in clock cycles, minus one. See ONFI 2.2 spec-
ification for more information. Reset value calculated from VHDL genericsysfreqto match value for
timing mode 0.

15 Reserved (R) - Always reads zero.

14:8 WP transition to WE low (tWW) - Length of tWW in clock cycles, minus one. See ONFI 2.2 speci-
fication for more information. Reset value calculated from VHDL genericsysfreqto match value for
timing mode 0.

7:6 Reserved (R) - Always reads zero.

5:0 Ready to RE low (tRR) - Length of tRR in clock cycles, minus one. See ONFI 2.2 specification for
more information. Reset value calculated from VHDL genericsysfreq to match value for timing
mode 0.

Table 1045.Programmable timing register 0
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76.7 Core instantiation

The core maps all usage of RAM on thesyncram(or syncramftif ft generic is not set to 0) component
from the technology mapping library (TECHMAP). The size of the instantiated RAM is determined
by thepbufsize, sbufsize, nlanes,andsepbufsgenerics. Fault tolerance - byte parity DMR or TMR -
can be added to the RAM by setting theft generic to 1 or 2.

Note that both theft andedacgenerics need to be set to 0 unless the core is used together with the
fault tolerant GRLIB.

The core implements one interrupt, mapped by means of thepirq VHDL generic.

76.8 Configuration options

Table 1048 shows the configuration options of the core (VHDL generics).

Table 1048.Configuration options

Generic name Function Allowed range Default

hsindex AHB slave index 0 - NAHBSLV-1 0

haddr0 AHB slave address for BAR 0. See section 76.2.2 for
explanation of address scheme.

0 - 16#FFF# 16#000#

haddr1 AHB slave address for BAR 1. See section 76.2.2 for
explanation of address scheme.

0 - 16#FFF# 16#001#

hmask0 AHB slave address mask for BAR 0. If set to zero, BAR
0 is disabled. See section 76.2.2 for explanation of
address scheme.

0 - 16#FFF# 16#FFF#

hmask1 AHB slave address mask for BAR 1. If set to zero, BAR
1 is disabled. See section 76.2.2 for explanation of
address scheme.

0 - 16#FFF# 16#FFF#

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq APB irq number. 0 - NAHBIRQ-1 0

memtech Memory technology used for the buffers. 0 - NTECH inferred

sysfreq System clock frequency in kHz. 1 - 1 000 000 50000

ntargets Number of targets = Number of chip select signals con-
nected to the core. A flash memory device can have one
or more targets.

1 - 4 2

nlanes Number of 8-bit/16-bit data lanes = Number of write
enable signals. A write enable signal can be connected to
one or more targets (i.e. one or more flash memory
devices).

1 - 8 8

dwidth16 0 = Core implements 8-bit data lanes. 1 = Core imple-
ments 16-bit data lanes.

0 - 1 0

pbufsize Size of each page buffer (in bytes). Two page buffers are
implemented for each connected flash memory device.
Generic needs to be set to a value equal to or greater than
the flash memory device’s page area. Value also needs to
be a power of two.

8, 16, 32 ... 32768 4096

sbufsize Size of each spare area buffer (in bytes). Two spare buff-
ers are implemented for each connected flash memory
device. Generic needs to be set to a value equal to or
greater than the flash memory device’s page spare area.
Value also needs to be a power of two.

8, 16, 32 ... 32768 256
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tm1 Enable support for timing mode 1 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if theprogtime generic is set to 1.

0 - 1 0

tm2 Enable support for timing mode 2 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if theprogtime generic is set to 1.

0 - 1 0

tm3 Enable support for timing mode 3 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if theprogtime generic is set to 1.

0 - 1 0

tm4 Enable support for timing mode 4 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if theprogtime generic is set to 1.

0 - 1 0

tm5 Enable support for timing mode 5 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if theprogtime generic is set to 1.

0 - 1 0

nsync Number of synchronization registers on R/B input. (Data
input is always synchronized through one set of regis-
ters.)

0 - 3 2

ft This generic determines if fault tolerance should be
added to the buffers. 0 = no fault tolerance, 1 = Byte par-
ity DMR, 2 = TMR. 3 = Byte parity, no DMR. Note that
this generic needs to be set to 0 if the core is used
together with the GPL version of GRLIB, since that ver-
sion does not include any fault tolerance.

0 - 2 0

oepol Polarity of pad output enable signal. 0 - 1 0

scantest Enable scan test support. 0 - 1 0

edac Enable EDAC support. See section 76.3.1 for EDAC
information. Note that this generic needs to be set to 0 if
the core is used together with the GPL version of
GRLIB, since that version does not include any fault tol-
erance.

0 - 1 0

cmdorder Sets the default way the ONFI command bytes are
mapped to the core’s data lane(s). When set to 0 the com-
mands are mapped as follows: Cmd bit 0 -> Data lane bit
7, Cmd bit 1 -> Data lane bit 6., and so on. When this bit
is set to 1 the commands are mapped as follows: Cmd bit
0 -> Data lane bit 0, Cmd bit 1 -> Data lane bit 1, and so
on.

0 - 1 1

sepbufs When set to 0 all data lanes share the same internal
memory buffers. When set to 1 all data lanes have their
own internal memory buffers. When set to 0 a command
with a data in phase should only be issued to one target
and lane at the time. A command with a data out phase
can still be issued to several lanes and targets but with
the limitation that the same data will be sent on all lanes.
When set to 1 several lanes can be read at the same time,
and lanes can be written with individual data simulta-
neously.

0 - 1 1

progtime When set to 0 the data interface timing for the different
timing modes are set at implementation time from the
sysfreqgeneric. When set to 1 the data interface timing is
programmable through APB registers (reset values are
set at implementation time from thesysfreq generic).
Maximum system frequency when this generic is set to 1
is 1 GHz.

0 - 1 0

Table 1048.Configuration options

Generic name Function Allowed range Default
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76.9 Signal descriptions

Table 1049 shows the interface signals of the core (VHDL ports).

76.10 Library dependencies

Table 1050 shows the libraries used when instantiating the core (VHDL libraries).

76.11 Instantiation

This example shows how the core can be instantiated. The instantiated core has all its generics, except
hsindex, pindex, paddr, andpirq at their default values. The impact of the generics can be seen in table
1048.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;

Table 1049.Signal descriptions

Signal name Field Type Function Active

rst N/A Input Reset Logical 0

clk N/A Input Clock -

apbi * Input APB slave input signals -

apbo * Output APB slave output signals -

ahbsi * Input AHB slave input signals -

ahbso * Output AHB slave output signals -

nandfi rb Input Ready/Busy signal -

di(63:0)2 Input Data input (used both for 8-bit and 16-bit lanes) -

dih(63:0)2 Input Data input (upper byte for 16-bit lanes) -

nandfo ce(3:0)3 Output Chip enable Logical 0

we(7:0)4 Output Write enable Logical 0

do(63:0)2 Output Data output (used both for 8-bit and 16-bit lanes) -

doh(63:0)2 Output Data output (upper byte for 16-bit memories) -

cle Output Command latch enable Logical 1

ale Output Address latch enable Logical 1

re Output Read enable Logical 0

wp Output Write protect Logical 0

err Output EDAC / Buffer error on AHB access Logical 1

oe Output Output enable 5

* see GRLIB IP Library User’s Manual

2 The actual number of data input/output signals used depends on core configuration. Eight bits are used for each lane.

3 The core drives one chip select signal for each target, i.e. on or more attached flash memory devices.

4 The core drives one write enable signal for each 8-bit/16-bit data lane, i.e. one or more attached flash memory devices.

5 The polarity of the output enable signal is implementation dependent.

Table 1050.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MEMCTRL Signals, component Component declaration
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use grlib.amba.all;
use gaisler.nandpkg.all;

entity nandfctrl_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

 nandf_d : inout std_logic_vector(63 downto 0);
 nandf_dh : inout std_logic_vector(63 downto 0);
 nandf_rb : in std_ulogic;
 nandf_ce : out std_logic_vector(1 downto 0);
 nandf_we : out std_logic_vector(7 downto 0);
 nandf_re : out std_ulogic;
 nandf_cle : out std_ulogic;
 nandf_ale : out std_ulogic;
 nandf_wp : out std_ulogic;
 nandf_err : out std_ulogic

    );
end;

architecture rtl of nandfctrl_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

 signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

  -- NANDFCTRL signals
signal nandfo : nandfctrl_out_type;
signal nandfi : nandfctrl_in_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- NANDFCTRL core
nand0 : nandfctrl

generic map (hsindex => 1, pindex => 10, paddr => 10, pirq => 10)
port map (rstn, clk, apbi, apbo(10), ahbsi, ahbso(1), nandfi, nandfo);

-- Pads for NANDFCTRL core
nandf_d : iopadv generic map (tech => padtech, width => 64)

port map (nandf_d, nandfo.do, nandfo.oe, nandfi.di);
nandf_dh : iopadv generic map (tech => padtech, width => 64)

port map (nandf_dh, nandfo.doh, nandfo.oe, nandfi.dih);
nandf_rb : inpad generic map (tech => padtech)

port map (nandf_rb, nandfi.rb);
nandf_ce : outpadv generic map (tech => padtech, width => 2)

port map (nandf_ce, nandfo.ce);
nandf_we : outpadv generic map (tech => padtech, width => 8)

port map (nandf_we, nandfo.we);
nandf_re : outpad generic map (tech => padtech)

port map (nandf_re, nandfo.re);
nandf_cle : outpad generic map (tech => padtech)

port map (nandf_cle, nandfo.cle);
nandf_ale : outpad generic map (tech => padtech)

port map (nandf_ale, nandfo.ale);
nandf_wp : outpad generic map (tech => padtech)

port map (nandf_wp, nandfo.wp);
nandf_err : outpad generic map (tech => padtech)

port map (nandf_err, nandfo.err);

end;
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77 GRPCI - 32-bit PCI Master/Target with configurable FIFOs and AHB back end

77.1 Overview

The PCI Master/Target is a bridge between the PCI bus and the AMBA AHB bus. The core is con-
nected to the PCI bus through two interfaces, a target and master. The PCI master interface is optional
and can be disabled through a VHDL generic. The AHB side of the core uses one slave interface and
one master interface. Configuration registers are available through the AMBA APB bus.

The PCI and AMBA interfaces belong to two different clock domains. Synchronization is performed
inside the core through FIFOs with configurable depth.

A summary of the GRPCI key features:

• 32-bit PCI interface

• PCI bus master and target

• AMBA AHB/APB 2.0 back end interface

• Configurable FIFOs for both master and target operation

• Supports incremental bursts and single accesses

• Bus master capabilities:

 o Memory read, memory write

         o Memory read multiple

         o Memory read line

         o I/O read, I/O write

         o Type 0 and 1 configuration read and write

Figure 240.GRPCI master/target
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         o Host bridging

• Target capabilities:

         o Type 0 configuration space header

         o Configuration read and write

         o Parity generation (PAR), Parity error detection (PERR, SERR)

         o 2 Memory BARs

         o Memory read, memory write

         o Memory read multiple

         o Memory read line

         o Memory write and invalidate

• Optional DMA engine add on (see PCIDMA IP core)

77.2 Operation

PCI transactions are initiated by accessing the GRPCI AHB slave. The AHB slave has one memory
bank of configurable size (128 MB - 2 GB) and one 128 KB IO bank. Accesses to the memory bank
are translated into PCI memory cycles while accesses to the lower half of the IO bank are translated
into IO cycles. Configuration cycles are generated through accesses to the upper half of the IO bank.
The AHB slave supports 8/16/32-bit single accesses and 32-bit bursts. The address translation from
AHB to PCI is determined by the memory map register and the IO map register.

A connection from the PCI bus to the AHB bus is provided by the core’s PCI target interface and
AHB master. The PCI target is capable of handling configuration cycles, 8/16/32-bit single access
memory cycles and burst memory cycles of any alignment on the PCI bus. Configuration cycles are
used to access the PCI targets configuration space while the memory cycles are translated to AHB
accesses. The PCI target provides two memory space Base Address Registers (BARs) of configurable
size and can thus occupy two areas in the PCI memory space. Each BAR is associated with a PAGE
register which determines the address translation from PCI to AHB.

For burst transactions the data is buffered internally in FIFOs with configurable size. For more infor-
mation about the flow of data through the FIFOs and how it affects the operation see section 77.8.

Since PCI is little endian and LEON3 big endian GRPCI defaults to performing byte twisting on all
accesses to preserve the byte ordering. See 77.7 for more information.

77.3 PCI target interface

The PCI target interface occupies two memory areas in the PCI address space and the memory map-
ping is determined by the BAR0 and BAR1 registers in the targets configurations space. The size of
the PCI memory areas is determined by number of bits actually implemented by the BAR registers
(configurable throughabits anddmaabits VHDL-generics).

77.3.1 PCI commands

The GRPCI target interface handles the following PCI commands:

• Configuration Read/Write: Single access to the configuration space. No AHB access is per-
formed.

• Memory Read: If prefetching is enabled through thereadprefgeneric (it is disabled per default),
the units AHB master interface fetches a cache line, otherwise a single AHB access is performed.
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• Memory Read Line: The unit prefetches data according to the value of the cache line size regis-
ter.

• Memory Read Multiple: The unit performs maximum prefetching. This can cause long
response time, depending of the user defined FIFO depth.

• Memory Write, Memory Write and Invalidate:  Handled similarly.

77.3.2 PCI responses

The target interface can terminate a PCI transaction with one of the following responses:

• Retry: This response indicates that the master should perform the same request later as the target
is temporarily busy. This response is always given at least one time for read accesses, but can also
occur for write accesses.

• Disconnect with data:Terminate the transaction and transfer data in the current data phase. This
occurs if a master tries to transfer more data that fits in the FIFO or if prefetching is disabled and
a Memory Read command is performed.

• Disconnect without data:Terminate the transaction without transfering data in the current data
phase. This can occur during a PCI read burst if the PCI target is forced to insert more than 8 wait
states while waiting for the AHB master to complete.

• Target-Abort: Indicates that the current access caused an internal error, and the target never will
be able to finish it.

An AHB transaction with ‘retry’ responses is repeated by the AHB master until an ‘ok’ or ‘error’
response is received. The ‘error’ response on AHB bus will result in ‘target abort’ response for the
PCI memory read cycle. In case of PCI memory write cycle, AHB access will not be finished with
error response since write data is posted to the destination unit. Instead the write error (WE) bit will
be set in the APB configuration/status register.

77.3.3 Bursts and byte enables

The target is capable of handling burst transactions. A PCI burst crossing 1 kB address boundary will
be performed as multiple AHB bursts by the AHB master interface. The AHB master interface will
insert an idle-cycle before requesting a new AHB burst to allow re-arbitration on the AHB.

A PCI master is allowed to change the byte enables on any data phase during a transaction. The
GRPCI core handles this but each non 32-bit access in a PCI write burst will be translated into an
AHB single access of the corresponding size by the AHB master. For PCI reads the byte enables are
ignored by the PCI target and all byte lanes are driven with valid data.
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77.3.4 Configuration Space

The following registers are implemented in the GRPCI configuration space. Please refer to the PCI
specification for more information than is given here.

[31:16]: Device ID (read-only). Returns value ofdevice_id VHDL-generic.
[15:0]: Vendor ID (read-only). Returns value ofvendor_id VHDL-generic.

[31:16]: Status Register - Writing one to a bit 31 - 16 clears the bit. Writes can not set a bit.
[31]: Detected parity Error (DPE).
[30]: Signalled System Error (SSE) - Not implemented. Always reads 0.
[29]: Received Master Abort (RMA) - Set by the PCI Master interface when its transaction is terminated with Master-

Abort.
[28]: Received Target Abort (RTA) - Set by the PCI Master interface when its transaction is terminated with Target-

Abort.
[27]: Signalled Target Abort (STA) - Set by the PCI Target Interface when the target terminates transaction with Target-

Abort.
[26:25]: DEVSEL timing (DST) -Always reads “10” - medium DEVSEL timing.
[24]: Data Parity Error Detected (DPD).
[23]: Fast Back-to-Back Capable - The Target interface is not capable of fast back-to-back transactions. Always reads ‘0’.
[22]: UDF Supported - Not supported. Always reads ‘0’,
[21]: 66 Mhz Capable - Not supported. Always reads ‘0’.
[20:16]: Reserved. Always reads ‘00..0’.
[15:0]: Command Register - Writing one to an implemented bit sets the bit. Writing zero clears the bit.
[15:10]: Reserved - Always reads as ‘00..0’.
[9]: Fast back-to-Back Enable - Not implemented. Always reads ‘0’.
[8]: SERR# enable - Not implemented. Always reads ‘0’.
[7]: Wait cycle control - Not implemented. Always reads ‘0’.
[6]: Parity Error Response (PER) - Controls units response on parity error.
[5]: VGA Palette Snoop - Not implemented. Always reads ‘0’.

Table 1051.Configuration Space Header registers

Address offset Register

0x00 Device ID, Vendor ID

0x04 Status, Command

0x08 Class Code & Revision ID

0x0C BIST, Header Type, Latency Timer, Cache Line Size

0x10 BAR0

0x14 BAR1

0x3C Max_lat, min_gnt, interrupt pin, interrupt line.

Figure 241.Device ID & Vendor ID register
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[4]: Memory Write and Invalidate Enable (MIE) - Enables the PCI Master interface to generate Memory Write and
Invalidate Command.

[3]: Special Cycles - Not implemented. Always reads ‘0’.
[2]: Bus Master (BM) - Enables the Master Interface to generate PCI cycles.
[1]: Memory Space (MS) - Allows the unit to respond to Memory space accesses.
[0]: I/O Space (IOS) - The unit never responds to I/O cycles. Always reads as ‘0’.

[31:8]: Class Code - Processor device class code. Set withclass_code generic (read-only).
[7:0]: Revision ID - Set withrev generic (read-only).

[31:24]: BIST - Not supported. Reads always as ‘00..0’.
[23:16]: Header Type (HEADER)- Header Type 0. Reads always as ‘00..0’.
[15:8]: Latency Timer (LTIM) - Maximum number of PCI clock cycles that Master can own the bus.
[7:0]: Cache Line Size (CLS) - System cache line size. Defines the prefetch length for ‘Memory Read’ and ‘Memory Read

Line’ commands.

[31:abits]: PCI Base Address - PCI Targets interface Base Address 0. The number of implemented bits depend on the VHDL-
genericabits. Memory area of size 2âbitsbytes at Base Address is occupied through this Base Address register.
Register PAGE0 is accessed through upper half of this area. PCI memory accesses to the lower half of this area is
translated to AHB accesses using PAGE0 map register.

[abits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to determine devices memory
requirement by writing value of all ones to this register and reading the value back. The device will return zeroes in
unimplemented bits positions effectively defining memory area requested.

[3]: Prefetchable: Not supported. Always reads ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads always as ‘00’.
[0]: Memory Space Indicator - Register maps into Memory space. Read always as ‘0’.

PAGE0 register is mapped into upper half of the PCI address space defined by BAR0 register.

Figure 243.Class Code & revision ID
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Figure 245.BAR0 register
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[31:dmaabits]: PCI Base Address - PCI Targets interface Base Address 1. The number of implemented bits depends on the
VHDL-genericdmaabits. Memory area of size 2d̂maabitsbytes at Base Address is occupied through this Base
Address register. PCI memory accesses to this memory space are translated to AHB accesses using PAGE1 map
register.

[dmaabits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to determine devices memory
requirement by writing value of all ones to this register and reading the value back. The device will return zeroes in
unimplemented bits positions effectively defining memory area requested.

[3]: Prefetchable: Not supported. Always reads as ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads always as ‘00’.
[0]: Memory Space Indicator - Register maps in Memory space. Read always as ‘0’.

[31-24]: Max_lat. Reads 0.
[23-16]: Min_gnt. Reads 2^(fifodepth-3).
[15:8]: Interrupt pin. Always reads 1, indicating that the device uses PCI interrupt pin A. If used the interrupt must be driven

from outside the GRPCI core.
[7-0]: Interrupt line. Write able register used by the operating system to store information about interrupt routing.

77.3.5 The PAGE0/1 map registers

The PAGE0 and PAGE1 registers are used to translate PCI addresses to AHB addresses for BAR0 and
BAR1 respectively. PAGE0 is mapped into the PCI address space defined by BAR0, while PAGE1 is
an APB register.

[31:abits-1]: AHB Map Address - Maps PCI accesses to PCI BAR0 address space to AHB address space. AHB address is
formed by concatenating AHB MAP with LSB of the PCI address.

[abits-2:1]: Reserved. Reads always as ‘00..0’.
[0]:  BTEN - Byte twisting enabled if ‘1’. Reset value ‘1’. May only be altered when bus mastering is disabled.

Table 1052.PCI target map registers

Register Address Address space

PAGE0 Upper half of PCI address space defined by BAR0 register PCI

PAGE1 APB base address + 0x10 APB

Figure 247.Max_lat, min_gnt and interrupt settings
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[31:dmaabits]: AHB Map Address (AHB MAP) - Maps PCI accesses to PCI BAR1 address space to AHB address space.
AHB address is formed by concatenating AHB MAP with LSB of the PCI address.

[dmaabits-1:0]: Reserved. Reads always as ‘00..0’.

Note that it is possible to set the PAGE1 register from PCI by configuring PAGE0 to point to the APB
base address and then writing to BAR0 + GRPCI_APB_OFFSET + 0x10.

77.3.6 Calculating the address of PAGE0

Since the size of BAR0 is configurable the address of the PAGE0 register is not constant between
designs. It is possible to calculate the address of PAGE0 in a simple manner in order to write code that
is portable between devices with differently sized BAR0 registers. This is shown below using C syn-
tax.

/* Save original BAR0 (address 0x10 in the conf. space) */
pci_read_config_dword(bus,slot,function,0x10, &tmp);

/* Write 0xffffffff to BAR0 */
pci_write_config_dword(bus, slot, function, 0x10, 0xffffffff);

/* Read it back */
pci_read_config_dword(bus, slot, function, 0x10, &addr);

/* Restore to original */
pci_write_config_dword(bus, slot, function, 0x10, tmp);

/* Calculate PAGE0 offset from BAR0 (upper half of BAR0) */
addr = (~addr+1)>>1;

/* Set PAGE0 to point to start of APB */
page0 = tmp + addr;
*page0 = (unsigned int *) 0x80000000;

77.4 PCI master Interface

The PCI Master interface occupies 128 MB to 2 GB of AHB memory address space and 128 kB of
AHB I/O address space. It handles AHB accesses to its AHB slave interface and translates them to
PCI configuration (host only), memory or I/O cycles.

The mapping of the AHB slave into AHB address space is configurable through VHDL generics (see
the GRLIB User’s Manual for a detailed description of the AHB address mapping). The PCI cycles
performed on the PCI bus depends on the AHB access and the values in the configuration/status regis-
ter.

If the PCI host signal is asserted (active low) during reset, the PCI master function will be enabled
after reset. Otherwise the PCI host must enable the device to act as a master through the Bus Master
bit in the command register in PCI configuration space.

The PCI master interface is capable of performing the following PCI cycles:

77.4.1 Configuration cycles

PCI configuration cycles are performed by accessing the upper 64 kB of the AHB I/O address space
allocated by the AHB slave. If the bus number field in the AHB configuration register is set to 0 then
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type 0 cycles are generated with the mapping shown in the figure below.

[31:16]: AHB Address MSB - Not used for configuration cycle address mapping.
[15:11]: IDSEL - This field is decoded to drive PCI AD[IDSEL+10]. AD[31:11] signal lines are supposed to drive IDSEL

lines during configuration cycles.
[10:8]: Function Number (FUNC) - Selects function on multi-function device.
[7:2]: Register Number (REGISTER) - Used to index a PCI DWORD in configuration space.
[1:0]: Always driven to ‘00’ to generate Type 0 configuration cycle.

If the bus number field in the AHB configuration register is set to a value between 1 and 15 then type
1 cycles are generated from the AHB address as shown in the figure below. The bus number is inserted
in PCI AD(20 : 16).

[31:16]: AHB Address MSB - Not used for configuration cycle address mapping.
[15:11]: Device number (DEVICE) - Which device to select.
[10:8]: Function Number (FUNC) - Selects function on multi-function device.
[7:2]: Register Number (REGISTER) - Used to index a PCI DWORD in configuration space.
[1:0]: Always driven to ‘01’ to generate Type 1 configuration cycle.

When a configuration cycle does not get a response the configuration timeout (CTO) bit is set in the
APB configuration/status register. This bit should be checked when scanning the bus for devices in
order to detect the slots which are used.

77.4.2 I/O cycles

Single access PCI I/O cycles are supported. Accesses to the lower 64 kB of the GRPCI AHB I/O
address space are translated into PCI I/O cycles. The address translation is determined by the value in
the I/O map register.

77.4.3 Memory cycles

PCI memory cycles are performed by accessing the AHB memory slave. Mapping and PCI command
generation are determined by the values in the AMBA configuration/status register. Burst operation is
supported for PCI memory cycles.

The PCI commands generated by the master are directly dependant of the AMBA access and the value
of the configuration/status register. The configuration/status register can be programmed to issue
Memory Read, Memory Read Line, Memory Read Multiple, Memory Write or Memory Write and
Invalidate.

If a burst AHB access is made to PCI master’s AHB slave it is translated into burst PCI memory
cycles. When the PCI master interface is busy performing the transaction on the PCI bus, its AHB
slave interface will not be able to accept new requests. A ‘retry’ response will be given to all accesses
to its AHB slave interface. A requesting AHB master should repeat its request until ‘ok’ or ‘error’
response is given by the PCI master’s AHB slave interface. This means that all masters on the bus

Figure 250.Mapping of AHB I/O addresses to PCI address for PCI Configuration cycle, type 0
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Figure 251.Mapping of AHB I/O addresses to PCI address for PCI Configuration cycle, type 0
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accessing the AHB slave interface must be round-robin arbitrated without prioritization to avoid dead-
lock situations.

Note that ‘retry’ responses on the PCI bus will automatically be retried by the PCI master interface
until the transfer is either finished or aborted.

For burst accesses, only linear-incremental mode is supported and is directly translated from the
AMBA commands.

77.4.4 PCI byte enable generation

The byte-enables on the PCI bus are translated from the AHB HSIZE control signal and the AHB
address according to the table below. Note that only word, half-word and byte values of HSIZE are
valid.

77.5 PCI host operation

The GRPCI core provides a host input signal that must be asserted (active low) for PCI host operation.
If this signal is asserted the bus master interface is automatically enabled (BM bit set in PCI configu-
ration space command register).

An asserted PCI host signal also makes the PCI target respond to configuration cycles when no
IDSEL signals are asserted (none of AD[31:11] are asserted). This is done for the master to be able to
configure its own target.

For designs intended to be hosts or peripherals only the pci_host signal can be tied low or high inter-
nally in the design. For multi-purpose designs it should be connected to a pin. The PCI Industrial
Computers Manufacturers Group (PICMG) cPCI specification uses pin C2 on connector P2 for this
purpose. The pin should have pull-up resistors since peripheral slots leave it unconnected.

It is possible to enable the GRPCI core to drive the PCI reset signal if in the host slot. Normally the
PCI reset is used as an input but if thehostrstgeneric is enabled it will drive the reset signal when
located in the host slot. The GRPCI reset output signal should then be connected to an open drain pad
with a pull up on the output.

PCI interrupts are supported as inputs for PCI hosts. See section 77.6.

77.6 PCI interrupt support

When acting as a PCI host the GRPCI core can take the four PCI interrupt lines as inputs and use
them to forward an interrupt to the interrupt controller.

If any of the PCI interrupt lines are asserted and the interrupts are enabled the PCI core will drive the
internal irq line specified through theirq generic.

Table 1053.Byte enable generation (in PCI little endian configuration)

HSIZE Address[1:0] CBE[3:0]

00 (8 bit) 00 1110

00 (8 bit) 01 1101

00 (8 bit) 10 1011

00 (8 bit) 11 0111

01 (16 bit) 00 1100

01 (16 bit) 10 0011

10 (32 bit) 00 0000
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There is no built in support in the PCI core to generate PCI interrupts. These should be generated by
the respective IP core and drive an open-drain pad connected to the correct PCI interrupt line. Note
that all single function PCI devices should drive PCI interrupt A.

77.7 Byte twisting

To maintain the correct byte order on transfers going from AHB to PCI and vice versa the GRPCI
core defaults to byte twisting on all such accesses. This means that all the byte lanes are swapped as
shown in the figure below.

The byte twisting can be disabled by writing 0 to bit 0 in the PAGE0 register. This should be done if
the AHB bus is little endian or if no twisting is wanted for another reason. It it also possible to config-
ure the PCI bus to be big endian through theendian generic (0, meaning little endian, is default).

NOTE: Only accesses that go from AHB to PCI and vice versa are twisted, i.e not accesses to config-
uration space or the PAGE0 register as they are little endian.

77.7.1 Byte twisting for hosts

Byte twisting should be enabled for big endian PCI hosts. Otherwise DMA transfers from PCI periph-
erals into the host memory will not have the correct byte ordering.

When the byte twisting is enabled byte sized PIO accesses work as expected but 16 bit and larger PIO
accesses need to be twisted before being sent to the PCI core. I.e. if the value 0x12345678 is supposed
to be written to a 32-bit register in a PCI peripheral the CPU will need to twist this into 0x78563412
before doing the access. Then the hardware will twist this value back and the correct 32-bit value of
0x12345678 is presented on the PCI bus. Non 8-bit descriptors must also be twisted.

Figure 252.GRPCI byte twisting
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77.7.2 Byte twisting for peripherals

Byte twisting must be enabled if the GRPCI core is used in a peripheral that does DMA to a little
endian (or byte twisting big endian) PCI host and the correct byte order is of importance. In this case
the data will keep the original byte order but non 8-bit descriptors and PIO accesses must be pre-
twisted in software.

If the host is a LEON3 with GRPCI and all peripherals are big endian systems then the PCI bus could
be defined big endian and byte twisting disabled for all devices (including the host).

77.8 FIFO operation

Asynchronous FIFOs of configurable size are used for all burst transactions. They are implemented
with two port RAM blocks as described in 77.13.2. The PCI master and target interface have two
FIFOs each, one used for read transactions and one for write transactions. Each FIFO is divided into
two ping pong buffers. How the FIFOs operate during the possible transactions are described below.

77.8.1 PCI target write

When the GRPCI core is the target of a PCI write burst the PCI target begins to fill the write FIFO.
After the first ping pong buffer has been filled by the PCI target it continues with filling the second
buffer and the AHB master initiates an AHB burst and reads the first ping pong buffer. When the PCI
target has finished filling the second buffer it is also emptied by the AHB master. If the PCI write burst
is larger than the size of the FIFO the PCI target terminates the PCI transaction with a disconnect with
data.

The PCI target does not accept any new transactions until the AHB master has finished emptying the
complete FIFO. Any incoming access will receive a retry response.

77.8.2 PCI target read

How PCI target reads are treated depend on the PCI command used. If prefetching is disabled (read-
pref generic = 0) then for Memory Read (0x6) commands data is fetched one word at a time. After
each word the target terminates using disconnect with data. If prefetching is enabled one cache line
(as defined by the cache line register) is prefetched. For bursts the Memory Read Multiple (0xC) com-
mand should be used. In this case the PCI target requests the AHB master to start filling the FIFO. The
PCI targets gives retry responses until the AHB master has filled the first buffer. When the first buffer
is full the PCI target responds with the data while the AHB master fills the second buffer. When the
PCI target has read out the complete FIFO it terminates the read transaction with disconnect with
data.

If the PCI target is forced to insert more than 8 wait states while waiting for the AHB master to to fill
the second buffer it will generate a disconnect without data response.

During the period before the target responds it will give retry responses to masters trying to read an
address different from the address of the already initiated read transaction.

77.8.3 PCI master write

A PCI write transaction is initiated by an access to the AHB slave of GRPCI. The AHB slave interface
fills the FIFO with data. When the first buffer is full the PCI master begins the PCI write transaction
while the AHB slave continues filling the second buffer. Accesses to the AHB slave that occurs when
the PCI master is emptying the FIFO receives retry responses.
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77.8.4 PCI master read

When the AHB slave receives a read access it requests the PCI master to issue a read transaction on
the PCI bus and to fill the FIFO with the result. After the first buffer has been filled the AHB slave
reads the buffer and begins to empty it to the AHB bus. When the second buffer is full it is also emp-
tied by the AHB slave. While the AHB slave is waiting for the PCI master to fill the FIFO it gives
retry responses.

77.9 Registers

The core is programmed through registers mapped into APB address space.

[31:X]: Memory Space Map register - Defines mapping between PCI Master’s AHB memory address space and PCI address
space when performing PCI memory cycles. Value of this field is used as the MSB of the PCI address. LSB bits are
taken from the AHB address (X = 32 - number of bits not masked with thehmask generic).

[X:27]: Reserved.
[26:23]: Bus number (BUSNO) - Which bus to access when generating configuration cycles.
[22:15]: Latency Timer (LTIMER) - Value of Latency Timer Register in Configuration Space Header. (Read-only)
[14]: Write Error (WE) - Target Write Error. Write access to units target interface resulted in error. (Read-only)
[13]: System Host (SH) - Set if the unit is system host. (Read-only)
[12]: Bus Master (BM) - Value of BM field in Command register in Configuration Space Header. (Read-only)
[11]: Memory Space (MS) - Value of MS field in Command register in Configuration Space Header. (Read-only)
[10]: Write Burst Command (WB) - Defines PCI command used for PCI write bursts.

‘0’ - ‘Memory Write’
‘1’ - ‘Memory Write and Invalidate’

[9]: Read Burst Command (RB) - Defines PCI command used for PCI read bursts.
‘0’ - Memory Read Multiple’
‘1’ - Memory Read Line’

[8]: Configuration Timeout (CTO) - Received timeout when performing Configuration cycle. (Read-only)
[7:0]: Cache Line Size (CLS) - Value of Cache Line Size register in Configuration Space Header. (Read-only)

Table 1054.AMBA registers

Address offset Register Note

0x00 Configuration/Status register -

0x04 BAR0 register Read-only access from AMBA, write/read access from PCI
(see section 77.3.4).

0x08 PAGE0 register Read-only access from AMBA, write/read access from PCI
(see section 77.3.5).

0x0C BAR1 register Read-only access from AMBA, write/read access from PCI
(see section 77.3.4).

0x10 PAGE1 register -

0x14 IO Map register -

0x18 Status & Command register (PCI
Configuration Space Header)

Read-only access from AMBA, write/read access from PCI
(see section 77.3.4).

0x1C Interrupt enable & pending -

Figure 253.Configuration/Status register

031

MMAP

7

CTO

89

CLSRB

10
WB

11

MS

12
BM

13

SH

14

WE

22

LTIMER

152326

BUSNORES

X



AEROFLEX GAISLER 887 GRIP

[31:16]: I/O Map (IOMAP) - Most significant bits of PCI address when performing PCI I/O cycle. Concatenated with low
bits of AHB address to from PCI address.

[15:0]: Reserved.

[31:26]: Reserved
[25:16]: Interrupt enable for bits 9 : 0
[15:10]: Reserved
[9]: DPE - Detected Parity Error Interrupt
[8]: SSE - Signaled System Error Interrupt
[7]: RMA - Received Master Abort Interrupt
[6]: RTA - Received Target Abort Interrupt
[5]: STA - Signaled Target Abort Interrupt
[4]: DPED - Data Parity Error Detected Interrupt
[3:0]: A:D - PCI IRQ A-D Interrupt (host only)

The error interrupts are signaled when the corresponding bit is set in the PCI configuration space sta-
tus register. This bit must be cleared to clear the interrupt.

77.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x014. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

77.11 Scan support

When the SCANEN generic is 1, scan support is enabled. All asynchronous reset are then connected
to AHBMI.testrst when AHBMI.testen = ‘1’. Note that the PCI clock is not multiplexed, and should
be driven with the same clock as the AHB clk when AHBMI.testen = ‘1’.

Figure 254.I/O Map register
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77.12 Configuration options

Table 1055 shows the configuration options of the core (VHDL generics).

Table 1055.Configuration options

Generic Function Allowed range Default

memtech The memory technology used for the FIFO instantiation - 0

mstndx The AMBA master index for the target backend AHB master
interface.

0 - NAHBMST-1 0

dmamst The AMBA master index for the DMA controller, if present.
This value is used by the PCI core to detect when the DMA con-
troller accesses the AHB slave interface.

0 - NAHBMS NAHBMST
(= disabled)

readpref Prefetch data for the ‘memory read’ command. If set, the target
prefetches a cache line, otherwise the target will give a single
word response.

0 -1 0

abits Least significant implemented bit of BAR0 and PAGE0 registers.
Defines PCI address space size.

16 - 28 21

dmaabits Least significant implemented bit of BAR1 and PAGE1 registers.
Defines PCI address space size.

16 - 28 26

fifodepth Size of each FIFO is 2^fifodepth 32-bit words. >= 3 5

device_id PCI device ID number 0 -16#FFE# 0

vendor_id PCI vendor ID number 0 - 16#FFF# 0

master Disables/enables PCI master interface. 0 - 1 0

slvndx The AHB index of the master backend AHB slave interface. 0 - NAHBSLV-1 0

apbndx The AMBA APB index for the configuration/status APB inter-
face

0 - NAPBMAX-
1

0

paddr APB interface base address 0 - 16#FFF# 0

pmask APB interface address mask 0 - 16#FFF# 16#FFF#

haddr AHB slave base address 0 - 16#FFF# 16#F00#

hmask AHB address mask. 128 MB - 2 GB. 16#800# -
16#F80#

16#F00#

ioaddr AHB I/O area base address 0 - 16#FFF# 0

irq IRQ line driven by the PCI core 0 - NAHBIRQ-1 0

irqmask Specifies which PCI interrupt lines that can cause an interrupt 0 - F 0

nsync The number of clock registers used by each signal that crosses
the clock regions.

1 - 2 2

oepol Polarity of pad output enable signals. 0=active low, 1=active
high

0 - 1 0

endian Endianess of the PCI bus. 0 is little and 1 big. 0 - 1 0

class_code Class code. Defaults to base class 0x0B (processor), sub class
0x40 (co-processor).

See PCI spec. 16#0B4000#

rev Revision 0 - 16#FF# 0

scanen Enable scan support 0 - 1 0

hostrst Enable driving of pci_rst when host 0 - 1 0
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77.13 Implementation

77.13.1 Technology mapping

GRPCI has one technology mapping generic,memtech,which controls how the memory cells used
will be implemented. See the GRLIB Users’s Manual for available settings.

77.13.2 RAM usage

The FIFOs in GRPCI are implemented with thesyncram_2p(with separate clocks for each port) com-
ponent from the technology mapping library (TECHMAP). The number of FIFOs used depends on
whether the core is configured to be master/target or target only (as selected with themastergeneric).
The master and target interface both use two 32 bits wide FIFOs. The depth of all FIFOs is the same
and is controlled by thefifodepth generic.

77.13.3 Area

The GRPCI is portable and can be implemented on most FPGA and ASIC technologies. The table
below shows the approximate area usage.

77.13.4 Timing

In order for the PCI core to function properly in a PCI system it is necessary to meet the PCI timing
constraints. The PCI clock to out should not exceed 11 ns and the setup time must be below 7 ns. If
you experience excessive clock to out make sure that the synthesizer has not removed the output reg-
isters. This can happen with too aggressive pipelining/retiming.

Table 1056.RAM usage

Configuration Number of fifodepth x 32 bit RAM blocks

Master/target 4

Target only 2

Table 1057.Approximate area requirements

FIFO size VirtexII LUTs StratixII LUTs ASIC gates

8 1500 1200 8000

32 1900 1300 10000
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77.13.5 Pull-ups

For PCI hosts we recommend that the following signals are provided with pull-ups (if these are not
available on the motherboard/rack).

77.14 Signal description

Table 1059 shows the interface signals of the core (VHDL ports).

The PCIO record contains an additional output enable signal VADEN. It is has the same value as aden
at each index but they are all driven from separate registers. A directive is placed on this vector so that
the registers will not be removed during synthesis. This output enable vector can be used instead of
aden if output delay is an issue in the design.

For a system host, the (active low) PCII.host signal should to be connected to the PCI SYSEN signal.
For a device that is not a system host, this signal should have a pull-up connection.

Table 1058.PCI host pull-ups

pci_devsel

pci_frame

pci_irdy

pci_lock

pci_perr

pci_serr

pci_stop

pci_trdy

pci_gnt

pci_par

pci_rst

pci_arb_req(x)

Table 1059.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

AHBMI *2 Input AHB master input signals -

AHBMO *2 Output AHB master output signals -

AHBSI *2 Input AHB slave input signals -

AHBSO *2 Output AHB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual
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77.15 Library dependencies

Table 1060 shows libraries used when instantiating the core (VHDL libraries).

77.16 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.pci.all;

.

.
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal pcii : pci_in_type;
signal pcio : pci_out_type;

begin

pci0 : pci_mtf generic map (memtech => memtech,
hmstndx => 1,
fifodepth => log2(CFG_PCIDEPTH), device_id => CFG_PCIDID, vendor_id => CFG_PCIVID,
hslvndx => 4, pindex => 4, paddr => 4, haddr => 16#E00#,
ioaddr => 16#400#, nsync => 2)
port map (rstn, clkm, pciclk, pcii, pcio, apbi, apbo(4), ahbmi,
ahbmo(1), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech)-- PCI pads
    port map ( pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,

 pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
 pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio );

77.17 Software support

Support for LEON3 systems acting as PCI hosts using the GRPCI is available in Linux 2.6, RTEMS
and VxWorks. In the GRLIB IP library there is a simple Bare C (BCC) example of how configure and
use PCI in GRLIB/software/leon3/pcitest.c. See also 77.18, Appendix A for BCC source code exam-
ples.

The debug monitor GRMON supports PCI bus scanning and configuration for GRPCI hosts.

Table 1060.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration
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77.18 Appendix A - Software examples

Examples of PCI configurations functions.

pci_read_config_dword - generate a configuration read (type 0) cycle

pci_write_config_dword - generate a configuration write (type 0) cycle

pci_mem_enable- enable the memory space of a device

pci_master_enable - enable bus master for a device

/* Upper half of IO area */
#define PCI_CONF 0xfff10000

typedef struct {
volatile unsigned int cfg_stat;
volatile unsigned int bar0;
volatile unsigned int page0;
volatile unsigned int bar1;
volatile unsigned int page1;
volatile unsigned int iomap;
volatile unsigned int stat_cmd;
} LEON3_GRPCI_Regs_Map;

int
pci_read_config_dword(unsigned char bus, unsigned char slot, unsigned char function, unsigned
char offset, unsigned int *val) {

    volatile unsigned int *pci_conf;

    if (offset & 3) return -1;

    if (slot >= 21) {
        *val = 0xffffffff;
        return 0;
    }

    pci_conf = PCI_CONF + ((slot<<11) | (function<<8) | offset);

    *val =  *pci_conf;

    if (pcic->cfg_stat & 0x100) {
        *val = 0xffffffff;
    }

    return 0;
}

int
pci_write_config_dword(unsigned char bus, unsigned char slot, unsigned char function,
unsigned char offset, unsigned int val) {

    volatile unsigned int *pci_conf;

    if (offset & 3) return -1;

    pci_conf = PCI_CONF + ((slot<<11) | (function<<8) | (offset & ~3));

    *pci_conf = val;

    return 0;
}

void pci_mem_enable(unsigned char bus, unsigned char slot, unsigned char function) {
    unsigned int data;

    pci_read_config_dword(0, slot, function, 0x04, &data);
    pci_write_config_dword(0, slot, function, 0x04, data | 0x2);
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}

void pci_master_enable(unsigned char bus, unsigned char slot, unsigned char function) {
    unsigned int data;

    pci_read_config_dword(0, slot, function, 0x04, &data);
    pci_write_config_dword(0, slot, function, 0x04, data | 0x4);

}

77.19 Appendix B - Troubleshooting

77.19.1 GRPCI does not operate correctly.

Make sure that the PCI timing constraints are met (see 77.13.4) and that all necessary pull-ups are
available. The generic nsync should be set to 2 for reliable operation.

77.19.2 It is impossible to meet the PCI clock to out constraint due to too many levels of logic.

The PCI output registers have been removed. This can happen when the tools use pipelining and
retiming to aggressively.

77.19.3 I write 0x12345678 but get 0x78563412, what is the matter?

Please read about byte twisting in section 77.7.

77.19.4 The PCI target responds by asserting stop when I try to read data.

The PCI target gives a ‘retry’ response (stop but not trdy asserted on initial data phase). This is normal
since the PCI target needs to request the data from the AHB master before it can deliver it on the PCI
bus.

If a Memory Read Multiple command is issued the PCI target will give retry responses until half the
FIFO has been prefetched. Thus the initial latency is dependant on the FIFO size and the PCI com-
mand. See section 77.8.

77.19.5 Configuration space accesses do not work.

In order to initiate any access the device must have the Bus Master bit set in the PCI configuration
space command register. This bit is automatically set if the GRPCI host input signal is asserted (low).
See section 77.5 (PCI host operation).
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78 GRPCI2 - 32-bit PCI(Initiator/Target) / AHB(Master/Slave) bridge

78.1 Overview

The GRPCI2 core is a bridge between the PCI bus and the AMBA AHB bus. The core is capable of
connecting to the PCI bus via both a target and a initiator/master interface. The connection to the
AMBA bus is an AHB master interface for the PCI target functionality and an AHB slave interface
for the PCI initiator functionality. The core also contains a DMA controller. For the DMA functional-
ity, the core uses the PCI initiator to connect to the PCI bus and an AHB master to connect to the
AMBA bus. Configuration registers in the core are accessible via a AMBA APB slave interface.

The PCI and AMBA interfaces belong to two different clock domains. Synchronization is performed
inside the core through FIFOs with configurable depth.

The PCI interface is compliant with the 2.3 PCI Local Bus Specification.

78.2 Configuration

The core has configuration registers located both in PCI Configuration Space (Compliant with the 2.3
PCI Local Bus Specification) and via an AMBA APB slave interface (for core function control and
DMA control). This section defines which configuration options that are implemented in the PCI con-
figuration space together with a list of capabilities implemented in the core. For a more detailed
description of the core registers and DMA controller registers, see section Registers.

78.2.1 Configuration & Capabilities

Which of the core capabilities that are implemented is configured through VHDL generics at core
instantiation. The implemented configuration can be determined by reading the Status & Capability
register accessible via the APB slave interface.

• The PCI vendor and device ID is set with the VHDL genericvendorid anddeciceid.

• The PCI class code and revision ID is set with the VHDL genericclasscode andrevisionid.

• 32-bit PCI initiator interface is implemented when the VHDL genericmaster is enabled.

• 32-bit PCI target interface is implemented when the VHDL generictarget is enabled.

Figure 256. Block diagram
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• DMA controller is implemented when the VHDL genericdma is enabled.

• The depth and number of FIFOs is configured with the VHDL genericfifo_depth andfifo_count.

• PCI BARs. The default size and number of BARs implemented is configured with the VHDL
genericbar0 to bar5.

• User defined register in Extended PCI Configuration Space can be enabled with the VHDL
genericext_cap_pointer.

• Device interrupt generation is enabled with the VHDL genericdeviceirq.

• PCI interrupt sampling and forwarding is enabled with the VHDL generichostirq.

• Support for two PCI functions is enabled with the VHDL generic multifunc.

78.2.2 PCI Configuration Space

The core implements the following registers in the PCI Configuration Space Header. For more
detailed information regarding each field in these registers please refer to the PCI Local Bus Specifi-
cation.

Table 1061.GRPCI2: Implemented register in the PCI Configuration Space Header

PCI address offset Register

0x00 Device ID, Vendor ID

0x04 Status, Command

0x08 Class Code, Revision ID

0x0C BIST, Header Type, Latency Timer, Cache Line Size

0x10 - 0x24 Base Address Registers

0x34 Capabilities Pointer

0x3C Max_Lat, Min_Gnt, Interrupt Pin, Interrupt Line

Table 1062.GRPCI2 Device ID and Vendor ID register (address offset 0x00)
31 16 15 0

Device ID Vendor ID

31 : 16 Device ID, Set by thedeviceid VHDL generic.

15 : 0 Vendor ID, Set by thevendorid VHDL generic.

Table 1063.GRPCI2 Status and Command register (address offset 0x04)
31 24 23 22 21 20 19 18 11 10 9 8 7 6 5 4 3 2 1 0

D
P
E

S
S
E

R
M
A

R
T
A

S
T
A

DEV
SEL

timing

M
D
P
E

F
B
B
C

R
E
S

66
M
H
z

CL IS RESERVED ID Not
Imp

SE R
E
S

P
E
R

Not
Imp

M
W
I

Not
Imp

BM MS Not
Imp

31 Detected Parity Error

30 Signaled System Error

29 Received Master Abort

28 Received Target Abort

27 Signaled Target Abort

26: 25 DEVSEL timing, Returns “01“ indicating medium

24 Master Data Parity Error
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23 Fast Back-to-Back Capable, Returns zero. (Read only)

22 RESERVED

21 66 MHz Capable (Read only)
NOTE: In this core this bit has been defined as the status of the M66EN signal rather than the capa-
bility of the core. For a 33 MHz design, this signal should be connected to ground and this status bit
will have the correct value of ‘0’. For a 66 MHz design, this signal is pulled-up by the backplane and
this status bit will have the correct value of ‘1’. For a 66 MHz capable design inserted in a 33 MHz
system, this bit will then unfortunate only indicate a 33 MHz capable device.

20 Capabilities List, Returns one (Read only)

19 Interrupt Status (Read only)

18: 11 RESERVED

10 Interrupt Disable

9 NOT IMPLEMENTED, Returns zero.

8 SERR# Enable

7 NOT IMPLEMENTED, Returns zero.

6 Parity Error Response

5 NOT IMPLEMENTED, Returns zero.

4 Memory Write and Invalidate Enable

3 NOT IMPLEMENTED, Returns zero.

2 Bus Master

1 Memory Space

0 NOT IMPLEMENTED, Returns zero.

Table 1064.GRPCI2 Class Code and Revision ID register (address offset 0x08)
31 8 7 0

Class Code Revision ID

31 : 8 Class Code, Set by theclasscode VHDL generic.

7 : 0 Revision ID, Set by therevisionid VHDL generic.

Table 1065.GRPCI2 BIST, Header Type, Latency Timer, and Cache Line Size register (address offset 0x0C)
31 24 23 16 15 8 7 0

BIST Header Type Latency Timer Cache Line Size

31 : 24 NOT IMPLEMENTED, Returns zeros

23 : 16 Header Type, Returns 00

15 : 8 Latency Timer, All bits are writable.

7 : 0 NOT IMPLEMENTED, Returns zero.

Table 1066.GRPCI2 Base Address Registers (address offset 0x10 - 0x24)
31 4 3 2 1 0

Base Address PF Type MS

31 : 4 Base Address. The size of the BAR is determine by how many of the bits (starting from bit 31) are
implemented. Bits not implemented returns zero.

3 Prefetchable, Returns zero indicating non-prefetchable.

Table 1063.GRPCI2 Status and Command register (address offset 0x04)
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78.2.3 Extended PCI Configuration Space

This section describes the first item in the list of capabilities implemented in the Extended PCI Con-
figuration Space. This capability is core specific and contains the PCI to AMBA address mapping and
the option to change endianess of the PCI bus.

When user defined capability list items are implemented, the next pointer defines the offset of this list
item. The AMBA address mapping for these registers can be accessed in the core specific item (first
list item). The registers implemented in this AMBA address range must be compliant to the capability
list items defined in the 2.3 PCI Local Bus Specification.

2 : 1 Type, Returns zero.

0 Memory Space Indicator

Table 1067.GRPCI2 Capabilities Pointer Register (address offset 0x34)
31 8 7 0

RESERVED Capabilities Pointer

31 : 8 RESERVED

7 : 0 Capabilities Pointer. Indicates the first item in the list of capabilities of the Extended PCI Configura-
tion Space. This offset is set with the VHDL genericcap_pointer.

Table 1068.GRPCI2 Max_Lat, Min_Gnt, Interrupt Pin,and Interrupt Line register (address offset 0x3C)
31 24 23 16 15 8 7 0

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

31 : 24 NOT IMPLEMENTED, Returns zero

23 : 16 NOT IMPLEMENTED, Returns zero

15 : 8 Interrupt Pin, Indicates INTA# when VHDL genericdeviceirqis 1, otherwise zero is returned (Read
only)

7 : 0 Interrupt Line

Table 1069.GRPCI2: Internal capabilities of the Extended PCI Configuration Space

PCI address offset (with the Capabilities
pointer as base) Register

0x00 Length, Next Pointer, ID

0x04 - 0x18 PCI BAR to AHB address mapping

0x1C Extended PCI Configuration Space to AHB address mapping

0x20 AHB IO base address and PCI bus config (endianess switch)

0x24 - 0x38 PCI BAR size and prefetch

0x3C AHB master prefetch burst limit

Table 1066.GRPCI2 Base Address Registers (address offset 0x10 - 0x24)
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Table 1070.GRPCI2 Length, Next pointer and ID (address offset 0x00)
31 24 23 16 15 8 7 0

RESERVED Length Next Pointer Capability ID

31 : 24 RESERVED.

23 : 16 Length, Returns 0x40. (Read only)

15 : 8 Pointer to the next item in the list of capabilites.This offset is set with the VHDL generic
ext_cap_pointer. (Read only)

7 : 0 Capability ID, Returns 0x09 indicating Vendor Specific. (Read only)

Table 1071.GRPCI2 PCI BAR to AHB address mapping register (address offset 0x04 - 0x18)
31 0

PCI BAR to AHB address mapping

31 : 0 32-bit mapping register for each PCI BAR. Translate an access to a PCI BAR to a AHB base
address. The size of the BAR determine how many bits (starting form bit 31) are implemented. Bits
non implemented returns zero.

Table 1072.GRPCI2 Extended PCI Configuration Space to AHB address mapping register (address offset 0x1C)
31 8 7 0

Extended PCI Configuration Space to AHB address mapping RESERVED

31 : 8 Translates an access to the Extended PCI Configuration Space (excluding the address range for the
internal register located in this configuration space) to a AHB address.

7 : 0 RESERVED

Table 1073.GRPCI2 AHB IO base address and PCI bus config (endianess register) (address offset 0x20)
31 20 19 1 0

AHB IO base address RESERVED DISEN Endian

31 : 8 Base address of the AHB IO area. (Read only, not replocated for each PCI function)

19 : 2 RESERVED

1 Target access discard time out enable. When set to ‘1’, the target will discard a pending access if no
retry of the access is detected during 2**15 PCI clock cycles. (Not replicated for each PCI function)

0 PCI bus endianess switch. 1: defines the PCI bus to be little-endian, 0: defines the PCI bus to be big-
endian. Reset value is set be the conv_endian VHDL generic. (Not replicated for each PCI function)

Table 1074.GRPCI2 PCI BAR size and prefetch register (address offset 0x24 - 0x38)
31 4 3 2 1 0

PCI BAR size mask Pre RESERVED Type

31 : 4 A size mask register for eache PCI BAR. When bit[n] is set to ‘1’ bit[n] in the PCI BAR register is
implemented and can return a non-zero value. All bits from the lowes bit set to ‘1’ upto bit 31 need
to be set to ‘1’. When bit 31 is ‘0’, this PCI BAR is disabled. The number of implemented bits in this
field depends in the VHDL generic barminsize.

3 Prefetch bit in PCI BAR register
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78.2.4 Multi-Function

The core supports up to two PCI functions starting from function 0. Each function has its own PCI
configuration space located at offset 0x0 for function 0 and offset 0x100 for function 1. Some regis-
ters in the Extended PCI configuration space is shared between all functions. All functions also share
the same Vendor ID.

78.3 Operation

78.3.1 Access support

The core supports both single and burst accesses on the AMBA AHB bus and on the PCI bus. For
more information on which PCI commands thar are supported, see the PCI target section and for burst
limitations see the Burst section.

78.3.2 FIFOs

The core has separate FIFOs for each data path: PCI target read, PCI target write, PCI master read,
PCI master write, DMA AHB-to-PCI, and DMA PCI-to-AHB. The number and depth of the FIFOs
for each data path is configurable by VHDL generics.

78.3.3 Byte enables and byte twisting (endianess)

The core has the capability of converting endianess between the two busses. This means that all byte
lanes can be swapped by the core as shown in figure below.

2 : 1 RESERVED

0 BAR type. 0 = Memory BAR, 1 = IO BAR

Table 1075.GRPCI2 AHB master prefetch burst limit (address offset 0x3C)
31 30 16 15 0

SRF RESERVED Burst length

31 Store Read FIFO. When set to 1, the prefetched FIFO will be stored until the next PCI access when
the PCI target terminates the access with disconnect without data.

30 : 16 RESERVED

15 : 0 Maximum number of beats - 1 in the burst. (Maximin value is 0xFFFF => 0x10000 beats => 65kB
address)

Table 1074.GRPCI2 PCI BAR size and prefetch register (address offset 0x24 - 0x38)
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Table 1076 defines the supported AHB address/size and PCI byte enable combinations.

As the AHB bus in GRLIB is defined as big-endian, the core is able to define the PCI bus as little-
endian (as defined by the PCI Local Bus Specification) with endianess conversion or define the PCI
bus as big-endian without endianess conversion.

The endianess of the PCI bus is configured via the core specific Extended PCI Configuration Space.
The default value is set by a VHDL genericconv_endian.

78.3.4 PCI configuration cycles

Accesses to PCI Configuration Space are not altered by the endianess settings. The PCI Configuration
Space is always defined as little-endian (as specified in the PCI Local Bus Specification). This means
that the PCI target does not change the byte order even if the endianess conversion is enabled and the
PCI master always converts PCI Configuration Space accesses to little-endian.

Table 1076.AHB address/size <=> PCI byte enable combinations.

AHB HSIZE AHB ADDRESS[1:0] Little-endian CBE[3:0] Big-endian CBE[3:0]
00 (8-bit) 00 1110 0111

00 (8-bit) 01 1101 1011

00 (8-bit) 10 1011 1101

00 (8-bit) 11 0111 1110

01 (16-bit) 00 1100 0011

01 (16-bit) 10 0011 1100

10 (32-bit) 00 0000 0000

Figure 257.GRPCI2 byte twisting
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Data stored in a register in the PCI Configuration Space as 0x12345678 (bit[31:0]) is transferred to
the AHB bus as 0x78563412 (bit[31:0]). This means that non-8-bit accesses to the PCI Configuration
Space must be converted in software to get the correct byte order.

78.3.5 Memory and I/O accesses

Memory and I/O accesses are always affected by the endianess conversion setting. The core should
define the PCI bus as little-endian in the following scenarios: When the core is the PCI host and little-
endian peripherals issues DMA transfers to host memory. When the core is a peripheral device and
issues DMA transfers to a little-endian PCI host.

78.3.6 Bursts

PCI bus: The PCI target terminates a burst when no FIFO is available (the AMBA AHB master is not
able to fill or empty the FIFO fast enough) or for reads when the burst reached the length specified by
the “AHB master prefetch burst limit” register. This register defines a boundary which a burst can not
cross i.e. when set to 0x400 beats (address boundary at 4kB) the core only prefetch data up to this
boundary and then terminates the burst with a disconnect.

The PCI master stops the burst when the latency timer times out (see the PCI Local Bus Specification
for information on the latency timer) or for reads when the burst reaches the limit defined by “PCI
master prefetch burst limit” register (if AHB master performing the access is unmasked). If the master
is masked in this register, the limit is set to 1kB. The PCI master do not prefetch data across this
address boundary.

AHB bus: As long as FIFOs are available for writes and data in a FIFO is available for read, the AHB
slave do not limit the burst length. The burst length for the AHB master is limited by the FIFO depth.
The AHB master only burst up to the FIFO boundary. Only linear-incremental burst mode is sup-
ported.

DMA: DMA accesses are not affected by the “AHB master prefetch burst limit“ register or the “PCI
master prefetch burst limit“ register.

All FIFOs are filled starting at the same word offset as the bus access (i.e. with a FIFO of depth 8
words and the start address of a burst is 0x4, the first data word is stored in the second FIFO entry and
only 7 words can be stored in this FIFO).

78.3.7 Host operation

The core provides a system host input signal that must be asserted (active low) for PCI system host
operations. The status of this signal is available in the Status & Capability register accessible via the
APB slave interface. The device is only allowed to generate PCI configuration cycles when this signal
is asserted (device is the system host).

For designs intended to be host or peripherals only the PCI system host signal can be tied low or high
internally in the design. For multi-purpose designs it should be connected to a pin. The PCI Industrial
Computer Manufacturers Group (PCIMG) cPCI specification uses pin C2 on connector P2 for this
purpose. The pin should have a pull-up resistor since peripheral slots leave it unconnected.

An asserted PCI system host signal makes the PCI target respond to configuration cycles when no
IDSEL signal is asserted (none of AD[31:11] are asserted). This is done for the PCI master to be able
to configure its own PCI target.

78.4 PCI Initiator interface

The PCI master interface is accessible via the AMBA AHB slave interface. The AHB slave interface
occupies 1MB to 2GB of the AHB memory address space and 128kB to 256kB of AHB I/O address
space. An access to the AHB memory address area is translated to a PCI memory cycle. An access to
the first 64kB of the AHB IO area is translated to a PCI I/O cycle. The next 64kB are translated to PCI
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configuration cycles. When the PCI trace buffer is implemented, it is accessible via the last 128kB of
the AHB I/O area.

78.4.1 Memory cycles

A single read access to the AHB memory area is translated into a PCI memory read access, while a
burst read translates into a PCI memory read multiple access. A write to this memory area is trans-
lated into a PCI write access.

The address translation is determined by AHB master to PCI address mapping registers accessible via
the APB slave interface. Each AHB master on the AMBA AHB bus has its own mapping register.
These registers contain the MSbs of the PCI address.

When the PCI master is busy performing a transaction on the PCI bus and not able to accept new
requests, the AHB slave interface will respond with an AMBA RETRY response. This occurs on
reads when the PCI master is fetching the requested data to fill the read FIFO or on writes when no
write FIFO is available. This means that all masters on the AMBA bus accessing the AHB slave inter-
face must be round-robin arbitrated without prioritization to avoid deadlock situations.

78.4.2 I/O cycles

Accesses to the lowest 64kB of the AHB I/O address area are translated into PCI I/O cycles. The
address translation is determined by the “AHB to PCI mapping register for PCI I/O”. This register sets
the 16 MSb of the PCI address. The “AHB to PCI mapping register for PCI I/O” is accessible via the
APB slave interface. When the “IB” (PCI IO burst) bit in the Control register (accessible via the APB
slave interface) is cleared, the PCI master does not perform burst I/O accesses.

78.4.3 Configuration cycles

Accesses to the second 64kB address block (address offset range 64kB to 128kB) of the AHB I/O
address area is translated into PCI configuration cycles. The AHB address is translated into PCI con-
figuration address different for type 0 and type 1 PCI configuration cycles. When the “bus number”
field in the control register (accessible via the APB slave interface) is zero, type 0 PCI configuration
cycles is issued. When the “bus number“ field is non-zero, type 1 PCI configuration cycless are issued
to the PCI bus determine by this field. The AHB I/O address mapping to PCI configuration address
for type 0 and type 1 PCI configuration cycles is defined in table 1077 and table 1078.

Only the system host is allowed to generate PCI configuration cycles. The core provides a system host
input signal that must be asserted (active low) for PCI system host operations. The status of this signal
is available in the Status & Capability register accessible via the APB slave interface.When the “CB”
(PCI Configuration burst) bit in the Control register (accessible via the APB slave interface) is
cleared, the PCI master does not perform burst configuration accesses.

Table 1077.GRPCI2 Mapping of AHB I/O address to PCI configuration cycle, type 0
31 16 15 11 10 8 7 2 1 0

AHB ADDRESS MSB IDSEL FUNC REGISTER BYTE

31: 16 AHB address MSbs: Not used for PCI configuration cycle address mapping.

15: 11 IDSEL: This field is decoded to drive PCI AD[IDSEL+10]. Each of the signals AD[31:11] are sup-
pose to be connected (by the PCI back plane) to one corresponding IDSEL line.

10: 8 FUNC: Selects function on a multi-function device.

7: 2 REGISTER: Used to index a PCI DWORD in configuration space.

1: 0 BYTE: Used to set the CBE correctly for non PCI DWORD accesses.
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78.4.4 Error handling

When a read access issued by the PCI master is terminated with target-abort or master-abort, the AHB
slave generates an AMBA ERROR response when the “ER” bit in the control register is set. When the
“EI“ bit in the control register is set, an AMBA interrupt is generated for the error. The interrupt status
field in the control register indicates the cause of the error.

78.5 PCI Target interface

The PCI Target occupies memory areas in the PCI address space corresponding to the BAR registers
in the PCI Configuration Space. Each BAR register (BAR0 to BAR5) defines the address allocation in
the PCI address space. The size of each BAR is set by the “BAR size and prefetch” registers accessi-
ble via the core specific Extended PCI Configuration Space. The size of a BAR can be determined by
checking the number of implemented bits in the BAR register. Non-implemented bits returns zero and
are read only.

78.5.1 Supported PCI commands

These are the PCI commands that are supported by the PCI target.

• PCI Configuration Read/Write: Burst and single access to the PCI Configuration Space. These
accesses are not transferred to the AMBA AHB bus except for the access of the user defined
capability list item in the Extended PCI Configuration Space.

• Memory Read: A read command to the PCI memory BAR is transferred to a single read access
on the AMBA AHB bus.

• Memory Read Multiple, Memory Read Line: A read multiple command to the PCI memory
BAR is transferred to a burst access on the AMBA AHB bus. This burst access prefetch data to
fill the maximum amount of data that can be stored in the FIFO.

• Memory Write, Memory Write and Invalidate: These command are handled similarly and are
transferred to the AMBA AHB bus as a single or burst access depending on the length of the PCI
access (a single or burst access).

• IO Read: A read command to the PCI IO BAR is transferred to a single read access on the
AMBA AHB bus.

• IO Write: A write command to the PCI IO BAR is transferred to the AMBA AHB bus as a sin-
gle access.

78.5.2 Implemented PCI responses

The PCI target can terminate a PCI access with the following responses.

Table 1078.GRPCI2 Mapping of AHB I/O address to PCI configuration cycle, type 1
31 16 15 11 10 8 7 2 1 0

AHB ADDRESS MSB DEVICE FUNC REGISTER BYTE

31: 16 AHB address MSbs: Not used for PCI configuration cycle address mapping.

15: 11 DEVICE: Selects which device on the bus to access.

10: 8 FUNC: Selects function on a multi-function device.

7: 2 REGISTER: Used to index a PCI DWORD in configuration space.

1: 0 BYTE: Used to set the CBE correctly for non PCI DWORD accesses.
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• Retry: This response indicates the PCI target is busy by either fetching data for the AMBA AHB
bus on a PCI read or emptying the write FIFO for a PCI write. A new PCI read access will always
be terminated with a retry at least one time before the PCI target is ready to deliver data.

• Disconnect with data:Terminate the transaction and transfer data in the current data phase. This
occurs when the PCI master request more data and the next FIFO is not yet available or for a PCI
burst access with the Memory Read command.

• Disconnect without data:Terminate the transaction without transferring data in the current data
phase. This occurs if the CBE change within a PCI burst write.

• Target Abort: Indicates that the current access caused an internal error and the target is unable
to finish the access. This occurs when the core receives a AMBA AHB error during a read opera-
tion.

78.5.3 PCI to AHB translation

Each PCI BAR has translation register (mapping register) to translate the PCI access to a AMBA
AHB address area. These mapping registers are accessible via the core specific Extended PCI Config-
uration Space. The number of implemented bits in these registers correspond to the size of (and num-
ber of implemented bits in) the BARs registers.

78.5.4 PCI system host signal

When the PCI system host signal is asserted the PCI target responds to configuration cycles when no
IDSEL signal is asserted (none of AD[31:11] are asserted). This is done for the PCI master, in a sys-
tem host position, to be able to configure its own PCI target.

78.5.5 Error handling

The PCI target terminates the access with target-abort when the PCI target requests data from the
AHB bus which results in an error response on the AHB bus. Because the writes to the PCI target is
posted, no error is reported on write AHB errors.

When a PCI master is terminated with a retry response it is mandatory for that master to retry this
access until the access is completed or terminated with target-abort. If the master never retries the
access, the PCI target interface would be locked on this access and never accept any new access. To
recover from this situation, the PCI target has a option to discard an access if it is not retried within
2**15 clock cycles. This discard time out can be enabled via the “AHB IO base address and PCI bus
config” located in the core specific Extended PCI Configuration Space.

78.6 DMA Controller

The DMA engine is descriptor base and uses two levels of descriptors.

78.6.1 DMA channel

The first level is a linked list of DMA channel descriptors. Each descriptor has a pointer to its data
descriptor list and a pointer to the next DMA channel. The last DMA channel descriptor should
always points to the first DMA channel for the list to be a closed loop. The descriptor needs to be
aligned to 4 words (0x10) in memory and have the following structure.
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The number of enabled DMA channels must be stored in the “Number of DMA channels“ field in the
DMA control register accessible via the APB slave interface.

78.6.2 Data descriptor

The second descriptor level is a linked list of data transfers. The last descriptor in this list needs to be
a disabled descriptor. To add a new data transfer, this disabled descriptor is updated to reflect the data
transfer and to point to a new disabled descriptor. The control word in the descriptor should be
updated last to enable the valid descriptor. To make sure the DMA engine reads this new descriptor,
the enable bit in the DMA control register should be updated. The descriptor needs to be aligned to 4
words (0x10) in memory and have the following structure.

Table 1079.GRPCI2: DMA channel descriptor structure

Descriptor address offset Descriptor word

0x00 DMA channel control

0x04 Next DMA channel (32-bit address to next DMA channel descrip-
tor).

0x08 Next data descriptor in this DMA channel (32-bit address to next
data descriptor).

0x0C RESERVED

Table 1080.GRPCI2 DMA channel control
31 25 24 22 21 20 19 16 15 0

EN RESERVED CID Type RESERVED Data descriptor count

31 Channel descriptor enable.

30: 25 RESERVED

24: 22 Channel ID. Each DMA channel needs a ID to determine the source of a DMA interrupt.

21: 20 Descriptor type. 01 = DMA channel descriptor.

19: 16 RESERVED

15: 0 Maximum number of data destructors to be executed before moving to the next DMA channel. 0
indicates that all data descriptors should be executed before moving to the next DMA channel.

Table 1081.GRPCI2: DMA data descriptor structure

Descriptor address offset Descriptor word

0x00 DMA data control

0x04 32-bit PCI start address

0x08 32-bit AHB start address

0x0C Next data descriptor in this DMA channel (32-bit address to next
data descriptor).

Table 1082.GRPCI2 DMA data control
31 30 29 28 22 21 20 19 18 16 15 0

EN IE DR BE RESERVED Type ER RESERVED LEN

31 Data descriptor enable.
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78.6.3 Data transfer

The DMA engine starts by reading the descriptor for the first DMA channel. If the DMA channel is
enabled the first data descriptor in this channel is read and executed. When the transfer is done the
data descriptor is disabled and status is written to the control word. If no error occurred during the
transfer, the error bit is not set and the transfer length field is unchanged. If the transfer was termi-
nated because of an error, the error bit is set in the control word and the length field indicates where in
the transfer the error occurred. If no error has occurred, the next data descriptor is read and executed.
When a disabled data descriptor is read or the maximum number of data descriptors has been exe-
cuted, the DMA channel descriptor is updated to point to the next data descriptor and the DMA
engine moves on to the next DMA channel.

The DMA engine will stop when an error is detected or when no enabled data descriptors is found.
The error type is indicated by bit 7 to bit 11 in the DMA control register. The error type bits must be
cleared (by writing ‘1’) before the DMA can be reenabled.

78.6.4 Interrupt

The DMA controller has an interrupt enable bit in the DMA control register (accessible via the APB
slave interface) which enables interrupt generation.

Each data descriptor has an interrupt enable bit which determine if the core should generate a inter-
rupt when the descriptor has been executed.

The VHDL genericirqmodedetermines if the DMA engine assert the same interrupt as the PCI core
or the DMA uses the irq signal following the PCI core interrupt, see the IRQ mode field in the Status
and Capability register for irq routing information.

78.7 PCI trace buffer

78.7.1 Trace data

The data from the trace buffer is accessible in the last 128 kB block of the AHB I/O address area.
Each 32-bit word in the first 64kB of this block represents a sample of the AD PCI signal. The second
64kB of the block is the corresponding PCI control signal. Each 32-bit word is defined in
table 1083.

30 Interrupt generation enable.

29 Transfer direction. 0: PCI to AMBA, 1: AMBA to PCI.

28 PCI bus endianess switch. 1: defines the PCI bus to be little-endian for this transfer, 0: defines the
PCI bus to be big-endian for this transfer.

27: 22 RESERVED (Must be set to zero)

21: 20 Descriptor type. 00 = DMA data descriptor.

19 Error status

18: 16 RESERVED

15: 0 Transfer length. The number of word of the transfer is (this field)+1.

Table 1083.GRPCI2 PCI control signal trace (32-bit word)
31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
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Table 1082.GRPCI2 DMA data control
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78.7.2 Triggering function

The core can be programmed to trigger on any combination of the PCI AD and PCI Control signals by
setting up the desired pattern and mask in the PCI trace buffer registers accessible via the APB slave
interface. Each bit the PCI AD signal and any PCI control signal can be masked (mask bit equal to
zero) to always match the triggering condition.

The “Trig count” field in the “PCI trace buffer: counter & mode” register defines how many times the
trigger condition should occur before the trace buffer disarms and eventually stops sampling. The
number of samples stored after the triggering condition occurs defines by the “Delayed stop“ + 2.

To start sampling, the trace buffer needs to be armed by writing one to the start bit in the “PCI trace
buffer: Control“ register. The state of the trace buffer can be determine by reading the Armed and
Enable/Running bit in the this control register. When the Armed bit is set, the triggering condition has
not occurred. The Enable/Running bit indicates that the trace buffer still is storing new samples. When
the delayed stop is field is set to a non zero value, the Enabled bit is not cleared until all samples are
stored in the buffer). The trace buffer can also be disarmed by writing the “stop” bit in the “PCI trace
buffer: control” register.

When the trace buffer has been disarmed, the “trig index” in the “PCI trace buffer: control” register is
updated with index of trace entry which match the triggering condition. The address offset of this
entry is the value of the “trig index“ field times 4.

78.7.3 Trace Buffer APB interface

A separate APB register can optionally be enabled for access of the PCI trace buffer. The register lay-
out is the same as the core APB interface but only registers related to the PCI trace buffer is accessa-
ble. The trace buffer data is located at offset 0x20000 for PCI AD and offset 0x30000 for PCI control
signals.

78.8 Interrupts

The core is capable of sampling the PCI INTA-D signals and forwarding the interrupt to the APB bus.
The PCI INTA-D signals can be connected to one APB irq signal or to 4 different irq signals. This is
configured by the VHDL genericirqmode. The “host INT mask” field in the control register is used
only for sampling the valid PCI INT signal.

The core supports PCI interrupt generation. For single function configuration the dirq signal is sam-
pled and forwarded to the PCI INTA signal. For a multi function (and multi interrupt) configured
device, each bit of the dirq signal is connected to one of the PCI INTA..D signal (dirq[0] => INTA,
dirq[1] => INTB, ...). The core has a mask bit (the “device INT mask“ field in the control register) for
each bit in the dirq vector. The core also has a PCI interrupt force bit in the control register to be able
to force the PCI INT asserted. For a multi interrupt configuration the PCI interrupt force bit is masked
by the “device INT mask” to be able to assert all PCI INT signals separately.

When the system error PCI signal (SERR) is sampled asserted the core sets the system error bit in the
“core interrupt status” field in the Status & Capability register. If the system interrupts is enabled the
core will also generate a interrupt on the APB bus.

31: 20 RESERVED

19: 3 The state of the PCI control signals.

2: 0 RESERVED

Table 1083.GRPCI2 PCI control signal trace (32-bit word)
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78.9 Reset

The deassertion of the PCI reset is synchronized to the PCI clock and delayed 3 clock cycles.

The core can be configured to drive the AHB reset on the PCI reset signal. This option is used when
the backplane does not have logic to drive the PCI reset.

The PCI reset signal can optionally be forwarded to the AHB reset via the ptarst signal. This function-
ality can be used then the AMBA clock domain needs to be reset when the PCI reset is asserted.

78.10 Registers

The core is configured via registers mapped into the APB memory address space.

Table 1084.GRPCI2: APB registers

APB address offset Register

0x00 Control

0x04 Status & Capability (Read only)

0x08 PCI master prefetch burst limit

0x0C AHB to PCI mapping for PCI IO

0x10 DMA Control & Status

0x14 DMA descriptor base

0x18 DMA channel active (read only)

0x1C RESERVED

0x20 - 0x34 PCI BAR to AHB address mapping (Read only)

0x38 RESERVED

0x3C RESERVED

0x40 - 0x7C AHB master to PCI memory address mapping

0x80 PCI trace buffer: control & status

0x84 PCI trace buffer: counter & mode

0x88 PCI trace buffer: AD pattern

0x8C PCI trace buffer: AD mask

0x90 PCI trace buffer: Ctrl signal pattern

0x94 PCI trace buffer: Ctrl signal mask

0x98 PCI trace buffer: AD state

0x9C PCI trace buffer: Ctrl signal state

Table 1085.GRPCI2 Control register (address offset 0x00)
31 30 29 28 27 26 25 24 23 16 15 11 10 9 8 7 4 3 0

RE MR TR R SI PE ER EI Bus Number RESERVED IB CB DIF Device INT mask Host INT mask

31 PCI reset. When set, the PCI reset signal is asserted. Needs to be cleared to deassert PCI reset.

30 PCI master reset. Set to reset the cores PCI master. This bit is self clearing.

29 PCI target reset. Set to reset the cores PCI target. This bit is self clearing.

28 RESERVED

27 When set, Interrupt is enabled for System error (SERR)

26 When set, AHB error response is enabled for Parity error

25 When set, AHB error response is enabled for Master and Target abort.

24 When set, Interrupt is enabled for Master and Target abort and Parity error.
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23: 16 When not zero, type 1 configuration cycles is generated.This field is also used as the Bus Number in
type 1 configuration cycles.

15: 11 RESERVED

10 When set, burst accesses may be generated by the PCI master for PCI IO cycles

9 When set, burst accesses may be generated by the PCI master for PCI configuration cycles.

8 Device interrupt force. When set, a PCI interrupt is forced.

7: 4 Device interrupt mask. When bit[n] is set dirq[n] is unmasked

3: 0 Host interrupt mask
bit[3] = 1: unmask INTD.
bit[2] = 1: unmask INTC.
bit[1] = 1: unmask INTB.
bit[0] = 1: unmask INTA.

Table 1086.GRPCI2 Status and Capability register (address offset 0x04)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 8 7 5 4 2 1 0

H
o
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DI HI IRQ
mode

T
r
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e
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E
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F
H

C
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D
O

C
F
G
E
R

Core interrupt status Host interrupt
status

RES FDEPTH FNUM

31 When zero, the core is inserted in the System slot and is allowed to act as System Host.

30 Master implemented

29 Target implemented

28 DMA implemented

27 Device drives PCI INTA

26 Device samples PCI INTA..D (for host operations)

25: 24 APB IRQ mode
00: PCI INTA..D, Error interrupt and DMA interrupt on the same IRQ signal
01: PCI INTA..D and Error interrupt on the same IRQ signal. DMA interrupt on IRQ+1
10: PCI INTA..D on IRQ..IRQ+3. Error interrupt and DMA interrupt on IRQ.
11: PCI INTA..D on IRQ..IRQ+3. Error interrupt on IRQ. DMA interrupt on IRQ+4

23 PCI trace buffer implemented

22 RESERVED

21 Fake device in system slot (Host). This bit should always be written with ‘0’. Only for debugging.

20 PCI configuration access done, PCI configuration error status valid.

19 Error during PCI configuration access

18: 12 Interrupt status:
bit[6]: PCI target access discarded due to time out (access not retried for 2**15 PCI clock cycles)
bit[5]: System error
bit[4]: DMA interrupt
bit[3]: DMA error
bit[2]: Master abort.
bit[1]: Target abort.
bit[0]: Parity error..

11: 8 Host interrupt status
bit[3] = 0: indicates that INTD is asserted.
bit[2] = 0: indicates that INTC is asserted.
bit[1] = 0: indicates that INTB is asserted.
bit[0] = 0: indicates that INTA is asserted.

7: 5 RESERVED

4: 2 Words in each FIFO = 2**(FIFO depth)

1: 0 Number of FIFOs

Table 1085.GRPCI2 Control register (address offset 0x00)
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Table 1087.GRPCI2 PCI master prefetch burst limit (address offset 0x08)
31 24 23 16 15 8 7 0

AHB master unmask RESERVED Burst length

31 : 16 When bit[n] is set, the prefetch burst of AHB master n is limited by the “Burst length” field.

15 : 8 RESERVED

7 : 0 Maximum number of beats - 1 in the burst. (Maximin value is 0xFF => 0x100 beats => 1kB address)

Table 1088.GRPCI2 AHB to PCI mapping for PCI IO (address offset 0x0C)
31 16 15 0

AHB to PCI IO RESERVED

31 : 16 Used as the MSBs of the base address for a PCI IO access.

15 : 0 RESERVED

Table 1089.GRPCI2 DMA control and status register (address offset 0x10)
31 30 - 20 19 12 11 10 9 8 7 6 4 3 2 1 0

SAFE RES CHIRQ MA TA PE AE DE Number of DMA channels ACTIVE DIS IE EN

31 Safety guard for update of control fields. Needs to be set to ‘1’ for the control fields to be updated.

30 : 20 RESERVED

19 : 12 Channel IRQ status. Set to ‘1’ when a descriptor is configured to signal interrupt. bit[0] corresponds
to the channel with ID 0, bit[1] corresponds to the channel with ID 1, ... Clear by writing ‘1’.

11 Master abort during PCI access. Clear by writing ‘1’

10 Target abort during PCI access. Clear by writing ‘1’

9 Parity error during PCI access. Clear by writing ‘1’

8 Error during AHB data access. Clear by writing ‘1’

7 Error during descriptor access. Clear by writing ‘1’.

6 : 4 Number of DMA channels (Guarded by bit[31], safety guard)

3 DMA is active (read only)

2 DMA disable/stop. Writing ‘1’ to this bit disables the DMA.

1 Interrupt enable (Guarded by bit[31], safety guard).

0 DMA enable/start. Writing ‘1’ to this bit enables the DMA.

Table 1090.GRPCI2 DMA descriptor base address register (address offset 0x14)
31 0

DMA descriptor base address

31 : 0 Base address of the DMA descriptor table. When running, this register points to the active descriptor.

Table 1091.GRPCI2 DMA channel active register (address offset 0x18)
31 0

DMA descriptor base address
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31 : 0 Base address of the active DMA channel.

Table 1092.GRPCI2 PCI BAR to AHB address mapping register (address offset 0x20 - 0x34)
31 0

PCI BAR to AHB address mapping

31 : 0 32-bit mapping register for each PCI BAR. Translate an access to a PCI BAR to a AHB base
address.

Table 1093.GRPCI2 AHB master to PCI memory address mapping register (address offset 0x40 - 0x7C)
31 0

AHB master to PCI memory address mapping

31 : 0 32-bit mapping register for each AHB master. Translate an access from a specific AHB master to a
PCI base address. The size of the AHB slave address area determine how many bits (starting from bit
31) are implemented. Bits not implemented returns zero. The mapping register for AHB master 0 is
located at offset 0x40, AHB master 1 at offset 0x44, and so on up to AHB master 15 at offset 0x7C.
Mapping registers are only implemented for existing AHB masters.

Table 1094.GRPCI2 PCI trace Control and Status register (address offset 0x80)
31 16 15 14 13 12 11 4 3 2 1 0

TRIG INDEX AR EN RES DEPTH RES SO SA

31: 16 Index of the first entry of the trace.

15 Set when trace buffer is armed (started but the trig condition has not occurred).

14 Set when trace buffer is running

13: 12 RESERVED

11: 4 Number of buffer entries = 2**DEPTH

3: 2 RESERVED

1 Stop tracing. (Write only)

0 Start tracing. (Write only)

Table 1095.GRPCI2 PCI trace counter and mode register (address offset 0x84)
31 28 27 24 23 16 15 0

RES Trace mode Trig count Delayed stop

31: 28 RESERVED

27: 24 Tracing mode
00: Continuos sampling
01: RESERVED
10: RESERVED
11: RESERVED

23: 16 The number the trig condition should occur before the trace is disarmed.

15: 0 The number of entries stored after the trace buffer has been disarmed. (Should not be lager then
number of buffer entries - 2).

Table 1091.GRPCI2 DMA channel active register (address offset 0x18)
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Table 1096.GRPCI2 PCI trace AD pattern register (address offset 0x88)
31 0

PCI AD pattern

31: 0 AD pattern to trig on

Table 1097.GRPCI2 PCI trace AD mask register (address offset 0x8C)
31 0

PCI AD mask

31: 0 Mask for the AD patter. When mask bit[n] = 0 pattern bit[n] will always be a match.

Table 1098.GRPCI2 PCI trace Ctrl signal pattern register (address offset 0x90)
31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
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31: 20 RESERVED

19: 3 PCI Ctrl signal pattern to trig on

2: 0 RESERVED

Table 1099.GRPCI2 PCI trace Ctrl signal mask register (address offset 0x94)
31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
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31: 20 RESERVED

19: 3 Mask for the Ctrl signal patter. When mask bit[n] = 0 pattern bit[n] will always be a match.

2: 0 RESERVED

Table 1100.GRPCI2 PCI trace PCI AD state register (address offset 0x98)
31 0

Sampled PCI AD signal

31: 0 The state of the PCI AD signal.
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Table 1101.GRPCI2 PCI trace PCI Ctrl signal state register (address offset 0x9C)
31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
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31: 20 RESERVED

19: 3 The state of the PCI Ctrl signals.

2: 0 RESERVED
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78.11 Configuration options

Table 1102 shows the configuration options of the core (VHDL generics).

Table 1102.Configuration options

Generic name Function Allowed range Default

memtech The memory technology used for the internal FIFOs. 0 - NTECH 0

tbmemtech The memory technology used for trace buffers 0 - NTECH 0

oepol Polarity of the pad output enable signal. 0 = active low, 1
= active high.

0 - 1 0

hmindex AHB master index. 0 - NAHBMST-1 0

hdmindex DMA AHB master index. 0 - NAHBMST-1 0

hsindex AHB slave index. 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR (for PCI memory access). 0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR. 0 - 16#FFF# 16#000#

ioaddr ADDR field of the AHB IO BAR (for PCI configuration
and PCI IO access).

0 - 16#FFF# 16#000#

pindex APB slave index 0 - APBMAX-1 0

paddr APB interface base address 0 - 16#FFF# 0

pmask APB interface address mask 0 - 16#FFF# 16#FFF#

irq Interrupt line used by the core. 0 - NAHBIRQ-1 0

irqmode IRQ routing option:
00: PCI INTA..D, Error interrupt and DMA interrupt on
the same IRQ signal
01: PCI INTA..D and Error interrupt on the same IRQ
signal. DMA interrupt on IRQ+1
10: PCI INTA..D on IRQ..IRQ+3. Error interrupt and
DMA interrupt on IRQ.
11: PCI INTA..D on IRQ..IRQ+3. Error interrupt on
IRQ. DMA interrupt on IRQ+4

0 - 3 0

master Enable the PCI master 0 - 1 1

target Enable the PCI target 0 - 1 1

dma Enable the PCI dma 0 - 1 1

tracebuffer Enable and number of entries of the PCI trace buffer,
Allowed values is 0, 32, 64, 128, ..., 16384.

0 - 16384 0

confspace Enable the PCI Configuration Space when PCI target is
disabled

0 - 1 1

vendorid PCI vendor ID 0 - 16#FFFF# 0

deviceid PCI device ID 0 - 16#FFFF# 0

classcode PCI class code 0 - 16#FFFFFF# 0

revisionid PCI revision ID 0 - 16#FF# 0

cap_pointer Enabled and sets the offset of the first item in the
Extended PCI Configuration Space

0 - 16#C0# 0

ext_cap_pointer Offset of the first user defined item in the capability list 0 - 16#FC# 0

iobase AHB base address of the AHB I/O area 0 - 16#FFF# 16#FFF#

extcfg Default value of the user defined Extended PCI Configu-
ration Space to AHB address mapping.

0 - 16#FFFFFFF# 0

bar0 Sets the default size of BAR0 in address bits. 0 - 31 0

bar1 Sets the default size of BAR1 in address bits. 0 - 31 0

bar2 Sets the default size of BAR2 in address bits. 0 - 31 0

bar3 Sets the default size of BAR3 in address bits. 0 - 31 0
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bar4 Sets the default size of BAR4 in address bits. 0 - 31 0

bar5 Sets the default size of BAR5 in address bits. 0 - 31 0

bar0_map Set the default PCI BAR to AHB address mapping for
BAR0

0 - 16#FFFFFF# 0

bar1_map Set the default PCI BAR to AHB address mapping for
BAR1

0 - 16#FFFFFF# 0

bar2_map Set the default PCI BAR to AHB address mapping for
BAR2

0 - 16#FFFFFF# 0

bar3_map Set the default PCI BAR to AHB address mapping for
BAR3

0 - 16#FFFFFF# 0

bar4_map Set the default PCI BAR to AHB address mapping for
BAR4

0 - 16#FFFFFF# 0

bar5_map Set the default PCI BAR to AHB address mapping for
BAR5

0 - 16#FFFFFF# 0

bartype Bit[5:0] set the reset value of the prefetch bit for the
BAR. bit[n] corresponds to BARn
.
Bit[13:8] set the reset value of the BAR type bit for the
BAR. bit[n + 8] corresponds to BARn.

0 - 16#FFFF# 0

barminsize Sets the minimal supported BAR size in address bits. 5 - 31 12

fifo_depth Depth of each of the FIFOs in the data path. Depth =
2**fifo_depth

3 - 7 3

fifo_count Number of FIFOs in the data path 2 - 4 2

conv_endian Default value of the endianess conversion setting 0 - 1 1

deviceirq Enable the device to drive the PCI INTA signal 0 - 1 1

deviceirqmask Default value of the irq mask for the dirq input 0 - 16#F# 16#0#

hostirq Enable the core to sample the PCI INTA-D signals to
drive a AHB irq.

0 - 1 1

hostirqmask Default value for the PCI INTA-D signals. 0 - 16#F# 16#0#

nsync Number of synchronization registers between the two
clock domains.

0 - 2 2

hostrst Mode of the reset signal.
0: PCI reset is input only
1: The AHB reset is driven on the PCI reset when
PCII.HOST is asserted
2: The AHB reset is driven on the PCI reset.

0 - 2 0

bypass When 1, logic is implemented to bypass the pad on sig-
nals driven by the core.

0 - 1 1

ft Enable fault-tolerance against SEU errors 0 - 1 0

Table 1102.Configuration options

Generic name Function Allowed range Default
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scantest Enable support for scan test 0 - 1 0

debug Enables debug output signals 0 - 1 0

tbapben Enables a separate APB interface for access of the Trace-
Buffer.

0 - 1 0

tbpindex Trace-Buffer APB slave index 0 - APBMAX-1 0

tbpaddr Trace-Buffer APB interface base address 0 - 16#FFF# 0

tbmask Trace-Buffer APB interface address mask 0 - 16#FFF# 16#FFF#

netlist Enables a netlist implementation of the logic controlled
by the PCI bus signals (GRPCI2_PHY).

0 - 1 0

masters Controles which AHB masters belongs to PCI function0 0 - 16#FFFF# 16#FFFF#

multifunc Enables Multi-Function support 0 - 1 0

multiint Enables support to drive all PCI interrupt signals-
INTA...D

0 - 1 0

mf1_deviceid PCI device ID (PCI function1) 0 - 16#FFFF# 0

mf1_classcode PCI class code (PCI function1) 0 - 16#FFFFFF# 0

mf1_revisionid PCI revision ID (PCI function1) 0 - 16#FF# 0

mf1_bar0 Sets the default size of BAR0 in address bits. (PCI
function1)

0 - 31 0

mf1_bar1 Sets the default size of BAR1 in address bits. (PCI
function1)

0 - 31 0

mf1_bar2 Sets the default size of BAR2 in address bits. (PCI
function1)

0 - 31 0

mf1_bar3 Sets the default size of BAR3 in address bits. (PCI
function1)

0 - 31 0

mf1_bar4 Sets the default size of BAR4 in address bits. (PCI
function1)

0 - 31 0

mf1_bar5 Sets the default size of BAR5 in address bits. (PCI
function1)

0 - 31 0

mf1_bartype Bit[5:0] set the reset value of the prefetch bit for the
BAR. bit[n] corresponds to BARn
.
Bit[13:8] set the reset value of the BAR type bit for the
BAR. bit[n + 8] corresponds to BARn.

0 - 16#FFFF# 0

mf1_bar0_map Set the default PCI BAR to AHB address mapping for
BAR0 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar1_map Set the default PCI BAR to AHB address mapping for
BAR1 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar2_map Set the default PCI BAR to AHB address mapping for
BAR2 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar3_map Set the default PCI BAR to AHB address mapping for
BAR3 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar4_map Set the default PCI BAR to AHB address mapping for
BAR4 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar5_map Set the default PCI BAR to AHB address mapping for
BAR5 (PCI function1)

0 - 16#FFFFFF# 0

mf1_cap_pointer Enabled and sets the offset of the first item in the
Extended PCI Configuration Space (PCI function1)

0 - 16#C0# 0

mf1_ext_cap_point
er

Offset of the first user defined item in the capability list
(PCI function1)

0 - 16#FC# 0

Table 1102.Configuration options

Generic name Function Allowed range Default
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78.12 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x07C. The DMA engine
has device identifier 0x07D. The separate APB interface for the PCI Trace-Buffer has device identifier
0x07E. For description of vendor and device identifier see GRLIB IP Library User’s Manual

78.13 Implementation

78.13.1 Technology mapping

The core has a technology mapping VHDL generic,memtech, which controls how the memory cell
used will be implemented. See the GRLIB Users’s Manual for available settings.

78.13.2 RAM usage

The FIFOs in the core is implemented with thesyncram_2pft(with separate clocks for each port)
component from the technology mapping library (TECHMAP). Each data path implements its FIFOs
in a separate 32-bit wide syncram_2pft component. The depth of each of these RAMs is the FIFO
depth * number of FIFOs.

78.13.3 Pull-ups

Please refer to the PCI Local Bus Specification on which of the PCI signals needs to have pull-ups for
correct operations.

78.13.4 PHY

All logic and registers directly controlled by the PCI bus signals has be placed in a separate entity.
This makes it easier to control the setup-, hold- and clock-to-out timing for the PCI bus signals. This
logic can also be implemented as a netlist which can be manually placed before running place-and-
route for the entire design. A netlist is provided for Axcelerator and RTAX targets.

mf1_extcfg Default value of the user defined Extended PCI Configu-
ration Space to AHB address mapping. (PCI function1)

0 - 16#FFFFFFF# 0

mf1_masters Controls which AHB masters belongs to PCI function1 0 - 16#FFFF# 16#0000#

Table 1102.Configuration options

Generic name Function Allowed range Default
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78.14 Signal descriptions

Table 1103 shows the interface signals of the core (VHDL ports).

The PCII.HOST signal selects of the core should operate as a system host or peripheral device.

78.15 Library dependencies

Table 1104 shows the libraries used when instantiating the core (VHDL libraries).

78.16 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;

.

.
signal apbi : apb_slv_in_type;

Table 1103.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

PCICLK N/A Input PCI Clock -

AHBSI *1 Input AHB slave input signals -

AHBSO *1 Output AHB slave output signals -

AHBMI *1 Input AHB master input signals -

AHBMO *1 Output AHB master output signals -

AHBDMO *1 Output DMA AHB master output signals -

APBI *1 Input APB slave input signals -

APBO *1 Output APB slave output signals -

PCII *2 Input PCI input signals -

PCIO *2 Output PCI output signals -

DIRQ Input Interrupt signals High

TBAPBI *1,*3 Input Trace-Buffer APB slave input signals -

TBAPBO *1, *3 Output Trace-Buffer APB slave output signals -

PTARST N/A, *3 Output PCI reset to AMBA reset output signal Low

DEBUG N/A, *3 Output Debug signals -

*1) see GRLIB IP Library User’s Manual.
*2) see PCI Local Bus Specification
*3) Can be left unconnected, if not used.

Table 1104.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Component Component declaration
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signal apbo : apb_slv_out_type;
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector;
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector;

signal pcii : pci_in_type;
signal pcio : pci_out_type;

begin

pci0 : grpci2
generic map (
 memtech => memtech,

oepol => OEPOL,
hmindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG,
hdmindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+1,
hsindex => 4,
haddr => 16#c00#,
hmask => 16#f00#,
ioaddr => 16#000#,
pindex => 4,
paddr => 4,
irq => 0,
irqmode => 0,
master => CFG_GRPCI2_MASTER,
target => CFG_GRPCI2_TARGET,
dma => CFG_GRPCI2_DMA,
tracebuffer => CFG_GRPCI2_TRACE,
vendorid => CFG_GRPCI2_VID,
deviceid => CFG_GRPCI2_DID,
classcode => CFG_GRPCI2_CLASS,
revisionid => CFG_GRPCI2_RID,
cap_pointer => CFG_GRPCI2_CAP,
ext_cap_pointer => CFG_GRPCI2_NCAP,
iobase => CFG_AHBIO,
extcfg => CFG_GRPCI2_EXTCFG,
bar0 => CFG_GRPCI2_BAR0,
bar1 => CFG_GRPCI2_BAR1,
bar2 => CFG_GRPCI2_BAR2,
bar3 => CFG_GRPCI2_BAR3,
bar4 => CFG_GRPCI2_BAR4,
bar5 => CFG_GRPCI2_BAR5,
fifo_depth => log2(CFG_GRPCI2_FDEPTH),
fifo_count => CFG_GRPCI2_FCOUNT,
conv_endian => CFG_GRPCI2_ENDIAN,
deviceirq => CFG_GRPCI2_DEVINT,
deviceirqmask => CFG_GRPCI2_DEVINTMSK,
hostirq => CFG_GRPCI2_HOSTINT,
hostirqmask => CFG_GRPCI2_HOSTINTMSK,
nsync => 2,
hostrst => 2,
bypass => CFG_GRPCI2_BYPASS)

port map (
rstn,
clkm,
pciclk,
gnd(3 downto 0),
pcii,
pcio,
apbi,
apbo(4),
ahbsi,
ahbso(4),
ahbmi,
ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG),
ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+1);

pcipads0 : pcipads generic map (padtech => padtech, host => 1, oepol => OEPOL,
                                    noreset => 0, drivereset => 1)  -- PCI pads
    port map ( pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
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      pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
      pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio );
;
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79 PCIDMA - DMA Controller for the GRPCI interface

79.1 Introduction

The DMA controller is an add-on interface to the GRPCI interface. This controller perform bursts to
or from PCI bus using the master interface of GR PCI Master/target unit.

Figure 1 below illustrates how the DMA controller is attached between the AHB bus and the PCI mas-
ter interface.

79.2 Operation

The DMA controller is set up by defining the location of memory areas between which the DMA will
take place in both PCI and AHB address space as well as direction, length and type of the transfer.
Only 32-bit word transfer are supported.

The DMA transfer is automatically aborted when any kind of error is detected during a transfer. The
DMA controller does not detect deadlocks in its communication channels. If the system concludes
that a deadlock has occurred, it can manually abort the DMA transfer. It is allowed to perform burst
over a 1 Kbyte boundary of the AHB bus. When this happens, an AHB idle cycle will be automati-
cally inserted to break up the burst over the boundary. The core can be configured to generate a inter-
rupt when the transfer is completed.

When the DMA is not active the AHB slave interface of PCI Master/Target unit will be directly con-
nected to AMBA AHB bus.

Figure 258. DMA Controller unit
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79.3 Registers

The core is programmed through registers mapped into APB address space.

[31:8]: Reserved.
[7:4]: Transfer Type (TTYPE) - Perform either PCI Memory or I/O cycles. “1000” - memory cycles, “0100” - I/O cycles.

This value drives directly HMBSEL signals on PCI Master/Targets units AHB Slave interface.
[3]: Error (ERR) - Last transfer was abnormally terminated. If set by the DMA Controller this bit will remain zero until

cleared by writing ‘1’ to it.
[2]: Ready (RDY) - Current transfer is completed. When set by the DMA Controller this bit will remain zero until

cleared by writing ‘1’ to it.
[1]: Transfer Direction (TD) - ‘1’ - write to PCI, ‘0’ - read form PCI.
[0]: Start (ST) - Start DMA transfer. Writing ‘1’ will start the DMA transfer. All other registers have to be set up before

setting this bit. Set by the PCI Master interface when its transaction is terminated with Target-Abort. Writing ‘1’

[31:0]: AMAB Target Address (ATA) - AHB start address for the data on AMBA bus. In case of error, it indicated failing
address.

[31:0]: PCI Target Address (PTA) - PCI start address on PCI bus. This is a complete 32-bit PCI address and is not further
mapped by the PCI Master/Target unit. In case of error, it indicated failing address.

[blentgh-1:0]: DMA Transfer Length (LEN) - Number of 32-bit words to be transferred.

Table 1105.DMA Controller registers

Address offset Register

0x00 Command/status register

0x04 AMBA Target Address

0x08 PCI Target Address

0x0C Burst length

Figure 259. Status/Command register
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79.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x016. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

79.5 Configuration options

Table 1106 shows the configuration options of the core (VHDL generics).

79.6 Signal description

Table 1107 shows the interface signals of the core (VHDL ports).

79.7 Library dependencies

Table 1108 shows libraries used when instantiating the core (VHDL libraries).

Table 1106.Configuration options

Generic Function Allowed range Default

mstndx DMA Controllers AHB Master interface index 0 - NAHBMST-1 0

apbndx The AMBA APB index for the configuration/status APB
interface

0 - NAPBMAX-1 0

apbaddr APB interface base address 0 - 16#FFF# 0

apbmask APB interface address mask 0 - 16#FFF# 16#FFF#

apbirq APB interrupt line 0 to MAXIRQ-1 0

blength Number of bits in the Burst length register - 16

Table 1107.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSI0 * Input AHB slave input signals, main AHB bus -

AHBSO0 * Output AHB slave output signals, main AHB bus -

AHBSI1 * Input AHB slave input signals, connected to PCI Tar-
get/Master unit

-

AHBSO1 * Output AHB slave output signals, connected to PCI Tar-
get/Master unit

-

* see GRLIB IP Library User’s Manual

Table 1108.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Component Component declaration
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79.8 Instantiation

This example shows how the core can be instantiated

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;
use gaisler.pads.all;

signal pcii : pci_in_type;
signal pcio : pci_out_type;

dma : pcidma generic map (memtech => memtech, dmstndx => 1,
  dapbndx => 5, dapbaddr => 5, blength => blength, mstndx => 0,
  fifodepth => log2(fifodepth), device_id => CFG_PCIDID, vendor_id => CFG_PCIVID,
  slvndx => 4, apbndx => 4, apbaddr => 4, haddr => 16#E00#, ioaddr => 16#800#,
  nsync => 1)
port map (rstn, clkm, pciclk, pcii, pcio, apbo(5), ahbmo(1),
apbi, apbo(4), ahbmi, ahbmo(0), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech)
port map ( pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
      pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
      pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio );



AEROFLEX GAISLER 925 GRIP

80 PCITB_MASTER_SCRIPT - Scriptable PCI testbench master

80.1 Overview

The PCITB_MASTER_SCRIPT IP core provides a simulation model for a PCI master with system
host capabilities. The user specifies the requested PCI commands and check their result in a script file
which has an easy to use syntax.

Features:

• Support for PCI memory, i/o and configuration cycles

• Easy to use scripting syntax

• Write/read PCI data to/from files

• Flexible burst length (1-65535 words)

• User can specify byte enables for each data phase

80.2 Operation

As soon as the PCI reset is released the PCI master begins to parse the specified script file. It will dis-
play the operations performed in the simulation console.

The following commands are supported. Comments are supported in script files and such lines must
begin with ‘#’. Note that address and data must be specified in hexadecimal width 8 digits and that
length must be hexadecimal with 4 digits. Each command should be ended with a semicolon.

80.2.1 wait <cycles>;

The master waits the specified number of clock cycles.

Example:

wait 5;

80.2.2 comp <file1> <file2>;

Compare file1 to file1 and display the result.

Example:

comp test1.log test2.log;

80.2.3 stop;

End PCI master operation.

80.2.4 halt;

Halt simulation.

80.2.5 print <string>;

Prints everything between ‘print’ and ‘;’ to the simulation console.

Example:

print PCI testbench print example;

80.2.6 estop <0|1>;

Turn on (1) or off (0) stop on error. If on, the PCI test master will stop the testbench with a failure if
any error is detected.
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Example:

estop 1;

80.2.7 rcfg <addr> <data | *>;

Perform a configuration read cycle from address ‘addr’ and compare to ‘data’. If a ‘*’ is specified
instead of a data word then no checking is done.

Examples:

rcfg 10000000 12345678;

rcfg 10000000 *;

80.2.8 wcfg <addr> <data.cbe>;

Perform a configuration write cycle with the specified data to address ‘addr’. Specifying the byte
enables is optional.

Examples:

wcfg 10000000 12345678;

wcfg 10000000 12345678.C;

80.2.9 rmem <cmd> <addr> <length> <data | filename | *>;

Perform a PCI read transaction using command ‘cmd’ from address ‘addr’ and compare to the speci-
fied data. If a ‘*’ is specified then no checking is done. If a filename is specified then the read data is
stored in that file. Note that data must be specfied between braces. If byte enables are specified for a
word then only the enabled bytes will be compared.

Examples:

# Burst read 4 words and compare against specified data

rmem C 10000000 0004 {

12345678

87654321

AA55AA55

11223344

};

# Read a single word and compare using CBE=3

rmem 6 10000000 0001 {

12345678.3

};

# Read single word and ignore result

rmem 6 10000000 0001 *;

# Burst read 64 words and store in file read.log

rmem C 10000000 0040 read.log;

80.2.10 wmem <cmd> <addr> <length> <data | filename>;

Perform a PCI write transaction using command ‘cmd’ to address ‘addr’. Note that data must be
specfied between braces. If a filename is specified then the data is read from that file.
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Examples:

# Burst write 4 words

wmem 7 10000000 0004 {

12345678

87654321

AA55AA55

11223344

};

# Write a single word using CBE=3

wmem 7 10000000 0001 {

12345678.3

};

# Write burst 64 words from file write.txt (write.txt should have

# one word per line)

wmem 7 10000000 0040 write.txt;

80.2.11 Example script file

#########################
# PCI TEST SCRIPT
#########################

# Wait 10 clock cycles
wait 10;

# Read vendor/device id and compare to 0xBACCFEED (of device with idsel <= ad31)
rcfg 80000000 BACCFEED;

# Enable memory space
wcfg 80000004 00000002;

# Set BAR0 to 0x10000000
wcfg 80000010 10000000;

# Set BAR1 to 0x20000000
wcfg 80000014 20000000;

# Write single word to PAGE0 (BAR0 + 0x8000).
# BAR0 -> APB, byte twisting enabled
wmem 7 10008000 0001 {
80000001
};

# Read single word from BAR0 and compare to 0x80000000
rmem 6 10008000 0001 {
80000001
};

# Set GRPCI PAGE1 to 0x40000000 (RAM) through BAR0 (BAR0 + 0x410)
wmem 7 10000410 0001 {
00000040.0
};

# Read back PAGE1 and  compare
rmem 6 10000410 0001 {
00000040
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};

# Burst write 8 words to BAR1 (memory)
wmem 7 20000000 0008 {
11223344.3
22334411.0
33441122.0
44112233.0
12345678.0
87654321.0
a5a5a5a5.0
00001111.c
};

# Burst read 8 words and check against specified data
rmem C 20000000 0008 {
11223344.3
22334411
33441122
44112233
12345678
87654321
a5a5a5a5
00001111.c
};

# Burst write 64 words from file wf1.txt
wmem 7 20000000 0040 wf1.txt;

# Burst read 64 words and store result in rf1.txt
rmem C 20000000 0040 rf1.txt;

# Compare wf1.txt with rf1.txt
comp wf1.txt rf1.txt;

# End of Simulation
stop;

80.3 Configuration options

Table 1109 shows the configuration options of the core (VHDL generics).

80.4 Signal descriptions

Table 1110 shows the interface signals of the core (VHDL ports).

Table 1109.Configuration options

Generic Function Allowed range Default

slot PCI slot used by master. Determines which req/gnt pair to use 0-20 0

tval Output delay for signals that are driven by this unit 0-7 ns 7 ns

dbglevel Debug level. Higher value means more debug information 0-2 1

maxburst Maximum burst length supported 1-65535 1024

filename PCI command script file - pci.cmd

Table 1110.Signals descriptions

Signal name Field Type Function Active

PCIIN * Input PCI input signals -

PCIOUT * Output PCI output signals -

*1) PCI_TYPE (declared in pcitb.vhd). See PCI specification for more info on PCI signals



AEROFLEX GAISLER 929 GRIP

80.5 Library dependencies

Table 1111 shows the libraries used when instantiating the core (VHDL libraries).

Table 1111.Library dependencies

Library Package Imported unit(s) Description

GAISLER PCITB Signals, component PCI TB signals and component declaration
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81 PCITARGET - Simple 32-bit PCI target with AHB interface

81.1 Overview

This core implements PCI interface with a simple target-only interface. The interface is developed pri-
marily to support DSU communication over the PCI bus. Focus has been put on small area and robust
operation, rather than performance. The interface has no FIFOs, limiting the transfer rate to about 5
Mbyte/s. This is however fully sufficient to allow fast download and debugging using the DSU.

81.2 Registers

The core implements one PCI memory BAR.

The interface consist of one PCI memory BAR occupying (2^abits) bytes (default: 2 Mbyte) of the
PCI address space, and an AHB address register. Any access to the lower half of the address space
(def.: 0 - 0xFFFFF) will be forwarded to the internal AHB bus. The AHB address will be formed by
concatenating the AHB address field of AHB address register with the LSB bits of the PCI address.
An access to the upper half of the address space (default: 1 Mbyte on 0x100000 - 0x1FFFFF) of the
BAR will read or write the AHB address register.

81.3 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x012. For description of
vendor and device identifies see GRLIB IP Library User’s Manual.

Figure 263. Target-only PCI interface
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Figure 264. AHB address register (BAR0, 0x100000)
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81.4 Configuration options

Table 1112 shows the configuration options of the core (VHDL generics).

81.5 Signal descriptions

Table 1113 shows the interface signals of the core (VHDL ports).

The PCIO record contains an additional output enable signal vaden. It is has the same value as aden at
each index but they are all driven from separate registers. A directive is placed on this vector so that
the registers will not be removed during synthesis. This output enable vector can be used instead of
aden if output delay is an issue in the design.

81.6 Library dependencies

Table 1114 shows the libraries used when instantiating the core (VHDL libraries).

Table 1112.Configuration options

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used to access
the PCI target core

0 to NAHBMAX-1 0

abits Number of bits implemented for PCI memory BAR 0 to 31 21

device_id PCI device id 0 to 65535 0

vendor_id PCI vendor id 0 to 65535 0

nsync One or two synchronization registers between clock regions 1 - 2 1

oepol Polarity of output enable signals. 0=active low, 1=active high 0 - 1 0

Table 1113.Signals descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AHB system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual

Table 1114.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration
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82 PCITRACE - PCI Trace Buffer

82.1 Overview

The PCI Trace Buffer core consists of a circular trace buffer and a control module. When armed, the
core stores the traced PCI signals in the circular buffer until a trigger condition occurs. A trigger con-
dition will freeze the buffer, and the traced data can then be read out via an APB interface.

The depth of the trace buffer is configurable through VHDL generics.

82.2 Operation

82.2.1 Clocking

The core uses two clocks: PCI clock and the AMBA clock (system clock). The traced signals are sam-
pled with the PCI clock, while the control unit and the APB interface use the system clock. The PCI
clock and system clock does not need to be synchronized or have the same frequency.

82.2.2 Traced PCI signals

The core samples the 32-bit PCI address as well as the PCI control signals listed below. The number
given in parentheses is the bit number in thePCI Control Signals Pattern, PCI Control Signals Mask,
andTraced PCI Control Signals APB registers that represent the corresponding signal.

C/BE#(3:0), PAR(4), SERR#(5), PERR#(6), LOCK#(7), STOP#(8), GNT#(9), DEVSEL#(10),
IRDY#(11), TRDY#(12), FRAME#(13), IDSEL(14), RST#(15)

82.2.3 Triggering

The core can be programmed to trigger on any combination of the PCI input signals by setting up the
desired pattern in thePCI Address PatternandPCI Control Signals Patternregisters. Certain signals

PCI Trace Buffer core

AMBA APB

APB slave interface

Trace buffer

On-chip RAM

Read port

Write port

Trace controlTraced
PCI signals
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can be programmed to be ignored when comparing against the pattern. This is done by clearing the
corresponding bits in thePCI Address Mask andPCI Control Signals Mask registers.

The core also offers the possibility to program how many times the trigger condition need to occur as
well as how many samples the core should take after the trigger condition occurred (for the final
time). The number of times the trigger condition need to occur is programmed by writing to the
TMCNTCOMPfield in theTrigger Match Counterregister. The number of samples that should be
taken is programmed by writing to theTrigger Stop Counter register.

To start sampling, the core needs to be armed. This is done by writing to theArm/Busyregister. The
core remains armed until the trigger match counter and trigger stop counter reach zero, or until a sys-
tem reset occurs.

The index (internal trace buffer address) of the last sample can be found be reading theTADDRfield
of the Trigger Match Counterregister and subtracting one. TheTMCNT field of the same register
contains the actual value of the trigger stop counter, which equals the number of more times the trig-
ger condition need to occur.

The traced PCI signals can be read from theTraced PCI Addressregister(s) and theTraced PCI Con-
trol Signals register(s).

82.3 Registers

The core is controlled through registers mapped in APB address space. The traced signals are accessi-
ble through APB registers as well. A 64 K address space is needed to fit both the control registers and
traced signals.

Table 1115.APB address mapping

APB address offset Registers

0x0000 PCI Address Mask register

0x0004 PCI Control Signals Mask register

0x0008 PCI Address Pattern register

0x000C PCI Control Signals Pattern register

0x0010 Trigger Stop Counter register

0x0014 Trigger Arm/Busy register

0x0018 Capability register

0x001C Trigger Match Counter register

0x8000 - 0xBFFC* Traced PCI Address register(s)

0xC000 - 0xFFFC* Traced PCI Control Signals register(s)

* The number of implemented registers depend on the TDEPTH field in the Capability Register. Number of registers =

2^TDEPTH

Table 1116.PCI Address Mask register
31 0

ADMASK

0x00000000

31: 0 PCI address mask (ADMASK) - Mask to select which bits of the PCI address that are used when
comparing against the trigger pattern. If a bit is set to ‘1’ then the corresponding bit in the PCI
address must match the corresponding bit in the trigger pattern. If a bit is set to ‘0’ then the value of
that bit in the PCI address does not matter.

rw

Table 1117.PCI Control Signals Mask register
31 15 0

RESERVED SIGMASK
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N/A 0x0000

31: 16 RESERVED r

15: 0 PCI signals mask (SIGMASK) - Mask to select which signals of the PCI control signal inputs that
are used when comparing against the trigger pattern. If a bit is set to ‘1’ then the corresponding input
must match the corresponding bit in the trigger pattern. If a bit is set to ‘0’ then the value of the cor-
responding signal does not matter. Which PCI control signal input that corresponds to which bit is
explained above.

rw

Table 1118.PCI Address Pattern register
31 0

ADPATTERN

0x00000000

31: 0 PCI address pattern (ADPATTERN) - Trigger pattern for the PCI address. Used together with the
PCI address mask to compare against the PCI address input when deciding whether or not the trigger
condition for the PCI address is fulfilled.

rw

Table 1119.PCI Control Signals Pattern register
31 16 15 0

RESERVED SIGPATTERN

N/A 0x0000

31: 16 RESERVED r

15: 0 PCI control signals pattern (SIGPATTERN) - Trigger pattern for the PCI control signals. Used
together with the PCI control signals mask to compare against the PCI control signal inputs when
deciding whether or not the trigger condition is fulfilled. Which PCI control signal input that corre-
sponds to which bit is explained above.

rw

Table 1120.Trigger Stop Counter register
31 X+1 X-1 0

RESERVED TSCNT

N/A 0x0..0

31:X+1 RESERVED r

X-1:0 Trigger stop counter value (TSCNT) - Used to set the number of samples the core should take after
the trigger condition is fulfilled before sampling is stopped. Depending on the TMCNT field in the
Trigger Match Counter register, the trigger condition might need to occur several times before
TSCNT is used.

rw

X = The value of the TDEPTH field in theCapability register.

Table 1121.Trigger Arm/Busy register
31 0

ARM/BUSY

0x00000000

31: 0 Trigger arm/busy (ARM/BUSY) - When this register is written, no matter what value is written, the
trigger is armed. This register is always read either 0x00000000 or 0x00000001. All zeroes means
that the trigger is not armed and the core is not sampling the PCI inputs. 0x00000001 means that the
trigger is armed and the core is sampling the PCI inputs.

rw

Table 1122.Capability register
31 4 3 0

RESERVED TDEPTH

N/A N/A

Table 1117.PCI Control Signals Mask register
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82.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x015. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 4 RESERVED r

15: 0 Trace buffer depth (TDEPTH) - Shows the number of address bits used for the core’s internal trace

buffer. The number of possible samples = 2^TDEPTH. TDEPTH = value of VHDL genericdepth.

r

Table 1123.Trigger Match Counter register
31 X+16 X+15 16 15 8 7 0

RESERVED TADDR TMCNT TMCNTCOMP

N/A 0x0..0 0x00 0x00

31:X+16 RESERVED r

X+15:16 Trace buffer address (TADDR) - Shows current trace buffer address, which is the same as the
address where the next sample will be stored.

r

15: 8 Trigger match counter value (TMCNT) - Actual value of the trigger match counter. Shows how
many more times the trigger condition need to occur before sampling is stopped.

r

7: 0 Trigger match counter compare value (TMCNTCOMP) - Used to set the number of times the trigger
condition need to be fulfilled before the sampling is stopped. Depending on the value of the TSCNT
field in the Trigger Stop Counter Register, the sampling might not be stopped immediately after the
trigger condition is fulfilled the final time.

rw

X = The value of the TDEPTH field in theCapability register.

Table 1124.Traced PCI Address register(s)
31 0

TADDR

N/A

31: 0 .Traced PCI address (TADDR) - APB address bits TDEPTH+1:2 are used to address the trace
buffer, and the traced PCI address saved at that address in the trace buffer can be read from the cor-
responding APB register. The number of implemented registers depend on the TDEPTH field in the

Capability register. Number of registers = 2^TDEPTH

rw

Table 1125.Traced PCI Control Signals register(s)
31 16 15 0

RESERVED TSIGNALS

N/A N/A

15: 0 Traced PCI control signals (TSIGNALS) - APB address bits TDEPTH+1:2 are used to address the
trace buffer, and the traced PCI control signals saved at that address can be read from the corre-
sponding APB register. The number of implemented registers depend on the TDEPTH field in the

Capability register. Number of registers = 2^TDEPTH

r

Table 1122.Capability register
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82.5 Configuration options

Table 1126 shows the configuration options of the core (VHDL generics).

82.6 Signal descriptions

Table 1127 shows the interface signals of the core (VHDL ports).

82.7 Library dependencies

Table 1128 shows libraries used when instantiating the core (VHDL libraries).

82.8 Instantiation

This example shows how the core can be instantiated.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.pci.all;

entity pcitrace_ex is
generic (

memtech => memtech

Table 1126.Configuration options

Generic Function Allowed range Default

depth Used to set the number of samples stored in the internal

buffers. Number of samples = 2^depth
6 - 12 8

iregs Used to add registers on PCI input signals before com-
paring and sampling. 0 = No registers. 1 = Registers.

0 - 1 1

memtech Memory technology 0 - NTECH 0

pindex APB slave index 0 - NAPBSLV - 1 0

paddr ADDR field of the APB BAR. 0 - 0xFFF 0

pmask MASK field of the APB BAR. 0 - 0xF00 0xF00

Table 1127.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock -

PCICLK N/A Input PCI clock -

PCII N/A Input PCI input signals *

APBI ** Input APB slave input signals -

APBO ** Output APB slave output signals -

* See PCI specification

** See GRLIB IP Library users manual

Table 1128.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component Component declaration, PCI signals
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... -- other generics
);
port (

clk : in std_ulogic;
rstn : in std_ulogic;
pciclk : in std_ulogic;
pcii : in pci_in_type;

... -- other signals
);

end;

architecture rtl of pcitrace_ex is

-- AMBA signals
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);

begin

-- PCI Trace Buffer core
logan0 : logan

generic map (
depth => 8,
iregs => 1,
memtech => memtech,
pindex => 3,
paddr => 3,
pmask => 16#F00#

)
port map (

rst => rstn,
clk => clk,
pciclk => pciclk,
pcii => pcii,
apbi => apbi,
apbo => apbo(3)

);

-- Other cores
...

end;
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83 PHY - Ethernet PHY simulation model

83.1 Overview

The PHY is a simulation model of an IEEE 802.3 compliant Ethernet PHY. It provides a complete
MII and GMII interface with the basic, extended status and extended capability registers accessible
through the management interface (MDIO). Not all of the functionality is implemented and many of
the register bits are therefore only writable and readable but do not have any effect. Currently only the
loopback is supported.

83.2 Operation

The PHY simulation model was designed to make it possible to perform simple simulations on the
GRETH and GRETH_GBIT cores in GRLIB. It provides the complete set of basic, extended capabil-
ity and extended status registers through the MII management interface (MDIO) and a loopback mode
for data transfers. Figure 1 shows a block diagram of a typical connection.

The PHY model provides the complete GMII and MII interface as defined by the IEEE 802.3 stan-
dard. The model can be used in any of the following modes: 10 Mbit half- or full duplex, 100 Mbit
half- or full-duplex and 1000 Mbit half- or full-duplex. This support refers only to the configuration
settings available through the MDIO registers. Since the datapath implementation is loopback no col-
lisions will ever be seen on the network and operation will essentially be full-duplex all the time. In
loopback mode, rx_clk and tx_clk are identical in both frequency and phase and are driven by the
PHY when not in gigabit mode. In gigabit mode the gtx_clk input is used as the transmitter clock and
it also drives rx_clk.

When not configured to loopback mode the PHY just sits idle and ignores transmitted packet and does
not insert any activity on the receive interface. Clocks are still generated but in this case rx_clk and
tx_clk does have the same frequency but not the same phase when not in gigabit mode.

A simple auto-negotiation function is provided and the supported and advertised modes are set
through vhdl generics. The generic values will be directly reflected in the reset values and read-only
values of all corresponding MII management registers.

PHY

MAC
MAC

GMII/MII Interface

Figure 265. Block diagram of the PHY simulation model connected to a MAC.

Loopback
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83.3 Configuration options

Table 1129 shows the configuration options of the model (VHDL generics).

83.4 Signal descriptions

Table 1130 shows the interface signals of the model (VHDL ports).

Table 1129.Configuration options

Generic Function Allowed range Default

address Address of the PHY on the MII management interface 0 - 31 0

extended_regs Include extended register capability 0 - 1 1

aneg Enable auto-negotiation functionality 0 - 1 1

base100_t4 Enable support for 100Base-T4 0 - 1 0

base100_x_fd Enable support for 100Base-X full-duplex 0 - 1 1

base100_x_hd Enable support for 100Base-X half-duplex 0 - 1 1

fd_10 Enable support for 10Base-T full-duplex 0 - 1 1

hd_10 Enable support for 10Base-T half-duplex 0 - 1 1

base100_t2_fd Enable support for 100Base-T2 full-duplex 0 - 1 1

base100_t2_hd Enable support for 100Base-T2 half-duplex 0 - 1 1

base1000_x_fd Enable support for 1000Base-X full-duplex 0 - 1 0

base1000_x_hd Enable support for 1000Base-X half-duplex 0 - 1 0

base1000_t_fd Enable support for 1000Base-T full-duplex 0 - 1 1

base1000_t_hd Enable support for 1000Base-T half-duplex 0 - 1 1

rmii Set PHY in RMII mode 0 - 1 0

Table 1130.Signal descriptions

Signal name Field Type Function Active

RSTN - Input Reset Low

MDIO - Input/
Output

Data signal for the management interface (Cur-
rently not used)

-

TX_CLK - Output Transmitter clock -

RX_CLK - Output Receiver clock -

RXD - Output Receiver data -

RX_DV - Output Receiver data valid High

RX_ER - Output Receiver error High

RX_COL - Output Collision High

RX_CRS - Output Carrier sense High

TXD - Input Transmitter data -

TX_EN - Input Transmitter enable High

TX_ER - Input Transmitter error High

MDC - Input Management interface clock (Currently not
used)

-

GTX_CLK - Input Gigabit transmitter clock -

see the IEEE 802.3 standard for a description of how the signals are used.
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83.5 Library dependencies

Table 1131 shows the libraries used when instantiating the model (VHDL libraries).

83.6 Instantiation

This example shows how the model can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.sim.all;

entity phy_ex is
  port (
rst : std_ulogic;
clk : std_ulogic;
    );
end;

architecture rtl of phy_ex is

  -- Signals

 signal etx_clk : std_logic;
 signal gtx_clk : std_logic;

signal erx_clk : std_logic;
signal erxd : std_logic_vector(7 downto 0);
signal erx_dv : std_logic;
signal erx_er : std_logic;
signal erx_col : std_logic;
signal erx_crs : std_logic;
signal etxd : std_logic_vector(7 downto 0);
signal etx_en : std_logic;
signal etx_er : std_logic;
signal emdc : std_logic;

begin

  -- Other components are instantiated here
  ...

  -- PHY model
phy0 : phy

  generic map (address => 1)
port map(resetn => rst, mdio => open, tx_clk => etx_clk, rx_clk => erx_clk, rxd => erxd,
rx_dv => erx_dv, rx_er => erx_er,
rx_col => erx_col, rx_crs => erx_crs, txd => etxd, tx_en => etx_en,
tx_er => etx_er, mdc => emdc, gtx_clk => gtx_clk);

end;

Table 1131.Library dependencies

Library Package Imported unit(s) Description

GAISLER SIM Component Component declaration
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84 REGFILE_3P 3-port RAM generator (2 read, 1 write)

84.1 Overview

The 3-port register file has two read ports and one write port. Each port has a separate address and
data bus. All inputs are latched on the rising edge of clk. The read data appears on dataout directly
after the clk rising edge. Note: on most technologies, the register file is implemented with two 2-port
RAMs with combined write ports. Address width, data width and target technology is parametrizable
through generics.

Write-through is supported if the functionsyncram_2p_write_through(tech)returns 1 for the target
technology.

84.2 Configuration options

Table 1132 shows the configuration options of the core (VHDL generics).

Table 1133 shows the supported technologies for the core.

Table 1132.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table 1133 -

dbits Data width see table 1133l -

wrfst Write-first (write-through). Only applicable to inferred technol-
ogy

0 - 1 0

numregs Not used

Table 1133.Supported technologies

Tech name Technology RAM cell abit range dbit range

axcel / axdsp Actel AX/RTAX & RTAX-DSP RAM64K36 2 - 12 unlimited

altera All Altera devices altsyncram unlimited unlimited

ihp25 IHP 0.25 flip-flops unlimited unlimited

inferred Behavioural description synthesis tool dependent

rhumc Rad-hard UMC 0.18  flip-flops unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0

hdss2_128x32cm4sw0

hdss2_256x32cm4sw0

hdss2_512x32cm4sw0

6 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited
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84.3 Signal descriptions

Table 1134 shows the interface signals of the core (VHDL ports).

84.4 Library dependencies

Table 1135 shows libraries used when instantiating the core (VHDL libraries).

84.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component regfile_3p
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8;
           wrfst : integer := 0; numregs : integer := 64);
  port (
    wclk   : in  std_ulogic;
    waddr  : in  std_logic_vector((abits -1) downto 0);
    wdata  : in  std_logic_vector((dbits -1) downto 0);
    we     : in  std_ulogic;
    rclk   : in  std_ulogic;
    raddr1 : in  std_logic_vector((abits -1) downto 0);
    re1    : in  std_ulogic;
    rdata1 : out std_logic_vector((dbits -1) downto 0);
    raddr2 : in  std_logic_vector((abits -1) downto 0);
    re2    : in  std_ulogic;
    rdata2 : out std_logic_vector((dbits -1) downto 0)
  );
  end component;

Table 1134.Signal descriptions

Signal name Field Type Function Active

WCLK N/A Input Write port clock

WADDR N/A Input Write address

WDATA N/A Input Write data

WE N/A Input Write enable High

RCLK N/A Input Read ports clock -

RADDR1 N/A Input Read port1 address -

RE1 N/A Input Read port1 enable High

RDATA1 N/A Output Read port1 data -

RADDR2 N/A Input Read port2 address -

RE2 N/A Input Read port2 enable High

RDATA2 N/A Output Read port2 data -

Table 1135.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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85 RSTGEN - Reset generation

85.1 Overview

The RSTGEN reset generator implements input reset signal synchronization with glitch filtering and
generates the internal reset signal. The input reset signal can be asynchronous.

85.2 Operation

The reset generator latches the value of the clock lock signal on each rising edge of the clock. The
lock signal serves as input to a five-bit shift register. The three most significant bits of this shift regis-
ter are clocked into the reset output register. The reset signal to the system is high when both the reset
output register and the reset input signal are high. Since the output register depends on the system
clock the active low reset output from the core will go high synchronously to the system clock. The
raw reset output does not depend on the system clock or clock lock signal and is polarity adjusted to
be active low.

The VHDL genericsyncrstdetermines how the core resets its shift register and the reset output regis-
ter. Whensyncrstis set to 1 the core’s shift register will have an synchronous reset and no reset signal
will be connected to the output reset register, see figure 266. Note that the core’s reset output signal
will always go low when the input reset signal is activated.

Whensyncrstis 0 the shift register will be reset asynchronously together with the reset output register.
Figure 267 shows the reset generator when scan test support is disabled. The shift register reset will be
connected to the core’s normal reset input and the test reset input will be unused. When scan test sup-
port is enabled, the core’s test reset input can be connected to the reset input on both registers. The
reset signal to use for the registers is selected with the test enable input, see figure 268.

Figure 266. Reset generator with VHDL generic syncrst set to 1
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Figure 267. Reset generator with VHDL generic syncrst set to 0 and scan test disabled
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Figure 268. Reset generator with VHDL generic syncrst set to 0 and scan test enabled
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85.3 Configuration options

Table 1136 shows the configuration options of the core (VHDL generics).

85.4 Signal descriptions

Table 1137 shows the interface signals of the core (VHDL ports).

85.5 Library dependencies

Table 1138 shows the libraries used when instantiating the core (VHDL libraries).

85.6 Instantiation

This example shows how the core can be instantiated together with the GRLIB clock generator.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity rstgen_ex is
  port (
    resetn  : in  std_ulogic;
    clk : in  std_ulogic; -- 50 MHz main clock
    pllref  : in  std_ulogic;

Table 1136.Configuration options

Generic name Function Allowed range Default

acthigh Set to 1 if reset input is active high. The core outputs an
active low reset.

0

syncrst When this generic is set to 1 the reset signal will use a
synchronous reset to reset the filter registers. When this
generic is set to 1 the TESTRST and TESTEN inputs
will not be used.

0

scanen Setting this generic to 1 enables scan test support. This
connects the TESTRST input via a multiplexer so that
the TESTRST and TESTEN signals can be used to asyn-
chronously reset the core’s registers. This also requires
that the generic syncrst is set to 1.

0

Table 1137.Signal descriptions

Signal name Field Type Function Active

RSTIN N/A Input Reset -

CLK N/A Input Clock -

CLKLOCK N/A Input Clock lock High

RSTOUT N/A Output Filtered reset Low

RSTOUTRAW N/A Output Raw reset Low

TESTRST N/A Input Test reset -

TESTEN N/A Input Test enable High

Table 1138.Library dependencies

Library Package Imported unit(s) Description

GAISLER MISC Component Component definition
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 testrst : in std_ulogic;
 testen : in std_ulogic

 );
end;

architecture example of rstgen_ex is

signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std_ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

begin
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;
  pllref_pad : clkpad generic map (tech => padtech) port map (pllref, cgi.pllref);

 clk_pad : clkpad generic map (tech => padtech) port map (clk, lclk);
 clkgen0 : clkgen -- clock generator

    generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,
 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)

    port map (lclk, lclk, clkm, open, open, sdclkl, open, cgi, cgo, open, clk50);
  sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24)

port map (sdclk, sdclkl);

  resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst);

 rst0 : rstgen -- reset generator
generic map (acthigh => 0, syncrst => 0, scanen => 1)

 port map (rst, clkm, cgo.clklock, rstn, rstraw, testrst, testen);
end;
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86 GR(2^4)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decoder

86.1 Overview

The gf4_e1 VHDL package provides functions for encoding and decoding a Bose Chaudhuri Hoc-
quenghem (BCH) type of code. It is a Quad Error Correction/Quad Error Detection (QEC/QED) code.

The data symbols are 4-bit wide, represented as GF(2^4). The has the capability to detect and correct
a single symbol error anywhere in the codeword. The data is represented as 60 bits and the checksum
is represented as 8 bits, and the code can correct up to four bit errors when located in the same nibble.

86.2 Code

The code has the following definition:

• there are 4 bits per symbol;

• there are 17 symbols per codeword, of which 2 symbols represent the checksum;

• the code is systematic;

• the code can correct one symbol error per codeword;

• the field polynomial is

• all multiplications are performed as Galois Field multiplications over the above field polynomial

• all additions/subtractions are performed as Galois Field additions (i.e. bitwise exclusive-or)

86.3 Encoding

• a codeword is defined as 17 symbols:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14,c15,c16]

where c0 to c14 represent information symbols and c15 to c16 represent check symbols.

• c15 is calculated as follows

• c16 is calculated as follows

• where the constant vector k is defined as:

k0=0xF, k1=0xE, ..., k14=0x1 (one can assume k15=0x1 and k16=0x1 for correction purposes)

86.4 Decoding

• the corrupt codeword is defined as 17 symbols:

[r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14,r15,r16]

• the corrupt codeword can also be defined as 17 uncorrupt symbols and an error:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14,c15,c16] + [ex]

where the error is defined as ex, e being the unknown magnitude and
x being the unknown index position in the codeword

f x( ) x
4

x 1+ +=

c15 ki ci×( )
0

14

∑=

c16 ci
0

14
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• recalculated checksum rc0 is calculated as follows (ki is as defined above, x being the unknown
index)

• recalculated rc1 is calculated as follows

• syndrome s0 is calculated as follows

• syndrome s1 is calculated as follows, which gives the magnitude (not applicable to c15 and c16)

• in case s0 and s1 are both non-zero, to located the error in range c0 to c14, multiply error magni-
tude ex with each element of the constant vector defined above:

• search the resulting vector to find the element matching syndrome s0, the resulting index i points
to the error location (applicable only to i in [0, 14])

• finally perform the correction (applicable only to i in [0, 14])

• when s0 is zero and s1 is non-zero, the error is located in checksum r15, no correction is necessary

• when s1 is zero and s0 is non-zero, the error is located in checksum r16, no correction is necessary

• when s0 and s1 are both zero, no error has been detected, no correction is necessary

86.5 Capability

The decoder has the following capabilities. It detects and corrects up to four bit errors in the same nib-
ble. The described errors can be located anywhere in the codeword.

86.6 Operation

86.6.1 Encoder

The encoder is defined by the gf4_60_8_encode function. The function is called with the 60-bit wide
data that should be encoded, and returns a 68-bit wide codeword of which bits 67 downto 8 represent
the data and bits 7 downto 0 represent the checksum.

86.6.2 Decoder

The decoder is defined by the gf4_60_8_decode function.
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The gf4_60_8_decode function calculates the syndromes, calculates the error magnitude and the error
location, and returns a bit indicating whether an error has been detected and corrected, and the cor-
rected data.

The function is called with a 68-bit wide codeword of which bits 67 downto 8 represent the data and
bits 7 downto 0 represent the checksum. It returns the record type gf4_60_8_type, containing the 60-
bit wide corrected data and an indication if an error was detected and corrected over the complete
codeword.

86.7 Type descriptions

Table 1139 shows the type declarations used by the functions in the package (VHDL types).

86.8 Library dependencies

Table 1140 shows the libraries used when instantiating the functions in the package (VHDL libraries).

86.9 Instantiation

This example shows how the functions in the package can be instantiated. Note that all input and out-
puts are synchronized to remove any timing constraints for pads in an example design. Timing analy-
sis can then be made purely for the register-to-register paths.

library  IEEE;
use      IEEE.Std_Logic_1164.all;

entity gf4_60_8_encode_sync is
   port(
      clk:        in       std_ulogic;
      data:       in       std_logic_vector(59 downto 0);
      codeword:   out      std_logic_vector(67 downto 0));
end entity gf4_60_8_encode_sync;

library  grlib;
use      grlib.gf4_e1.all;

architecture rtl of gf4_60_8_encode_sync is
   signal   int_data:      std_logic_vector(59 downto 0);
   signal   int_codeword:  std_logic_vector(67 downto 0);
begin
   process(clk)
   begin
      if rising_edge(clk) then
          codeword      <= int_codeword;
          int_codeword  <= gf4_60_8_encode(int_data);
          int_data      <= data;
      end if;
   end process;
end architecture;

Table 1139.Type declarations

Name Field Type Function Active

gf4_60_8_type cerr Std_Logic error corrected

data Std_Logic_Vector(59 downto 0) data

Table 1140.Library dependencies

Library Package Imported unit(s) Description

GRLIB StdLib All Common VHDL functions
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library  IEEE;
use      IEEE.Std_Logic_1164.all;

entity gf4_60_8_decode_sync is
   port(
         clk:        in    std_ulogic;
         codeword:   in    std_logic_vector(67 downto 0);
         cerr:       out   std_ulogic;
         data:       out   std_logic_vector(59 downto 0));
end entity gf4_60_8_decode_sync;

library  grlib;
use      grlib.gf4_e1.all;

architecture rtl of gf4_60_8_decode_sync is
   signal   int_codeword:  std_logic_vector(67 downto 0);
   signal   int_result:    gf4_60_8_type;
begin
   process(clk)
   begin
      if rising_edge(clk) then
         cerr           <= int_result.cerr;
         data           <= int_result.data;
         int_result     <= gf4_60_8_decode(int_codeword);
         int_codeword   <= codeword;
      end if;
   end process;
end architecture;
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87 RS(24, 16, 8, E=1) - Reed-Solomon encoder/decoder

87.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-
Solomon code. It also provides a data type storing intermediate results from the functions.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and correct a
single symbol error anywhere in the codeword. The data is represented as 16 bits and the checksum is
represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.

87.2 Capability

The Reed-Solomon decoder has the following capabilities. The described errors can be located any-
where in the codeword.

It detects and corrects any single bit error.

It detects 63% of all double bit errors and reports them as multiple bit errors.

It detects 27% of all double bit errors and reports them (incorrectly) as single bit errors.

It detects 63,5% of all triple bit errors and reports them as multiple bit errors.

It detects 36% of all triple bit errors and reports them (incorrectly) as single bit errors.

It does not detect 0,5% of all triple bit errors and reports them (incorrectly) as without errors.

It detects 63,5% of all quadruple bit errors and reports them as multiple bit errors.

It detects 36% of all quadruple bit errors and reports them (incorrectly) as single bit errors.

It does not detect 0,5% of all quadruple bit errors and reports them (incorrectly) as without error.

It detects and corrects up to four bit errors in the same nibble.

87.3 Operation

87.3.1 Encoder

The encoder is defined by the rs_16_8_encode function. The function is called with the 16-bit wide
data that should be encoded, and returns 24-bit wide codeword of which bits 0 to 15 represent the data
and bits 16 to 23 represent the checksum.

87.3.2 Decoder

The decoder is defined by the rs_16_8_check, rs_16_8_precorrect and rs_16_8_correct functions. The
decoder has been split in three functions to facilitate pipelining, with each function being fairly bal-
anced with respect to the depth of the resulting combinatorial logic.

The rs_16_8_check function calculates the syndrome and returns a bit indicating whether an error has
been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 24-bit wide codeword of which bits 0 to 15 represent the data and bits 16 to 23 represent
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the checksum. It returns the record type rs_16_8_type, containing the 16-bit wide data to be corrected,
the syndrome and an indication if an error was detected over the complete codeword.

The rs_16_8_precorrect function is called with the intermediate result from the rs_16_8_check func-
tion. The input is the record type rs_16_8_type. It returns the record type rs_16_8_type, containing
the 16-bit wide data to be corrected, the syndrome, intermediate data and an indication if an error was
detected over the complete codeword.

The rs_16_8_correct function is called with the intermediate result from the rs_16_8_precorrect func-
tion. The input is the record type rs_16_8_type. It returns the record type rs_16_8_type, containing
the corrected 16-bit wide data, an indication if the error was correctable or non-correctable over the
complete codeword, and the union of the two.

To pipeline the decoder, the rs_16_8_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_16_8_precorrect function should be called in the second stage.
The rs_16_8_correct function should be called in the third stage.

87.4 Type descriptions

Table 1141 shows the type declarations used by the functions in the package (VHDL types).

87.5 Library dependencies

Table 1142 shows the libraries used when instantiating the functions in the package (VHDL libraries).

87.6 Instantiation

This example shows how the functions in the package can be instantiated.

The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove
any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library  IEEE;
use      IEEE.Std_Logic_1164.all;

entity rs_gf4_16_8_codec is
   port(
      clk:        in    Std_Logic;

Table 1141.Type declarations

Name Field Type Function Active

rs_16_8_type err Std_Logic error detected High

cerr Std_Logic error corrected

merr Std_Logic errors uncorrected

data Std_Logic_Vector(0 to 15) data

s_1 Std_Logic_Vector(0 to 3) - -

s_2 Std_Logic_Vector(0 to 3) - -

elp_3_1  Std_Logic_Vector(0 to 3) - -

Table 1142.Library dependencies

Library Package Imported unit(s) Description

GRLIB StdLib All Common VHDL functions
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      din:        in    Std_Logic_Vector(0 to 15);       -- encoder input
      cout:       out   Std_Logic_Vector(0 to 23);       -- encoder output

      cin:        in    Std_Logic_Vector(0 to 23);       -- decoder input
      terr:       out   Std_Logic;                       -- intermediate error

      dout:       out   Std_Logic_Vector(0 to 15);       -- decoder output
      err:        out   Std_Logic;                       -- error detected
      cerr:       out   Std_Logic;                       -- error corrected
      merr:       out   Std_Logic);                      -- errors uncorrected
end entity;

library  grlib;
use      grlib.rs_gf4_e1.all;

architecture rtl of rs_gf4_16_8_codec is
   signal   s_din:      Std_Logic_Vector(0 to 15);
   signal   s_cout:     Std_Logic_Vector(0 to 23);

   signal   s_cin:      Std_Logic_Vector(0 to 23);
   signal   s_dout:     Std_Logic_Vector(0 to 15);
   signal   s_err:      Std_Logic;
   signal   s_cerr:     Std_Logic;
   signal   s_merr:     Std_Logic;

   signal   check:      rs_16_8_type;                    -- intermediate
   signal   precorr:    rs_16_8_type;
   signal   corr:       rs_16_8_type;
begin
   SyncronizeInput: process(clk)
   begin
      if Rising_Edge(clk) then
         s_din       <= din;
         s_cin       <= cin;
      end if;
   end process;

   SyncronizeOutput: process(clk)
   begin
      if Rising_Edge(clk) then
         cout        <= s_cout;
         err         <= corr.err;
         cerr        <= corr.cerr;
         merr        <= corr.merr;
         dout        <= corr.data;
         terr        <= check.err;
      end if;
   end process;

   encoder: process(clk)
   begin
      if Rising_Edge(clk) then
         s_cout      <= rs_16_8_encode(s_din);
      end if;
   end process;

   decoder: process(clk)
   begin
      if Rising_Edge(clk) then
         corr        <= rs_16_8_correct(precorr);        -- third phase
         precorr     <= rs_16_8_precorrect(check);       -- second phase
         check       <= rs_16_8_check(s_cin);            -- first phase
      end if;
   end process;
end architecture rtl;
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88 RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleaved

88.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-
Solomon code. It also provides a data type storing intermediate results from the functions.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and correct a
single symbol error anywhere in the codeword. The data is represented as 16 bits and the checksum is
represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.

The gf4_32_16 functions provide an interleaved RS(6, 4, 2) where the data is represented as 32 bits
and the checksum is represented as 16 bits, and the code can correct two 4-bit errors when each error
is located in a nibble and not in the same original RS(6, 4, 2) codeword. The codewords are inter-
leaved nibble-wise.

88.2 Capability

The Reed-Solomon decoder has the same capabilities as the original RS(6, 4, 2) code, but distributed
per original RS(6, 4, 2) codeword.

88.3 Operation

88.3.1 Encoder

The encoder is defined by the rs_32_16_encode function. The function is called with the 32-bit wide
data that should be encoded, and returns 48-bit wide codeword of which bits 0 to 31 represent the data
and bits 32 to 47 represent the checksum.

88.3.2 Decoder

The decoder is defined by the rs_32_16_check, rs_32_16_precorrect and rs_32_16_correct functions.
The decoder has been split in three functions to facilitate pipelining, with each function being fairly
balanced with respect to the depth of the resulting combinatorial logic.

The rs_32_16_check function calculates the syndrome and returns a bit indicating whether an error
has been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 48-bit wide codeword of which bits 0 to 31 represent the data and bits 32 to 47 represent
the checksum. It returns the record type rs_32_16_type, containing the 32-bit wide data to be cor-
rected, the syndrome and an indication if an error was detected over the two complete codewords.

The rs_32_16_precorrect function is called with the intermediate result from the rs_32_16_check
function. The input is the record type rs_32_16_type. It returns the record type rs_32_16_type, con-
taining the 32-bit wide data to be corrected, the syndrome, intermediate data and an indication if an
error was detected over the two complete codewords.

The rs_32_16_correct function is called with the intermediate result from the rs_32_16_precorrect
function. The input is the record type rs_32_16_type. It returns the record type rs_32_16_type, con-
taining the corrected 32-bit wide data, an indication if the error was correctable or non-correctable
over the complete two codewords, and the union of the two.

To pipeline the decoder, the rs_32_16_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_32_16_precorrect function should be called in the second
stage. The rs_32_16_correct function should be called in the third stage.
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88.4 Type descriptions

Table 1143 shows the type declarations used by the functions in the package (VHDL types).

88.5 Library dependencies

Table 1144 shows the libraries used when instantiating the functions in the package (VHDL libraries).

Table 1143.Type declarations

Name Field Type Function Active

rs_32_16_type err Std_Logic error detected High

cerr Std_Logic error corrected

merr Std_Logic errors uncorrected

data Std_Logic_Vector(0 to 31) data

e_0 Std_Logic - -

s_1_0 Std_Logic_Vector(0 to 3) - -

s_2_0 Std_Logic_Vector(0 to 3) - -

elp_3_1_0  Std_Logic_Vector(0 to 3) - -

e_1 Std_Logic - -

s_1_1 Std_Logic_Vector(0 to 3) - -

s_2_1 Std_Logic_Vector(0 to 3) - -

elp_3_1_1  Std_Logic_Vector(0 to 3) - -

Table 1144.Library dependencies

Library Package Imported unit(s) Description

GRLIB StdLib All Common VHDL functions
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89 RS(40, 32, 8, E=1) - Reed-Solomon encoder/decoder

89.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-
Solomon code. It also provides a data type storing intermediate results from the functions.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(10, 8, 2). It has the capability to detect and correct
a single symbol error anywhere in the codeword. The data is represented as 32 bits and the checksum
is represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.

89.2 Operation

89.2.1 Encoder

The encoder is defined by the rs_32_8_encode function. The function is called with the 32-bit wide
data that should be encoded, and returns 40-bit wide codeword of which bits 0 to 31 represent the data
and bits 32 to 39 represent the checksum.

89.2.2 Decoder

The decoder is defined by the rs_32_8_check, rs_32_8_precorrect and rs_32_8_correct functions. The
decoder has been split in three functions to facilitate pipelining, with each function being fairly bal-
anced with respect to the depth of the resulting combinatorial logic.

The rs_32_8_check function calculates the syndrome and returns a bit indicating whether an error has
been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 24-bit wide codeword of which bits 0 to 31 representsthe data and bits 32 to 39 represent
the checksum. It returns the record type rs_32_8_type, containing the 32-bit wide data to be corrected,
the syndrome and an indication if an error was detected over the complete codeword.

The rs_32_8_precorrect function is called with the intermediate result from the rs_32_8_check func-
tion. The input is the record type rs_32_8_type. It returns the record type rs_32_8_type, containing
the 32-bit wide data to be corrected, the syndrome, intermediate data and an indication if an error was
detected over the complete codeword.

The rs_32_8_correct function is called with the intermediate result from the rs_32_8_precorrect func-
tion. The input is the record type rs_32_8_type. It returns the record type rs_32_8_type, containing
the corrected 32-bit wide data, an indication if the error was correctable or non-correctable over the
complete codeword, and the union of the two.

To pipeline the decoder, the rs_32_8_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_32_8_precorrect function should be called in the second stage.
The rs_32_8_correct function should be called in the third stage.
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89.3 Type descriptions

Table 1145 shows the type declarations used by the functions in the package (VHDL types).

89.4 Library dependencies

Table 1146 shows the libraries used when instantiating the functions in the package (VHDL libraries).

89.5 Instantiation

This example shows how the functions in the package can be instantiated.

The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove
any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library  IEEE;
use      IEEE.Std_Logic_1164.all;

entity rs_gf4_32_8_codec is
   port(
      clk:        in    Std_Logic;

      din:        in    Std_Logic_Vector(0 to 31);       -- encoder input
      cout:       out   Std_Logic_Vector(0 to 39);       -- encoder output

      cin:        in    Std_Logic_Vector(0 to 39);       -- decoder input
      terr:       out   Std_Logic;                       -- intermediate error

      dout:       out   Std_Logic_Vector(0 to 31);       -- decoder output
      err:        out   Std_Logic;                       -- error detected
      cerr:       out   Std_Logic;                       -- error corrected
      merr:       out   Std_Logic);                      -- errors uncorrected
end entity;

library  grlib;
use      grlib.rs_gf4_e1.all;

architecture rtl of rs_gf4_32_8_codec is
   signal   s_din:      Std_Logic_Vector(0 to 31);
   signal   s_cout:     Std_Logic_Vector(0 to 39);

   signal   s_cin:      Std_Logic_Vector(0 to 39);
   signal   s_dout:     Std_Logic_Vector(0 to 31);

Table 1145.Type declarations

Name Field Type Function Active

rs_32_8_type err Std_Logic error detected High

cerr Std_Logic error corrected

merr Std_Logic errors uncorrected

data Std_Logic_Vector(0 to 31) data

s_1 Std_Logic_Vector(0 to 3) - -

s_2 Std_Logic_Vector(0 to 3) - -

elp_3_1  Std_Logic_Vector(0 to 3) - -

Table 1146.Library dependencies

Library Package Imported unit(s) Description

GRLIB StdLib All Common VHDL functions
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   signal   s_err:      Std_Logic;
   signal   s_cerr:     Std_Logic;
   signal   s_merr:     Std_Logic;

   signal   check:      rs_32_8_type;                    -- intermediate
   signal   precorr:    rs_32_8_type;
   signal   corr:       rs_32_8_type;
begin
   SyncronizeInput: process(clk)
   begin
      if Rising_Edge(clk) then
         s_din       <= din;
         s_cin       <= cin;
      end if;
   end process;

   SyncronizeOutput: process(clk)
   begin
      if Rising_Edge(clk) then
         cout        <= s_cout;
         err         <= corr.err;
         cerr        <= corr.cerr;
         merr        <= corr.merr;
         dout        <= corr.data;
         terr        <= check.err;
      end if;
   end process;

   encoder: process(clk)
   begin
      if Rising_Edge(clk) then
         s_cout      <= rs_32_8_encode(s_din);
      end if;
   end process;

   decoder: process(clk)
   begin
      if Rising_Edge(clk) then
         corr        <= rs_32_8_correct(precorr);        -- third phase
         precorr     <= rs_32_8_precorrect(check);       -- second phase
         check       <= rs_32_8_check(s_cin);            -- first phase
      end if;
   end process;
end architecture rtl;
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90 RS(48, 32, 16, E=2) - Reed-Solomon encoder/decoder

90.1 Overview

The rs_gf4_e2 VHDL package provides functions for encoding and decoding data with a Reed-
Solomon code. It also provides a data type storing intermediate results from the functions.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 11, 4) code, represented as RS(12, 8, 4). It has the capability to detect and correct
two symbol errors anywhere in the codeword. The data is represented as 32 bits and the checksum is
represented as 16 bits, and the code can correct up to two 4-bit errors when located within nibble
boundaries.

90.2 Operation

90.2.1 Encoder

The encoder is defined by the rs_32_16_2_encode function. The function is called with the 32-bit
wide data that should be encoded, and returns 48-bit wide codeword of which bits 0 to 31 represent
the data and bits 32 to 47 represent the checksum.

90.2.2 Decoder

The decoder is defined by the rs_32_16_2_check, rs_32_16_2_precorrect and rs_32_16_2_correct
functions. The decoder has been split in three functions to facilitate pipelining, with each function
being fairly balanced with respect to the depth of the resulting combinatorial logic.

The rs_32_16_2_check function calculates the syndrome and returns a bit indicating whether an error
has been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 48-bit wide codeword of which bits 0 to 31 represent the data and bits 32 to 47 represent
the checksum. It returns the record type rs_32_16_2_type, containing the 32-bit wide data to be cor-
rected, the syndrome and an indication if an error was detected.

The rs_32_16_2_precorrect function is called with the intermediate result from the
rs_32_16_2_check function. The input is the record type rs_32_16_2_type. It returns the record type
rs_32_16_2_type, containing the 32-bit wide data to be corrected, the syndrome, intermediate data
and an indication if an error was detected.

The rs_32_16_2_correct function is called with the intermediate result from the
rs_32_16_2_precorrect function. The input is the record type rs_32_16_2_type. It returns the record
type rs_32_16_2_type, containing the corrected 32-bit wide data, an indication if the error was cor-
rectable or non-correctable, and the union of the two.

To pipeline the decoder, the rs_32_16_2_check function should be called in the first stage and the
intermediated result should be stored. Note that the intermediate result contains the input data
required for the correction in the next stage. The rs_32_16_2_precorrect function should be called in
the second stage. The rs_32_16_2_correct function should be called in the third stage.
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90.3 Type descriptions

Table 1147 shows the type declarations used by the functions in the package (VHDL types).

90.4 Library dependencies

Table 1148 shows the libraries used when instantiating the functions in the package (VHDL libraries).

90.5 Instantiation

This example shows how the functions in the package can be instantiated.

The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove
any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library  IEEE;
use      IEEE.Std_Logic_1164.all;

entity rs_gf4_32_16_2_codec is
   port(
      clk:        in    Std_Logic;

      din:        in    Std_Logic_Vector(0 to 31);       -- encoder input
      cout:       out   Std_Logic_Vector(0 to 47);       -- encoder output

      cin:        in    Std_Logic_Vector(0 to 47);       -- decoder input
      terr:       out   Std_Logic;                       -- intermediate error

      dout:       out   Std_Logic_Vector(0 to 31);       -- decoder output
      err:        out   Std_Logic;                       -- error detected
      cerr:       out   Std_Logic;                       -- error corrected
      merr:       out   Std_Logic);                      -- errors uncorrected
end entity;

library  grlib;
use      grlib.rs_gf4_e2.all;

Table 1147.Type declarations

Name Field Type Function Active

rs_32_16_2_type err Std_Logic errors detected High

cerr Std_Logic errors corrected High

merr Std_Logic errors uncorrected High

data Std_Logic_Vector(0 to 31) data

l_u Std_Logic_Vector(0 to 1)

s_1 Std_Logic_Vector(0 to 3)

s_2 Std_Logic_Vector(0 to 3)

s_3 Std_Logic_Vector(0 to 3)

s_4 Std_Logic_Vector(0 to 3)

elp_5_1 Std_Logic_Vector(0 to 3)

elp_5_2  Std_Logic_Vector(0 to 3)

Table 1148.Library dependencies

Library Package Imported unit(s) Description

GRLIB StdLib All Common VHDL functions
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architecture rtl of rs_gf4_32_16_2_codec is
   signal   s_din:      Std_Logic_Vector(0 to 31);
   signal   s_cout:     Std_Logic_Vector(0 to 47);
   signal   s_cin:      Std_Logic_Vector(0 to 47);
   signal   s_dout:     Std_Logic_Vector(0 to 31);
   signal   s_err:      Std_Logic;
   signal   s_cerr:     Std_Logic;
   signal   s_merr:     Std_Logic;
   signal   check:      rs_32_16_2_type;                 -- intermediate
   signal   precorr:    rs_32_16_2_type;
   signal   corr:       rs_32_16_2_type;
begin
   SyncronizeInput: process(clk)
   begin
      if Rising_Edge(clk) then
         s_din       <= din;
         s_cin       <= cin;
      end if;
   end process;

   SyncronizeOutput: process(clk)
   begin
      if Rising_Edge(clk) then
         cout        <= s_cout;
         err         <= corr.err;
         cerr        <= corr.cerr;
         merr        <= corr.merr;
         dout        <= corr.data;
         terr        <= check.err;
      end if;
   end process;

   encoder: process(clk)
   begin
      if Rising_Edge(clk) then
         s_cout      <= rs_32_16_2_encode(s_din);
      end if;
   end process;

   decoder: process(clk)
   begin
      if Rising_Edge(clk) then
         corr        <= rs_32_16_2_correct(precorr);     -- third phase
         precorr     <= rs_32_16_2_precorrect(check);    -- second phase
         check       <= rs_32_16_2_check(s_cin);         -- first phase
      end if;
   end process;
end architecture rtl;



AEROFLEX GAISLER 964 GRIP

91 SDCTRL - 32/64-bit PC133 SDRAM Controller

91.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to a 32 or 64
bit wide data bus. The controller acts as a slave on the AHB bus where it occupies a configurable
amount of address space for SDRAM access. The SDRAM controller function is programmed by
writing to a configuration register mapped into AHB I/O address space.

Chip-select decoding is provided for two SDRAM banks.

91.2 Operation

91.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64M, 256M and 512M devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG (see section 91.3). The SDRAM bank’s data bus width is
configurable between 32 and 64 bits. When the VHDL genericmobileis set to a value not equal to 0,
the controller supports mobile SDRAM.

91.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled the initialization sequence is appended with a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
accesses and single location access on write accesses. If thepwronVHDL generic is 1, the initializa-
tion sequence is also sent automatically when reset is released. Note that some SDRAM devices
require a stable clock of 100 us before any commands might be sent. When using on-chip PLL, this
might not always be the case and thepwron VHDL generic should be set to 0 in such cases.

Figure 269. SDRAM Memory controller connected to AMBA bus and SDRAM
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91.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these fields affect the SDRAM timing as described in table 1149.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled, the
remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

91.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

91.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the

Table 1149.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 1150.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

Table 1151.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Self Refresh mode to first valid command (tXSR) tXSR
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PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile SDRAM
functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving
configuration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-Sav-
ing configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available when
the VHDL genericmobile is >= 1.

91.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deactivated.
All data in the SDRAM is retained during this operation. To enable the power-down mode, set the
PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller will
enter power-down mode after every memory access (when the controller has been idle for 16 clock
cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the control-
ler in this mode. When exiting this mode a delay of one clock cycles are added before issue any com-
mand to the memory. This mode is only available when the VHDL genericmobile is >= 1.

91.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available when the VHDL genericmobileis >= 1 and mobile SDRAM func-
tionality is enabled.

91.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory ignore the TCSR bits. This
functionality is only available when the VHDL genericmobileis >= 1 and mobile SDRAM function-
ality is enabled.

91.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL genericmobileis >= 1 and mobile SDRAM function-
ality is enabled.

91.2.10 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in the
SDRAM Configuration register: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR)
and LOAD-EXTMODE-REG (EMR). If the LMR command is issued, the CAS delay as programmed
in SDCFG will be used, remaining fields are fixed: page read burst, single location write, sequential
burst. If the EMR command is issued, the DS, TCSR and PASR as programmed in Power-Saving con-
figuration register will be used. The command field will be cleared after a command has been exe-
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cuted. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER command
should be generated at the same time.

91.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command with data read after the programmed CAS delay. A read burst is performed if a
burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE
command, no banks are left open between two accesses. Note that only word bursts are supported by
the SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and half-words
but they cannot be used.

91.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

91.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if a 64-bit SDRAM data bus is used.

91.2.14 Data bus

The external SDRAM data bus is configurable to either 32 or 64 bits width, using thesdbitsVHDL
generic. A 64-bit data bus allows 64-bit (SO)DIMMs to be connected using the full data capacity of
the devices. The polarity of the output enable signal to the data pads can be selected with the oepol
generic. Sometimes it is difficult to fulfil the output delay requirements of the output enable signal. In
this case, the vbdrive signal can be used instead of bdrive. Each index in this vector is driven by a sep-
arate register and a directive is placed on them so that they will not be removed by the synthesis tool.

91.2.15 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera devices, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed, or the inverted clock option can be
used (see below). For ASIC targets, the SDRAM clock can be derived from the AHB clock with
proper delay adjustments during place&route.

If the VHDL generic INVCLK is set, then all outputs from the SDRAM controller are delayed for 1/2
clock. This is done by clocking all output registers on the falling clock edge. This option can be used
on FPGA targets where proper SDRAM clock synchronization cannot be achieved. The SDRAM
clock can be the internal AHB clock without further phase adjustments. Since the SDRAM signals
will only have 1/2 clock period to propagate, this option typically limits the maximum SDRAM fre-
quency to 40 - 50 MHz.
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91.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1.

Table 1152.SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

0x4 SDRAM Power-Saving configuration register

Table 1153. SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

Page-
Burst

MS D64 SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile SDRAM support
is enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile SDRAM
support is enabled, this field is extended with the bit 30.

26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-
REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 4
Mbyte, “001”= 8 Mbyte, “010”= 16 Mbyte .... “111”= 512 Mbyte.

22: 21 SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048
otherwise.

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 = pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise
‘0’. Read-only.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / SYSCLK

Table 1154.SDRAM Power-Saving configuration register
31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE Reserved tXSR res PMODE Reserved DS TCSR PASR

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29: 24 Reserved

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
SDR support is disabled).

19 Reserved
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91.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x009. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved

6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 1154.SDRAM Power-Saving configuration register
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91.5 Configuration options

Table 1155 shows the configuration options of the core (VHDL generics).

Table 1155.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. Default
is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space where
SDCFG register is mapped.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

pwron Enable SDRAM at power-on initialization 0 - 1 0

sdbits 32 or 64-bit data bus width. 32, 64 32

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active
high

0 - 1 0

pageburst Enable SDRAM page burst operation.
0: Controller uses line burst of length 8 for read operations.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on PageBurst
bit in SDRAM configuration register.

0 - 2 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0
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91.6 Signal descriptions

Table 1156 shows the interface signals of the core (VHDL ports).

91.7 Library dependencies

Table 1157 shows libraries used when instantiating the core (VHDL libraries).

91.8 Instantiation

This example shows how the core can be instantiated.

Table 1156.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data High

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Low

BDRIVE Output Drive SDRAM data bus Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.

Low/High2

ADDRESS[16:2] Output SDRAM address Low

DATA[31:0] Output SDRAM data Low

1) see GRLIB IP Library User’s Manual

2) Polarity selected with the oepol generic

Table 1157.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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The example design contains an AMBA bus with a number of AHB components connected to it
including the SDRAM controller. The external SDRAM bus is defined on the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator.

SDRAM controller decodes SDRAM area:0x60000000 - 0x6FFFFFFF. SDRAM Configuration regis-
ter is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;
sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal sdi   : sdctrl_in_type;
  signal sdo   : sdctrl_out_type;

  signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;
  signal gnd : std_ulogic;

begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);

  -- SDRAM controller
  sdc : sdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
    ioaddr => 1, pwron => 0, invclk => 0)



AEROFLEX GAISLER 973 GRIP

    port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo);

  -- input signals
  sdi.data(31 downto 0) <= sd(31 downto 0);

  -- connect SDRAM controller outputs to entity output signals
  sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
  sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
  sddqm <= sdo.dqm;

--Data pad instantiation with scalar bdrive
sd_pad : iopadv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));
end;

--Alternative data pad instantiation with vectored bdrive
sd_pad : iopadvv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.vbdrive, sdi.data(31 downto 0));
end;
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92 SPI2AHB - SPI to AHB bridge

92.1 Overview

The SPI to AHB bridge is an SPI slave that provides a link between a SPI bus (that consists of two
data signals, one clock signal and one select signal) and AMBA AHB. On the SPI bus the slave acts as
an SPI memory device where accesses to the slave are translated to AMBA accesses. The core can
translate SPI accesses to AMBA byte, half-word or word accesses. The access size to use is config-
urable via the SPI bus.

The core synchronizes the incoming clock and can operate in systems where other SPI devices are
driven by asynchronous clocks.

GRLIB also contains a SPI master/slave controller core, without an AHB interface, where the transfer
of each individual byte is controlled by software via an APB interface, see the SPICTRL core docu-
mentation for more information.

92.2 Transmission protocol

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle
state. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and
from the slave through the Master-Input-Slave-Output (MISO) signal. In some systems with only one
master and one slave, the Slave Select input of the slave may be always active and the master does not
need to have a slave select output. This does not apply to this SPI to AHB bridge, the slave select sig-
nal must be used to mark the start and end of an operation.

During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure 271 shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is the
same as for the MOSI signal. However, due to synchronization the MISO signal will be delayed for a
period of time that depends on the system clock frequency.

Figure 270. Block diagram, optional APB interface not shown
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The SPI to AHB bridge makes use of a protocol commonly used by SPI Flash memory devices. A
master first selects the slave via the slave select signal and then issues a one-byte instruction. The
instruction is then followed by additional bytes that contain address or data values. All instructions,
addresses and data are transmitted with the most significant bit first. All AMBA accesses are done in
big endian format. The first byte sent to or from the slave is the most significant byte.

92.3 System clock requirements and sampling

The core samples the incoming SPI SCK clock and does not introduce any additional clock domains
into the system. Both the SCK and MOSI lines first pass through two stage synchronizers and are then
filtered with a low pass filter.

The synchronizers and filters constrain the minimum system frequency. The core requires the SCK
signal to be stable for at least two system clock cycles before the core accepts the SCK value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. In order for the slave to be able to out-
put data on the SCK ‘change’ transition and for this data to reach the master before the next edge the
SCK frequency should not be higher than one tenth of the system frequency of core (with the standard
VHDL genericfilter setting of 2).

The slave select input should be asserted at least two system clock cycles before the SCK line starts
transitioning.

Figure 271. SPI transfer of byte 0x55 in all modes
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92.4 SPI instructions

92.4.1 Overview

The core is controlled from the SPI bus by sending SPI instructions. Some commands require addi-
tional bytes in the form of address or data. The core makes use of the same instructions as commonly
available SPI Flash devices. Table 1158 summarizes the available instructions.

All instructions, addresses and data are transmitted with the most significant bit first. All AMBA
accesses are done in big endian format. The first byte sent to or from the slave is the most significant
byte.

92.4.2 SPI status/control register accesses (RDSR/WRSR)

The RDSR and WRSR instructions access the core’s SPI status/control register. The register is
accessed by issuing the wanted instruction followed by the data byte to be written (WRSR) or any
value on the byte in order to shift out the current value of the status/control register (RDSR). The
fields available in the SPI status/control register are shown in table 1159.

92.4.3 Read and write instructions (WRITE and READ/READD)

The READD is the same as the READ instruction with an additional dummy byte inserted after the
four address bytes. To perform a read operation on AHB via the SPI bus the following sequence
should be performed:

Table 1158.SPI instructions

Instruction Description Instruction code Additional bytes

RDSR Read status/control register 0x05 Core responds with register value

WRSR Write status/control register 0x01 New register value

READ AHB read access 0x03 Four address bytes, after which core responds
with data.

READD AHB read access with dummy
byte

0x0B Four address butes and one dummy byte, after
which core responds with data

WRITE AHB write access 0x02 Four address bytes followed by data to be written

Table 1159.SPI2AHB SPI status/control register
7 6 5 4 3 2 1 0

Reserved PROT MEXC DMAACT NACK HSIZE

7 Reserved, always zero (read only)

6 Read ahead (RAHEAD) - When this bit is set the core will make a new access to
fetch data as soon as the last current data bit has been moved. Otherwise the core
will not attempt the new access until the ‘change’ transition on SCK. Setting this bit
to ‘1’ allows higher SCK frequencies to be used but will also result in a data fetch as
soon as the current data has been read out. This means that RAHEAD may not be
suitable when accessing FIFO interfaces. (read/write)

5 Memory protection triggered (PROT) - ‘1’ if last AHB access was outside the
allowed memory area. Updated after each AMBA access (read only). Note that
since this bit is updated after each access the RAHEAD = ‘1’ setting may hide
errors.

4 Memory exception (MEXC) - ‘1’ if core receives AMBA ERROR response. Updated
after each AMBA access (read only). Note that since this bit is updated after each
access the RAHEAD = ‘1’ setting may hide errors.

3 DMA active (DMAACT) - ‘1’ if core is currently performing a DMA operation.

2 Malfunction (MALF): This bit is set to one by the core is DMA is not finished when a
new byte starts getting shifted. If this bit is set to ‘1’ then the last AHB access was
not successful.

1:0 AMBA access size (HSIZE) - Controls the access size that the core will use for
AMBA accesses. 0: byte, 1: half-word, 2: word. HSIZE = “11” is illegal.

Reset value: 0x42
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1. Assert slave select

2. Send READ instruction

3. Send four byte AMBA address, the most significant byte is transferred first

3a. Send dummy byte (if READD is used)

4. Read the wanted number of data bytes

5. De-assert slave select

To perform a write access on AHB via the SPI bus, use the following sequence:

1. Assert slave select

2. Send WRITE instruction

3. Send four byte AMBA address, the most significant byte is transferred first

4. Send the wanted number of data bytes

5. De-assert slave select

During consecutive read or write operations, the core will automatically increment the address. The
access size (byte, halfword or word) used on AHB is set via the HSIZE field in the SPI status/control
register.

The core always respects the access size specified via the HSIZE field. If a write operation writes
fewer bytes than what is required to do an access of the specified HSIZE then the write data will be
dropped, no access will be made on AHB. If a read operation reads fewer bytes than what is specified
by HSIZE then the remaining read data will be dropped when slave select is de-asserted.

The core will not mask any address bits. Therefore it is important that the SPI master respects AMBA
rules when performing half-word and word accesses. A half-word access must be aligned on a two
byte address boundary (least significant bit of address must be zero) and a word access must be
aligned on a four byte boundary (two least significant address bits must be zero).

The core can be configured to generate interrupt requests when an AHB access is performed if the
core is implemented with the APB register interface, see the APB register documentation for details.

92.4.4 Memory protection

The core is configured at implementation time to only allow accesses to a specified AHB address
range (which can be the full 4 GiB AMBA address range). If the core has been implemented with the
optional APB register interface then the address range is soft configurable and the reset value is spec-
ified with VHDL generics.

The VHDL genericsahbaddrhandahbaddrldefine the base address for the allowed area. The VHDL
genericsahbmaskhandahbmaskldefine the size of the area. The generics are used to assign the mem-
ory protection area’s address and mask in the following way:

Protection address, bits 31:16 (protaddr[31:16]): ahbaddrh
Protection address, bits 15:0 (protaddr[15:0]): ahbaddrl
Protection address, bits 31:16 (protmask[31:16]): ahbmaskh
Protection address, bits 15:0 (protmask[15:0]): ahbmaskh

Before the core performs an AMBA access it will perform the check:

(((incoming address) xor (protaddr)) and protmask) /= 0x00000000

If the above expression is true (one or several bits in the incoming address differ from the protection
address, and the corresponding mask bits are set to ‘1’) then the access is inhibited. As an example,
assume thatprotaddr is 0xA0000000 andprotmaskis 0xF0000000. Sinceprotmaskonly has ones in
the most significant nibble, the check above can only be triggered for these bits. The address range of
allowed accessed will thus be 0xA0000000 - 0xAFFFFFFF..
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The core will set the configuration register bit PROT if an access is attempted outside the allowed
address range. This bit is updated on each AHB access and will be cleared by an access inside the
allowed range. Note that the (optional) APB status register has a PROT field with a slightly different
behavior.

92.5 Registers

The core can optionally be implemented with an APB interface that provides registers mapped into
APB address space.

Table 1160.APB registers

APB address offset Register

0x00 Control register

0x04 Status register

0x08 Protection address register

0x0C Protection mask register

Table 1161.Control register
31 2 1 0

RESERVED IRQEN EN

31 : 2 RESERVED

1 Interrupt enable (IRQEN) - When this bit is set to ‘1’ the core will generate an interrupt each time
the DMA field in the status register transitions from ‘0’ to ‘1’.

0 Core enable (EN) - When this bit is set to ‘1’ the core is enabled and will respond to SPI accesses.
Otherwise the core will not react to SPI traffic.

Reset value: Implementation dependent

Table 1162.Status register
31 3 2 1 0

RESERVED PROT WR DMA

31 : 3 RESERVED

2 Protection triggered (PROT) - Set to ‘1’ if an access has triggered the memory protection. This bit
will remain set until cleared by writing ‘1’ to this position. Note that the other fields in this register
will be updated on each AHB access while the PROT bit will remain at ‘1’ once set.

1 Write access (WR) - Last AHB access performed was a write access. This bit is read only.

0 Direct Memory Access (DMA) - This bit gets set to ‘1’ each time the core attempts to perform an
AHB access. By setting the IRQEN field in the control register this condition can generate an inter-
rupt. This bit can be cleared by software by writing ‘1’ to this position.

Reset value: 0x00000000

Table 1163.Protection address register
31 0

PROTADDR



AEROFLEX GAISLER 979 GRIP

92.6 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x05C. For a description
of vendor and device identifiers see the GRLIB IP Library User’s Manual.

92.7 Configuration options

Table 1165 shows the configuration options of the core (VHDL generics). Two different top level enti-
ties for the core is available. One with the optional APB interface (spi2ahb_apb) and one without the
APB interface (spi2ahb). The entity without the APB interface has fewer generics as indicated in the
table below.

31 : 0 Protection address (PROTADDR) - Defines the base address for the memory area where the core is
allowed to make accesses.

Reset value: Implementation dependent

Table 1164.Protection mask register
31 0

PROTMASK

31 : 0 Protection mask (PROTMASK) - Selects which bits in the Protection address register that are used
to define the protected memory area.

Reset value: Implementation dependent

Table 1165.Configuration options

Generic name Function Allowed range Default

hindex AHB master index 0 - NAHBMST 0

ahbaddrh Defines bits 31:16 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbaddrl Defines bits 15:0 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbmaskh Defines bits 31:16 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

ahbmaskl Defines bits 15:0 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

resen Reset value for core enable bit (only available on the
spi2ahb_apb entity).

0 - 1 0

pindex APB slave index (only available on the spi2ahb_apb
entity).

0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR (only available on the
spi2ahb_apb entity).

0 - 16#FFF# 0

pmask MASK field of the APB BAR (only available on the
spi2ahb_apb entity).

0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by APB interface (only available on
the spi2ahb_apb entity).

0 - NAHBIRQ-1 0

oepol Output enable polarity 0 - 1 0

filter Low-pass filter length. This generic should specify, in
number of system clock cycles plus one, the time of the
shortest pulse on the SCK clock line to be registered as a
valid value.

2 - 512 2

cpol Clock polarity of SPI clock (SCK) 0 - 1 0

Table 1163.Protection address register
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92.8 Signal descriptions

Table 1166 shows the interface signals of the core (VHDL ports).

92.9 Library dependencies

Table 1167 shows the libraries used when instantiating the core (VHDL libraries).

92.10 Instantiation

The example below shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity spi2ahb_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;

    -- SPI signals
miso : inout std_logic;

cpha Clock phase of SPI communication 0 - 1 0

Table 1166.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SPII SCK Input SPI clock line input -

MOSI Input SPI data line input -

SPISEL Input SPI slave select input

Other fields Input Unused

SPIO MISO Output SPI data line output -

MISOOEN Output SPI data line output enable Low**

Other fields Output Unused -

* see GRLIB IP Library User’s Manual
** depends on value of OEPOL VHDL generic.

Table 1167.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPI Component, signals Component declaration, SPI signal definitions

Table 1165.Configuration options

Generic name Function Allowed range Default
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mosi : in  std_logic;
sck  : in  std_logic;
sel  : in  std_logic;

    );
end;

architecture rtl of spi2ahb_ex is
  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector;

signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector;
  -- SPI signals

signal spislvi : spi_in_type;
signal spislvo : spi_out_type;

begin

  -- AMBA Components are instantiated here
  ...

 -- SPI to AHB bridge
spibridge : if CFG_SPI2AHB /= 0 generate

    withapb : if CFG_SPI2AHB_APB /= 0 generate
      spi2ahb0 : spi2ahb_apb
        generic map(hindex => 10,
          ahbaddrh => CFG_SPI2AHB_ADDRH, ahbaddrl => CFG_SPI2AHB_ADDRL,
          ahbmaskh => CFG_SPI2AHB_MASKH, ahbmaskl => CFG_SPI2AHB_MASKL,
          resen => CFG_SPI2AHB_RESEN, pindex => 11, paddr => 11, pmask => 16#fff#,
          pirq => 11, filter => CFG_SPI2AHB_FILTER, cpol => CFG_SPI2AHB_CPOL,
          cpha => CFG_SPI2AHB_CPHA)
        port map (rstn, clkm, ahbmi, ahbmo(10),
                  apbi, apbo(11), spislvi, spislvo);
    end generate;
    woapb : if CFG_SPI2AHB_APB = 0 generate
      spi2ahb0 : spi2ahb
        generic map(hindex => 10,
          ahbaddrh => CFG_SPI2AHB_ADDRH, ahbaddrl => CFG_SPI2AHB_ADDRL,
          ahbmaskh => CFG_SPI2AHB_MASKH, ahbmaskl => CFG_SPI2AHB_MASKL,
          filter => CFG_SPI2AHB_FILTER,
          cpol => CFG_SPI2AHB_CPOL, cpha => CFG_SPI2AHB_CPHA)
        port map (rstn, clkm, ahbmi, ahbmo(10),
                  spislvi, spislvo);
    end generate;
    spislv_miso_pad : iopad generic map (tech => padtech)
      port map (miso, spislvo.miso, spislvo.misooen, spislvi.miso);
    spislvl_mosi_pad : inpad generic map (tech => padtech)
      port map (miso, spislvi.mosi);
    spislv_sck_pad  : inpad generic map (tech => padtech)
      port map (sck, spislvi.sck);
    spislv_slvsel_pad : iopad generic map (tech => padtech)
      port map (sel, spislvi.spisel);
  end generate;
  nospibridge : if CFG_SPI2AHB = 0 or CFG_SPI2AHB_APB = 0 generate

 apbo(11) <= apb_none;
 end generate;

end;
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93 SPICTRL - SPI Controller

93.1 Overview

The core provides a link between the AMBA APB bus and the Serial Peripheral Interface (SPI) bus
and can be dynamically configured to function either as a SPI master or a slave. The SPI bus parame-
ters are highly configurable via registers. Core features also include configurable word length, bit
ordering, clock gap insertion, automatic slave select and automatic periodic transfers of a specified
length. All SPI modes are supported and also a 3-wire mode where one bidirectional data line is used.
In slave mode the core synchronizes the incoming clock and can operate in systems where other SPI
devices are driven by asynchronous clocks.

93.2 Operation

93.2.1 SPI transmission protocol

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle
state. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and
from the slave through the Master-Input-Slave-Output (MISO) signal. In a system with only one mas-
ter and one slave, the Slave Select input of the slave may be always active and the master does not
need to have a slave select output. If the core is configured as a master it will monitor the SPISEL sig-
nal to detect collisions with other masters, if SPISEL is activated the master will be disabled.

During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure 273 shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is the
same as for the MOSI signal. However, due to synchronization issues the MISO signal will be delayed
when the core is operating in slave mode, please see section 93.2.5 for details.

Figure 272. Block diagram
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93.2.2 3-wire transmission protocol

The core can be configured to operate in 3-wire mode, if the TWEN field in the core’s Capability reg-
ister is set to ‘1’, where the controller uses a bidirectional dataline instead of separate data lines for
input and output data. In 3-wire mode the bus is thus a half-duplex synchronous serial bus. Transmis-
sion starts when a master selects a slave through the slave’s Slave Select (SLVSEL) signal and the
clock line SCK transitions from its idle state. Only the Master-Output-Slave-Input (MOSI) signal is
used for data transfer in 3-wire mode. The MISO signal is not used.

The direction of the first data transfer is determined by the value of the 3-wire Transfer Order (TTO)
field in the core’s Mode register. If TTO is ‘0’, data is first transferred from the master (through the
MOSI signal). After a word has been transferred, the slave uses the same data line to transfer a word
back to the master. If TTO is ‘1’ data is first transferred from the slave to the master. After a word has
been transferred, the master uses the MOSI line to transfer a word back to the slave.

The data line transitions depending on the clock polarity and clock phase in the same manner as in
SPI mode. The aforementioned slave delay of the MISO signal in SPI mode will affect the MOSI sig-
nal in 3-wire mode, when the core operates as a slave.

93.2.3 Receive and transmit queues

The core’s transmit queue consists of the transmit register and the transmit FIFO. The receive queue
consists of the receive register and the receive FIFO. The total number of words that can exist in each
queue is thus the FIFO depth plus one. When the core has one or more free slots in the transmit queue
it will assert the Not full (NF) bit in the event register. Software may only write to the transmit register
when this bit is asserted. When the core has received a word, as defined by word length (LEN) in the
Mode register, it will place the data in the receive queue. When the receive queue has one or more ele-
ments stored the Event register bit Not empty (NE) will be asserted. The receive register will only
contain valid data if the Not empty bit is asserted and software should not access the receive register

Figure 273. SPI transfer of byte 0x55 in all modes
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unless this bit is set. If the receive queue is full and the core receives a new word, an overrun condition
will occur. The received data will be discarded and the Overrun (OV) bit in the Event register will be
set.

The core will also detect underrun conditions. An underrun condition occurs when the core is
selected, via SPISEL, and the SCK clock transitions while the transmit queue is empty. In this sce-
nario the core will respond with all bits set to ‘1’ and set the Underrun (UN) bit in the Event register.
An underrun condition will never occur in master mode. When the master has an empty transmit
queue the bus will go into an idle state.

93.2.4 Clock generation

The core only generates the clock in master mode, the generated frequency depends on the system
clock frequency and the Mode register fields DIV16, FACT, and PM. Without DIV16 the SCK fre-
quency is:

With DIV16 enabled the frequency of SCK is derived through:

Note that the fields of the Mode register, which includes DIV16, FACT and PM, should not be
changed when the core is enabled. If the FACT field is set to 0 the core’s register interface is compati-
ble with the register interface found in MPC83xx SoCs. If the FACT field is set to 1, the core can gen-
erate an SCK clock with higher frequency.

93.2.5 Slave operation

When the core is configured for slave operation it does not drive any SPI signal until the core is
selected, via the SPISEL input, by a master. If the core operates in SPI mode when SPISEL goes low
the core configures MISO as an output and drives the value of the first bit scheduled for transfer. If the
core is configured into 3-wire mode the core will first listen to the MOSI line and when a word has
been transferred drive the response on the MOSI line. If the core is selected when the transmit queue
is empty it will transfer a word with all bits set to ‘1’ and the core will report an underflow.

Since the core synchronizes the incoming clock it will not react to transitions on SCK until two sys-
tem clock cycles have passed. This leads to a delay of three system clock cycles when the data output
line should change as the result of a SCK transition. This constrains the maximum input SCK fre-
quency of the slave to (system clock) / 8 or less. The controlling master must also allow the decreased
setup time on the slave data out line.

The core can also filter the SCK input. The value of the PM field in the Mode register defines for how
many system clock cycles the SCK input must be stable before the core accepts the new value. If the
PM field is set to zero, then the maximum SCK frequency of the slave is, as stated above, (system
clock) / 8 or less. For each increment of the PM field the clock period of SCK must be prolonged by
two times the system clock period as the core will require longer time discover and respond to SCK
transitions.

93.2.6 Master operation

When the core is configured for master operation it will transmit a word when there is data available
in the transmit queue. When the transmit queue is empty the core will drive SCK to its idle state. If the

SCKFrequency
AMBAclockfrequency

4 2 FACT⋅( )–( ) PM 1+( )⋅
----------------------------------------------------------------------=

SCKFrequency
AMBAclockfrequency

16 4 2 FACT⋅( )–( ) PM 1+( )⋅ ⋅
--------------------------------------------------------------------------------=
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SPISEL input goes low during master operation the core will abort any active transmission and the
Multiple-master error (MME) bit will be asserted in the Event register. If a Multiple-master error
occurs the core will be disabled. Note that the core will react to changes on SPISEL even if the core is
operating in loop mode and that the core can be configured to ignore SPISEL by setting the IGSEL
field in the Mode register.

93.2.7 Automated periodic transfers

The core supports automated periodic transfers if the AMODE field in the core’s Capability register is
‘1’. In this mode the core will perform transfers with a specified period and length. The steps below
outline how to set up automated transfers:

1. Configure the core’s Mode register as a master and set the AMEN field (bit 31) to ‘1’. Possibly
also configure the automatic slave select settings.

2. Write to the AM Mask registers to configure which parts of the AM transmit queue that will be
used. The number of bits in the AM Mask registers that are set to one together with the word
length (set in the Mode register) defines how long the transfer should be.

3. Write data to the AM transmit queue (AM Transmit registers). Only those registers that corre-
spond to a bit that is set to one in the AM Mask registers need to be written.

4. Set the transfer period in the AM Period register.

5. Set the options for the automated transfers in the AM Configuration register

6. Set the ACT or EACT field in the AM Configuration register.

7. Wait for the Not Empty field to be set in the Event register

8. Read out the AM Receive queue (AM Receive registers). If lock bit (LOCK) in AM Configu-
ration register is set then all registers which have a bit in the AM Mask registers set must be read.
If the lock bit is not set software does not need to read out any data, the core can write new data
to the AM Receive registers anyway.

9. Go back to step 7.

When an automated transfer is performed, data is not immediately placed in AM receive queue.
Instead the data is placed in a temporary queue to ensure that a full transfer can be read out atomically
without interference from incoming data.

The AM receive queue is filled with the data from the temporary queue if the AM receive queue is
empty, or if it is full and Sequential transfers (SEQ) is disabled in the AM Configuration register. It is
possible to configure the core not to place new data in the AM receive queue while software is reading
out data from the queue. This is done by setting the lock bit (LOCK) in the AM Configuration regis-
ter.

If the AM Configuration register’s SEQ bit is set the core will not move data from the temporary
queue until the AM receive queue has been cleared. Demanding Sequential transfers means that the
AM receive queue’s data will never be overwritten. However, data may still be lost, depending on the
settings that determine how the temporary queue handles overflow conditions.

The controller will attempt to place data into the temporary receive queue when the automated trans-
fer period counter reaches zero. If the temporary queue is filled, which can occur if the controller is
prevented from moving the data to the receive queue, the core’s behavior will depend on the setting of
the Strict Period (STRICT) field in the AM Configuration register:

If the value of STRICT is ‘0’ the core will delay the transfer and wait until the temporary queue has
been cleared.

If the value of STRICT is ‘1’, and the contents of the temporary queue can not be moved to the AM
receive queue, there will be an overflow condition in the temporary queue. The core’s behavior on a
temporary queue overflow is defined by the AM Configuration register fields Overflow Transfer
Behavior (OVTB) and Overflow Data Behavior (OVDB). If there is a temporary queue overflow and
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OVTB is set, the transfer will be skipped and the core’s internal period counter will be reloaded. If the
OVTB bit is not set the transfer will be performed. If the transfer is performed and the OVDB bit is set
the data will be disregarded. If the OVDB bit is not set the data will be placed in the temporary receive
queue and the previous data will be overwritten.

A series of automated transfers can be started by an external event. If the AM Configuration register
field EACT is set, the core will activate Automated transfers when its internal ASTART input signal
goes high. When the core detects that EACT and ASTART are both set, it will set the AM Configura-
tion register ACT bit and reset the EACT bit. Note that subsequent automated transfers will be started
when the period counter reaches zero, if ERPT field of the AM Configuration register is set to zero. If
the ERPT field is set to one then the ASTART input is used to start subsequent transfers instead.

When automated transfers are enabled by setting the AM Configuration register ACT bit, the core will
send a pulse on its internal ASTART output signal. This means that several cores can be connected
together and have their start event synchronized. To synchronize a start event, set the EACT bit in all
cores, except in the last core which is activated by setting the AM Configuration register ACT field.
The last core will then pulse its ASTART output and trigger the start event in all the other connected
cores. When this has been done the cores’ transfers will be synchronized. However this synchroniza-
tion may be lost if a core’s receive queues are filled and STRICT transfers are disabled, since this will
lead to a delay in the start of the core’s next transfer.

When the core operates in AM mode, the Receive and Transmit registers should not be accessed. Nor
should the AM transmit registers be updated when automatic transfers are enabled.

93.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1168.SPI controller registers

APB address offset Register

0x00 Capability register

0x04-0x1C Reserved

0x20 Mode register

0x24 Event register

0x28 Mask register

0x2C Command register

0x30 Transmit register

0x34 Receive register

0x38 Slave Select register (optional)

0x3C Automatic slave select register*

0x40 AM Configuration register**

0x44 AM Period register**

0x48-0x4C Reserved

0x50-0x5C AM Mask register(s)***

0x200-0x3FC AM Transmit register(s)****

0x400-0x5FC AM Receive register(s)****

*Only available if ASEL (bit 17) in the SPI controller Capability register is set.
**Only available if AMODE (bit 18) in the SPI controller Capability register is set.

***Only available if AMODE (bit 18) in the SPI controller Capability register is set. Number of implemented registers
depend on FDEPTH (bits 15:8) in the SPI controller Capability register in the following way: Number of registers =
(FDEPTH-1)/32 + 1.

****Only available if AMODE (bit 18) in the SPI controller Capability register is set. Number of implemented registers
equals FDEPTH (bits 15:8) in the SPI controller Capability register.
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Table 1169.SPI controller Capability register
31 24 23 20 19 18 17 16

SSSZ MAXWLEN TWEN AMODE ASELA SSEN

15 8 7 6 5 4 0

FDEPTH SR FT REV

31 : 24 Slave Select register size (SSSZ) - If the core has been configured with slave select signals this field
contains the number of available signals. This field is only valid is the SSEN bit (bit 16) is ‘1

23 : 20 Maximum word Length (MAXWLEN) - The maximum word length supported by the core:
0b0000 - 4-16, and 32-bit word length
0b0011-0b1111 - Word length is MAXWLEN+1, allows words of length 4-16 bits.
The core must not be configured to use a word length greater than what is defined by this register.

19 Three-wire mode Enable (TWEN) - If this bit is ‘1’ the core supports three-wire mode.

18 Auto mode (AMODE) - If this bit is ‘1’ the core supports Automated transfers.

17 Automatic slave select available (ASELA) - If this bit is set, the core has support for setting slave
select signals automatically.

16 Slave Select Enable (SSEN) - If the core has a slave select register, and corresponding slave select
lines, the value of this field is one. Otherwise the value of this field is zero.

15 : 8 FIFO depth (FDEPTH) - This field contains the depth of the core’s internal FIFOs. The number of
words the core can store in each queue is FDEPTH+1, since the transmit and receive registers can
contain one word each.

7 SYNCRAM (SR) - If this field is ‘1’ the core has buffers implemented with SYNCRAM compo-
nents.

6 : 5 Fault-tolerance (FT) - This field signals if the core has any fault-tolerant capabilities. “00” - No
fault-tolerance. “01” - Parity DMR, “10” - TMR.

4 : 0 Core revision (REV) - This manual applies to core revision 5.

Table 1170.SPI controller Mode register
31 30 29 28 27 26 25 24 23 20 19 16

AMEN LOOP CPOL CPHA DIV16 REV MS EN LEN PM

15 14 13 12 11 7 6 5 4 3 2 1 0

TWEN ASEL FACT OD CG ASELDEL TAC TTO IGSEL CITE R

31 Auto mode enable (AMEN) - When this bit is set to ‘1’ the core will be able to perform automated
periodic transfers. See the AM registers below. The core supports this mode if the AMODE field in
the capability register is set to ‘1’. Otherwise writes to this field has no effect. When this bit is set to
‘1’ the core can only perform automated transfers. Software is allowed to initialize the transmit
queue and to read out the receive queue but no transfers except the automated periodic transfers may
be performed. The core must be configured to act as a master (MS field set to ‘1’) when performing
automated transfers.

30 Loop mode (LOOP) - When this bit is set, and the core is enabled, the core’s transmitter and receiver
are interconnected and the core will operate in loopback mode. The core will still detect, and will be
disabled, on Multiple-master errors.

29 Clock polarity (CPOL) - Determines the polarity (idle state) of the SCK clock.

28 Clock phase (CPHA) - When CPHA is ‘0’ data will be read on the first transition of SCK. When
CPHA is ‘1’ data will be read on the second transition of SCK.

27 Divide by 16 (DIV16) - Divide system clock by 16, see description of PM field below and see sec-
tion 93.2.4 on clock generation. This bit has no significance in slave mode.

26 Reverse data (REV) - When this bit is ‘0’ data is transmitted LSB first, when this bit is ‘1’ data is
transmitted MSB first. This bit affects the layout of the transmit and receive registers.

25 Master/Slave (MS) - When this bit is set to ‘1’ the core will act as a master, when this bit is set to ‘0’
the core will operate in slave mode.

24 Enable core (EN) - When this bit is set to ‘1’ the core is enabled. No fields in the mode register
should be changed while the core is enabled. This can bit can be set to ‘0’ by software, or by the core
if a multiple-master error occurs.
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23 : 20 Word length (LEN) - The value of this field determines the length in bits of a transfer on the SPI bus.
Values are interpreted as:

0b0000 - 32-bit word length

0b0001-0b0010 - Illegal values

0b0011-0b1111 - Word length is LEN+1, allows words of length 4-16 bits.

The value of this field must never specify a word length that is greater than the maximum allowed
word length specified by the MAXWLEN field in the Capability register.

19 : 16 Prescale modulus (PM) - This value is used in master mode to divide the system clock and generate
the SPI SCK clock. The value in this field depends on the value of the FACT bit.

If bit 13 (FACT) is ‘0’:The system clock is divided by 4*(PM+1) if the DIV16 field is ‘0’ and
16*4*(PM+1) if the DIV16 field is set to ‘1’. The highest SCK frequency is attained when PM is set
to 0b0000 and DIV16 to ‘0’, this configuration will give a SCK frequency that is (system clock)/4.
With this setting the core is compatible with the SPI register interface found in MPC83xx SoCs.

If bit 13 (FACT) is ‘1’: The system clock is divided by 2*(PM+1) if the DIV16 field is ‘0’ and
16*2*(PM+1) if the DIV16 field is set to ‘1’. The highest SCK frequency is attained when PM is set
to 0b0000 and DIV16 to ‘0’, this configuration will give a SCK frequency that is (system clock)/2.

In slave mode the value of this field defines the number of system clock cycles that the SCK input
must be stable for the core to accept the state of the signal. See section 93.2.5.

15 Three-wire mode (TW) - If this bit is set to ‘1’ the core will operate in 3-wire mode. This bit can
only be set if the TWEN field of the Capability register is set to ‘1’.

14 Automatic slave select (ASEL) - If this bit is set to ‘1’ the core will swap the contents in the Slave
select register with the contents of the Automatic slave select register when a transfer is started and
the core is in master mode. When the transmit queue is empty, the slave select register will be
swapped back. Note that if the core is disabled (by writing to the core enable bit or due to a multiple-
master-error (MME)) when a transfer is in progress, the registers may still be swapped when the core
goes idle. This bit can only be set if the ASELA field of the Capability register is set to ‘1’. Also see
the ASELDEL field which can be set to insert a delay between the slave select register swap and the
start of a transfer.

13 PM factor (FACT) - If this bit is 1 the core’s register interface is no longer compatible with the
MPC83xx register interface. The value of this bit affects how the PM field is utilized to scale the SPI
clock. See the description of the PM field.

12 Open drain mode (OD) - If this bit is set to ‘0’, all pins are configured for operation in normal mode.
If this bit is set to ‘1’ all pins are set to open drain mode. The implementation of the core may or may
not support open drain mode. If this bit can be set to ‘1’ by writing to this location, the core supports
open drain mode. The pins driven from the slave select register are not affected by the value of this
bit.

11 : 7 Clock gap (CG) - The value of this field is only significant in master mode. The core will insert CG
SCK clock cycles between each consecutive word. This only applies when the transmit queue is kept
non-empty. After the last word of the transmit queue has been sent the core will go into an idle state
and will continue to transmit data as soon as a new word is written to the transmit register, regardless
of the value in CG. A value of 0b00000 in this field enables back-to-back transfers.

6 : 5 Automatic Slave Select Delay (ASELDEL) - If the core is configured to use automatic slave select
(ASEL field set to ‘1’) the core will insert a delay corresponding to ASELDEL*(SPI SCK cycle
time)/2 between the swap of the slave select registers and the first toggle of the SCK clock. As an
example, if this field is set to “10” the core will insert a delay corresponding to one SCK cycle
between assigning the Automatic slave select register to the Slave select register and toggling SCK
for the first time in the transfer. This field can only be set if the ASELA field of the Capability regis-
ter is set to ‘1’.

4 Toggle Automatic slave select during Clock Gap (TAC) - If this bit is set, and the ASEL field is set,
the core will perform the swap of the slave select registers at the start and end of each clock gap. The
clock gap is defined by the CG field and must be set to a value >= 2 if this field is set. This field can
only be set if the ASELA field of the Capability register is set to ‘1’.

3 3-wire Transfer Order (TTO) - This bit controls if the master or slave transmits a word first in 3-wire
mode.If this bit is ‘0’, data is first transferred from the master to the slave. If this bit is ‘1’, data is
first transferred from the slave to the master. This bit can only be set if the TWEN field of the Capa-
bility register is set to ‘1’.

2 Ignore SPISEL input (IGSEL) - If this bit is set to ‘1’ then the core will ignore the value of the
SPISEL input.

Table 1170.SPI controller Mode register
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1 Require Clock Idle for Transfer End (CITE) - If this bit is ‘0’ the core will regard the transfer of a
word as completed when the last bit has been sampled. If this bit is set to ‘1’ the core will wait until
it has set the SCK clock to its idle level (see CI field) before regarding a transfer as completed. This
setting only affects the behavior of the TIP status bit, and automatic slave select toggling at the end
of a transfer, when the clock phase (CP field) is ‘0’.

0 RESERVED (R) - Read as zero and should be written as zero to ensure forward compatibility.

Table 1171.SPI controller Event register
31 30 15 14 13 12 11 10 9 8 7 0

TIP R LT R OV UN MME NE NF R

31 Transfer in progress (TIP) - This bit is ‘1’ when the core has a transfer in progress. Writes have no
effect. This bit is set when the core starts a transfer and is reset to ‘0’ once the core considers the
transfer to be finished. Behavior affected by setting of CITE field in Mode register.

30 : 15 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

14 Last character (LT) - This bit is set when a transfer completes if the transmit queue is empty and the
LST bit in the Command register has been written. This bit is cleared by writing ‘1’, writes of ‘0’
have no effect.

13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

12 Overrun (OV) - This bit gets set when the receive queue is full and the core receives new data. The
core continues communicating over the SPI bus but discards the new data. This bit is cleared by writ-
ing ‘1’, writes of ‘0’ have no effect.

11 Underrun (UN) - This bit is only set when the core is operating in slave mode. The bit is set if the
core’s transmit queue is empty when a master initiates a transfer. When this happens the core will
respond with a word where all bits are set to ‘1’. This bit is cleared by writing ‘1’, writes of ‘0’ have
no effect.

10 Multiple-master error (MME) - This bit is set when the core is operating in master mode and the
SPISEL input goes active. In addition to setting this bit the core will be disabled. This bit is cleared
by writing ‘1’, writes of ‘0’ have no effect.

9 Not empty (NE) - This bit is set when the receive queue contains one or more elements. It is cleared
automatically by the core, writes have no effect.

8 Not full (NF) - This bit is set when the transmit queue has room for one or more words. It is cleared
automatically by the core when the queue is full, writes have no effect.

7 : 0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

Table 1172.SPI controller Mask register
31 30 15 14 13 12 11 10 9 8 7 0

TIPE R LTE R OVE UNE MMEE NEE NFE R

31 Transfer in progress enable (TIPE) - When this bit is set the core will generate an interrupt when the
TIP bit in the Event register transitions from ‘0’ to ‘1’.

30 : 15 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

14 Last character enable (LTE) - When this bit is set the core will generate an interrupt when the LT bit
in the Event register transitions from ‘0’ to ‘1’.

13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

12 Overrun enable (OVE) - When this bit is set the core will generate an interrupt when the OV bit in
the Event register transitions from ‘0’ to ‘1’.

11 Underrun enable (UNE) - When this bit is set the core will generate an interrupt when the UN bit in
the Event register transitions from ‘0’ to ‘1’.

10 Multiple-master error enable (MMEE) - When this bit is set the core will generate an interrupt when
the MME bit in the Event register transitions from ‘0’ to ‘1’.

9 Not empty enable (NEE) - When this bit is set the core will generate an interrupt when the NE bit in
the Event register transitions from ‘0’ to ‘1’.

8 Not full enable (NFE) - When this bit is set the core will generate an interrupt when the NF bit in the
Event register transitions from ‘0’ to ‘1’.

7 : 0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

Table 1170.SPI controller Mode register
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Table 1173.SPI controller Command register
31 23 22 21 0

R LST R

31 : 23 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

22 Last (LST) - After this bit has been written to ‘1’ the core will set the Event register bit LT when a
character has been transmitted and the transmit queue is empty. If the core is operating in 3-wire
mode the Event register bit is set when the whole transfer has completed. This bit is automatically
cleared when the Event register bit has been set and is always read as zero.

21 : 0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

Table 1174.SPI controller Transmit register
31 0

TDATA

31 : 0 Transmit data (TDATA) - Writing a word into this register places the word in the transmit queue.
This register will only react to writes if the Not full (NF) bit in the Event register is set. The layout of
this register depends on the value of the REV field in the Mode register:

Rev = ‘0’: The word to transmit should be written with its least significant bit at bit 0.

Rev = ‘1’: The word to transmit should be written with its most significant bit at bit 31.

Table 1175.SPI controller Receive register
31 0

RDATA

31 : 0 Receive data (RDATA) - This register contains valid receive data when the Not empty (NE) bit of the
Event register is set. The placement of the received word depends on the Mode register fields LEN
and REV:

For LEN = 0b0000 - The data is placed with its MSb in bit 31 and its LSb in bit 0.

For other lengths and REV = ‘0’ - The data is placed with its MSB in bit 15.

For other lengths and REV = ‘1’ - The data is placed with its LSB in bit 16.

To illustrate this, a transfer of a word with eight bits (LEN = 7) that are all set to one will have the
following placement:

REV = ‘0’ - 0x0000FF00

REV = ‘1’ - 0x00FF0000

Table 1176.SPI Slave select register (optional)
31 SSSZ SSSZ-1 0

R SLVSEL

31 : SSSZ RESERVED (R) - The lower bound of this register is determined by the Capability register field
SSSZ if the SSEN field is set to 1. If SSEN is zero bits 31:0 are reserved.

(SSSZ-1) : 0 Slave select (SLVSEL) - If SSEN in the Capability register is 1 the core’s slave select signals are
mapped to this register on bits (SSSZ-1):0. Software is solely responsible for activating the correct
slave select signals, the core does not assert or deassert any slave select signal automatically.

Table 1177.SPI controller Automatic slave select register
31 SSSZ SSSZ-1 0

R ASLVSEL

31 : SSSZ RESERVED (R) - The lower bound of this register is determined by the Capability register field
SSSZ if the SSEN field is set to 1. If SSEN is zero bits 31:0 are reserved.
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(SSSZ-1) : 0 Automatic Slave select (ASLVSEL) - If SSEN and ASELA in the Capability register are both ‘1’ the
core’s slave select signals are assigned from this register when the core is about to perform a transfer
and the ASEL field in the Mode register is set to ‘1’. After a transfer has been completed the core’s
slave select signals are assigned the original value in the slave select register.

Note: This register is only available if ASELA (bit 17) in the SPI controller Capability register is set

Table 1178.SPI controller AM configuration register
31 30 16

RESERVED

15 9 8 7 6 5 4 3 2 1 0

RESERVED ECGC LOCK ERPT SEQ STRICT OVTB OVDB ACT EACT

31 : 9 RESERVED - This field is reserved for future use and should always be written as zero.

8 External clock gap control (ECGC) - If software sets this bit to ‘1’ then the clock gap between indi-
vidual transfers in a set of automated transfers is controller by the core’s CSTART input instead of
the CG field in the Mode registers. Note that the requirement that the CG field must be set to a value
>= 2 if the TAC bit is set still applies even if this bit is set. Reset value ‘0’.

7 Lock bit (LOCK) - If software sets this bit to ‘1’ then the core will not place new data in the AM
Receive registers while software is reading out new data.

6 External repeat (ERPT) - When this bit is set the core will use the input signal astart to start a new
periodic transfer. If this bit is cleared, the period counter will be used instead.

5 Sequential transfers (SEQ) - When this bit is set the core will not update the receive queue unless the
queue has been emptied by reading out its contents. Note that the contents in the temporary FIFO
may still be overwritten with incoming data, depending on the setting of the other fields in this regis-
ter.

4 Strict period (STRICT) - When this bit is set the core will always try to perform a transfer when the
period counter reaches zero, if this bit is not set the core will wait until the receive FIFO is empty
before it tries to perform a new transfer.

3 Overflow Transfer Behavior (OVTB) - If this bit is set to ‘1’ the core will skip transfers that would
result in data being overwritten in the temporary receive queue. Note that this bit only decides if the
transfer is performed. If this bit is set to ‘0’ a transfer will be performed and the setting of the Over-
flow Data Behavior bit (OVDB) will decide if data is actually overwritten.

2 Overflow Data Behavior (OVDB) - If this bit is set to ‘1’ the core will skip incoming data that would
overwrite data in the receive queues. If this bit is ‘0’ the core will overwrite data in the temporary
queue.

1 Activate automated transfers (ACT) - When this bit is set to ‘1’ the core will start to decrement the
AM period register and perform automated transfers. The system clock cycle after this bit has been
written to ‘1’ there will be a pulse on the core’s ASTART output.

Automated transfers can be deactivated by writing this bit to ‘0’. The core will wait until any ongo-
ing transfer has finished before deactivating automated transfers. Software should not perform any
operation on the core before this bit has been read back as ‘0’. The data in the last transfer(s) will be
lost if there is a transfer in progress when this bit is written to ‘0’. All words present in the transmit
queue will also be dropped.

0 External activation of automated transfers (EACT) - When this bit is set to ‘1’ the core will activate
automated transfers when the core’s ASTART input goes HIGH. When the core has been activated
by the external signal this bit will be reset and the ACT field (bit 1 will be set).

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1179.SPI controller AM period register
31 0

AMPER

Table 1177.SPI controller Automatic slave select register
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31 : 0 AM Period (AMPER) - This field contains the period, in system clock cycles, of the automated
transfers. The core has an internal counter that is decremented each system clock cycle. When the
counter reaches zero the core will begin to transmit all data in the transmit queue and reload the
internal counter, which will immediately begin to start count down again. If the core has a transfer in
progress when the counter reaches zero, the core will stall and not start a new transfer, or reload the
internal counter, before the ongoing transfer has completed.

The number of bits in this register is implementation dependent. Software should write this register
with 0xFFFFFFFF and read back the value to see how many bits that are available.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1180.SPI controller AM Mask register(s)
31 0

AM MASK

31 : 0 AM Mask - This field is used as a bit mask to determine which words in the AM Transmit / Receive
queues to read from / write to. Bit 0 of the first mask register corresponds to the first position in the
queues, bit 1 of the first mask register to the second position, bit 0 of the second mask register corre-
sponds to the 33:d position, etc. The total number of bits implemented equals FDEPTH (bit 15:8) in
the SPI controller Capability register. If a bit is set to one then the core will read / write the corre-
sponding position in the queue, otherwise it will be skipped. Software can write these registers at all
times. However if a automated transfer is in progress when the write occurs, then the core will save
the new value in a temporary register until the transfer is complete. The reset value is all ones.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1181.SPI controller AM Transmit register(s)
31 0

TDATA

31 : 0 Transmit data (TDATA) - Writing a word into these register places the word in the AM Transmit
queue. The address of the register determines the position in the queue. Address offset 0x200 corre-
sponds to the first position, offset 0x204 to the second position etc.

The layout of the registers during write depends on the value of the REV field in the Mode register:
Rev = ‘0’: The word to transmit should be written with its least significant bit at bit 0.
Rev = ‘1’: The word to transmit should be written with its most significant bit at bit 31.

The layout of the registers during read is fixed, the word is read with its least significant bit at bit 0.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1182.SPI controller AM Receive register(s)
31 0

RDATA

31 : 0 Receive data (RDATA) - The address of the register determines the position in the queue. Address
offset 0x200 corresponds to the first position, offset 0x204 to the second position etc. The placement
of the received word depends on the Mode register fields LEN and REV.

For LEN = 0b0000 - The data is placed with its MSb in bit 31 and its LSb in bit 0.

For other lengths and REV = ‘0’ - The data is placed with its MSB in bit 15.

For other lengths and REV = ‘1’ - The data is placed with its LSB in bit 16.

To illustrate this, a transfer of a word with eight bits (LEN = 7) that are all set to one will have the
following placement:

REV = ‘0’ - 0x0000FF00

REV = ‘1’ - 0x00FF0000

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1179.SPI controller AM period register
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93.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x02D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

93.5 Configuration options

Table 1183 shows the configuration options of the core (VHDL generics).

Table 1183.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by SPI controller 0 - NAHBIRQ-1 0

fdepth FIFO depth. The FIFO depth in the core is 2fdepth. Note
that the depth of the transmit and receive queues is FIFO
depth + 1 since the Transmit and Receive registers can
hold one word.

The number of AM Transmit / Receive registers are

however 2fdepth.

1 - 7 1

slvselen Enable Slave Select register. When this value is set to 1
the core will include a slave select register that controls
slvselsz slave select signals.

0 - 1 0

slvselsz Number of Slave Select (slvsel) signals that the core will
generate. These signals can be controlled via the Slave
select register if the generic slvselen has been set to 1,
otherwise they are driven to ‘1’.

1 - 32 1

oepol Selects output enable polarity 0 - 1 0

odmode Open drain mode. If this generic is set to 1, the OD bit in
the mode register can be set to 1 and the core must be
connected to I/O or OD pads.

0 - 1 0

automode Enable automated transfers. If this generic is set to 1 the
core will include support to automatically perform peri-
odic transfers. The core’s receive and transmit queues
must not contain more than 128 words if automode is
enabled.

0 - 1 0

acntbits Selects the number of bits used in the AM period
counter. This generic is only of importance if the auto-
mode generic is set to 1.

1 - 32 32

aslvsel Enable automatic slave select. If this generic is set to 1
the core will include support for automatically setting
the slave select register from the automatic slave select
register before a transfer, or queue of transfers, starts.
This generic is only significant of the slvselen generic is
set to 1.

0 - 1 0

twen Enable three-wire mode. If this generic is set to 1 the
core will include support for three-wire mode.

0 - 1 1
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maxwlen Determines the maximum supported word length. Values
are defined as:

0 - Core will support lengths up to 32-bit words

0-2 - Illegal values

3-15 - Maximum word length is maxlen+1, allows words
of length 4-16 bits.

This generic sets the size of the slots in the transmit and
receive queues. If the core will be used in an application
that will never need to perform transfers with words as
long as 32-bits, this setting can be used to save area.

0 - 15 0

netlist If this generic is set to 0 (default) then the RTL version
of the core will be used. If this generic is non-zero, the
netlist version of the core will be used (if available) and
the value ofnetlist will specify the target technology.

0 - NTECH 0

syncram When this generic is set to 1 the core will instantiate
SYNCRAM_2P components for the receive and transmit
queues. The use of SYNCRAM_2P components can
reduce area requirements, particularly when automode is
enabled.

0 - 1 1

memtech Selects memory technology for SYNCRAM_2P compo-
nents.

0 - NTECH 0 (inferred)

ft Enables fault tolerance for receive and transmit queues.
0 - No fault tolerance, 1 - Parity DMR, 2 - TMR. This
generic only has effect if generic syncram is non-zero.

0 - 2 0

scantest Enable scan test support. Only applicable if generic syn-
cram is /= 0.

0 - 1 0

syncrst Use only synchronous reset. If this generic is 0 then the
spio.sckoen, spio.misooen, spio.mosioen and slvsel out-
put will have asynchronous reset. Otherwise all registers
within the core will have synchronous reset.

0 - 1 0

ignore Enable AIGNORE/CIGNORE inputs (experimental) 0 - 1 0

Table 1183.Configuration options

Generic name Function Allowed range Default



AEROFLEX GAISLER 995 GRIP

93.6 Signal descriptions

Table 1184 shows the interface signals of the core (VHDL ports).

Table 1184.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SPII MISO Input Master-Input-Slave-Output data line, not used in
3-wire mode.

-

MOSI Input Master-Output-Slave-Input data line -

SCK Input Serial Clock. If the core is instantiated in a sys-
tem where it will work only as a master then
drive this signal constant Low to save some area.

-

SPISEL Input Slave select input. This signal should be driven
High if it is unused in the design.

Low

ASTART Input Automated transfer start. The core can be pro-
grammed to use this signal to start a set of auto-
mated transfers. This signal should be driven low
if it is unused in the design. This signal must be
synchronous to the CLK input.

High

CSTART Input Automated clock start. This signal can be used to
control when an individual transfer in a set of
automated transfers should start. This signal
doesn’t affect the start of the first transfer in the
set. Also the core needs to be programmed to use
the signal. This signal should be driven low if it
is unused in the design. This signal must be syn-
chronous to the CLK input.

High

AIGNORE Input Ignore RX fifo adddress increment, ignore first
TX fifo address increment

High

CIGNORE Input Ignore TX fifo address increment High

SPIO MISO Output Master-Input-Slave-Output data line, not used in
3-wire mode.

-

MISOOEN Output Master-Input-Slave-Output output enable, not
used in 3-wire mode.

Low

MOSI Output Master-Output-Slave-Input -

MOSIOEN Output Master-Output-Slave-Input output enable Low

SCK Output Serial Clock -

SCKOEN Output Serial Clock output enable Low

SSN Output Not used -

ASTART Output Automated transfer start indicator. High

AREADY Output Automated transfer ready indicator. Set each
time an individual transfer in a set of automated
transfers is completed.

High

SLVSEL
[SSSZ-1:0 ]

N/A Output Slave select output(s). Used if theslvselen
VHDL generic is set to 1. The range of the vec-
tor is (slvselsz-1):0

-

* see GRLIB IP Library User’s Manual
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93.7 Library dependencies

Table 1185 shows the libraries used when instantiating the core (VHDL libraries).

93.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity spi_ex is
  port (
    clk  : in std_ulogic;
    rstn  : in std_ulogic;

    -- SPI signals
sck  : inout std_ulogic;

    miso  : inout std_ulogic;
    mosi  : inout std_ulogic;

 spisel : in std_ulogic
    );
end;

architecture rtl of spi_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);

  -- SPIsignals
 signal spii : spi_in_type;
 signal spio : spi_out_type;

begin

  -- AMBA Components are instantiated here
  ...

  -- SPI controller with FIFO depth 2 and no slave select register
spictrl0 : spictrl generic map (pindex => 10, paddr => 10, pirq => 10,

 fdepth => 1, slvselen => 0, slvselsz => 1)
      port map (rstn, clkm, apbi, apbo(10), spii, spio, open);

    misopad : iopad generic map (tech => padtech)
      port map (miso, spio.miso, spio.misooen, spii.miso);
    mosipad : iopad generic map (tech => padtech)
      port map (mosi, spio.mosi, spio.mosioen, spii.mosi);
    sckpad : iopad generic map (tech => padtech)
      port map (sck, spio.sck, spio.sckoen, spii.sck);

 spiselpad : inpad generic map (tech => padtech)
 port map (spisel, spii.spisel);

end;

Table 1185.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPI Component, signals SPI component and signal definitions.

TECHMAP GENCOMP Constant values Technology constants

TECHMAP NETCOMP Component Netlist component
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94 SPIMCTRL - SPI Memory Controller

94.1 Overview

The core maps a memory device connected via the Serial Peripheral Interface (SPI) into AMBA
address space. Read accesses are performed by performing normal AMBA read operations in the
mapped memory area. Other operations, such as writes, are performed by directly sending SPI com-
mands to the memory device via the core’s register interface. The core is highly configurable and sup-
ports most SPI Flash memory devices. The core also has limited experimental, SPI-mode, SD card
support.

94.2 Operation

94.2.1 Operational model

The core has two memory areas that can be accessed via the AMBA bus; the I/O area and the ROM
area. The ROM area maps the memory device into AMBA address space and the I/O area is utilized
for status reporting and to issue user commands to the memory device.

When transmitting SPI commands directly to the device the ROM area should be left untouched. The
core will issue an AMBA ERROR response if the ROM area is accessed when the core is busy per-
forming an operation initiated via I/O registers.

Depending on the type of device attached the core may need to perform an initialization sequence.
Accesses to the ROM area during the initialization sequence receive AMBA error responses. The core
has successfully performed all necessary initialization when the Initialized bit in the core’s status reg-
ister is set, the value of this bit is also propagated to the core’s output signalspio.initialized.

94.2.2 I/O area

The I/O area contains registers that are used when issuing commands directly to the memory device.
By default, the core operates in System mode where it will perform read operations on the memory
device when the core’s ROM area is accessed. Before attempting to issue commands directly to the
memory device, the core must be put into User mode. This is done by setting the User Control
(USRC) bit in the core’s Control register. Care should be taken to not enter User mode while the core
is busy, as indicated by the bits in the Status register. The core should also have performed a success-
ful initialization sequence before User mode accesses (INIT bit in the Status register should be set).

Note that a memory device may need to be clocked when there has been a change in the state of the
chip select signal. It is recommended that software transmits a byte with the memory device dese-
lected after entering and before leaving User mode.

The following steps are performed to issue a command to the memory device after the core has been
put into User mode:

Figure 274. Block diagram
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1. Check Status register and verify that the BUSY and DONE bits are cleared. Also verify that the
core is initialized and not in error mode.
2. Optionally enable DONE interrupt by setting the Control register bit IEN.
3. Write command to Transmit register.
4. Wait for interrupt (if enabled) or poll DONE bit in Status register.
5. When the DONE bit is set the core has transferred the command and will have new data available in
the Receive register.
6. Clear the Status register’s DONE bit by writing one to its position.

The core should not be brought out of User mode until the transfer completes. Accesses to ROM
address space will receive an AMBA ERROR response when the core is in User mode and when an
operation initiated under User mode is active.

94.2.3 ROM area

The ROM area only supports AMBA read operations. Write operations will receive AMBA ERROR
responses. When a read access is made to the ROM area the core will perform a read operation on the
memory device. If the system has support for AMBA SPLIT responses the core will SPLIT the master
until the read operation on the memory device has finished, unless the read operation is a locked
access. A locked access never receives a SPLIT response and the core inserts wait states instead. If the
system lacks AMBA SPLIT support the core will always insert wait states until the read operation on
the memory device has finished. The core uses the value of the VHDL genericsplitento determine if
the system has AMBA SPLIT support.

When the core is configured to work with a SD card, two types of timeouts are taken into account. The
SD card is expected to respond to a command within 100 bytes and the core will wait for a data token
following a read command for 312500 bytes. If the SD card does not respond within these limits the
core will issue an AMBA error response to the access.

If an error occurs during an access to the ROM area the core will respond with an AMBA ERROR
response. It will also set one or both of the Status register bits Error (ERR) and Timeout (TO). If the
Error (ERR) bit remains set, subsequent accesses to the ROM area will also receive AMBA ERROR
responses. The core can only detect failures when configured for use with a SD card.

The ROM area is marked as cacheable and prefetchable. This must be taken into account if the data in
the ROM area is modified via the I/O area.

94.2.4 SPI memory device address offset

An offset can be specified at implementation via the core’soffsetVHDL generic. This offset will be
added to all accesses to the ROM area before the address is propagated to the SPI memory device.
Specifying an offset can be useful when the SPI memory device contains, as an example, FPGA con-
figuration data at the lower addresses. By specifying an offset, the top of the SPI memory device can
be used to hold user data. The AMBA system is unaware of the offset being added. An access to
addressn in the ROM area will be automatically translated to an access to addressoffset + non the
SPI memory device.

The offset must be accounted for when accessing the SPI memory device via the core’s register inter-
face. If data is programmed to the SPI memory device then the data must be written starting at the off-
set specified by the VHDL genericoffset.
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94.2.5 Supported memory devices

The core supports a wide range of memory devices due to its configuration options of read instruction,
dummy byte insertion and dual output. Table 1186 below lists configurations for some memory
devices.

When the core is configured for use with a SD card it does not use the VHDL genericsreadcmd, dum-
mybytenordualoutput. All SD cards are initialized to use a block length of four bytes and accesses to
the ROM area lead to a READ_SINGLE_BLOCK command being issued to the card.

When the VHDL genericsdcardis set to 0 the core is configured to issue the instruction defined by
the VHDL genericreadcmdto obtain data from the device. After an access to the ROM area the core
will issue the read instruction followed by 24 address bits. If the VHDL genericdummybyteis set to 1
the core will issue a dummy byte following the address. After the possible dummy byte the core
expects to receive data from the device. If the VHDL genericdualoutputis set to 1 the core will read
data on both the MISO and MOSI data line. Otherwise the core will only use the MISO line for input
data.

Many memory devices support both a READ and a FAST_READ instruction. The FAST_READ
instruction can typically be issued with higher device clock frequency compared to the READ instruc-
tion, but requires a dummy byte to be present after the address. The most suitable choice of read
instruction depends on the system frequency and on the memory device’s characteristics.

94.2.6 Clock generation and power-up timing

The core generates the device clock by scaling the system clock. The VHDL genericscalerselects the
divisor to use for the device clock that is used when issuing read instructions. The VHDL generic
altscalerdefines an alternate divisor that is used to generate the clock during power-up. This alternate
divisor is used during initialization of SD cards and should be selected to produce a clock of 400 kHz
or less when the core is configured for use with an SD card.

The alternate clock can be used for all communication by setting the Enable Alternate Scaler (EAS)
bit in the Control register. When configuring the core for communication with a non-SD device in a
system where the target frequency may change it is recommended to set the VHDL genericscalerto a
conservative value and configure the alternate scaler to produce a faster clock. A boot loader can then
set the Enable Alternate Scaler (EAS) bit early in the boot process when it has been determined that
the system can use the memory device at a higher frequency.

When the core is configured for a non-SD card (VHDL genericsdcardset to 0), the VHDL generic
pwrupcntspecifies how many system clock cycles after reset the core should be idle before issuing the
first command.

Table 1186.Configurations for some memory devices

Manufacturer Memory device

VHDL generic*

sdcard readcmd** dummybyte dualoutput

SD card SD card 1 - - -

Spansion S25FL-series 0 0x0B 1 0

Winbond W25X-series 0 0x0B 1 0

W25X-series with
dual output read.

0 0x3B 1 1

* ‘-’ means don’t care
** Available in the core’s Configuration register.
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94.3 Registers

The core is programmed through registers mapped into AHB address space.

Table 1187.SPIMCTRL registers

AHB address offset Register

0x00 Configuration register

0x04 Control register

0x08 Status register

0x0C Receive register

0x10 Transmit register

Table 1188.SPIMCTRL Configuration register
31 8 7 0

RESERVED READCMD

31 :8 RESERVED

7:0 Read instruction (READCMD) - Read instruction that the core will use for reading from the memory
device. When the core is configured to interface with a SD card this field will be set to 0.

Reset value: Implementation dependent

Table 1189.SPIMCTRL Control register
31 5 4 3 2 1 0

RESERVED RST CSN EAS IEN USRC

31 :5 RESERVED

4 Reset core (RST) - By writing ‘1’ to this bit the user can reset the core. This bit is automatically
cleared when the core has been reset. Reset core should be used with care. Writing this bit has the
same effect as system reset. Any ongoing transactions, both on AMBA and to the SPI device will be
aborted.

3 Chip select (CSN) - Controls core chip select signal. This field always shows the level of the core’s
internal chip select signal. This bit is always automatically set to ‘1’ when leaving User mode by
writing USRC to ‘0’.

2 Enable Alternate Scaler (EAS) - When this bit is set the SPI clock is divided by using the alternate
scaler.

1 Interrupt Enable (IEN) - When this bit is set the core will generate an interrupt when a User mode
transfer completes.

0 User control (USRC) - When this bit is set to ‘1’ the core will accept SPI data via the transmit regis-
ter. Accesses to the memory mapped device area will return AMBA ERROR responses.

Reset value: 0x00000008

Table 1190.SPIMCTRL Status register
31 6 5 4 3 2 1 0

RESERVED CD TO ERR INIT BUSY DONE

31:6 RESERVED
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94.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x045. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

94.5 Implementation

94.5.1 Technology mapping

The core does not instantiate any technology specific primitives.

5 Card Detect (CD) - This bit shows the value of the core’s CD input signal if the core has been config-
ured to work with an SD card. When using the core with a device that is hot-pluggable it may be nec-
essary to monitor this bit and reset the core if a device has been disconnected and reconnected. This
bit is only valid if the core has been configured for use with SD cards, otherwise it is always ‘0’.

4 Timeout (TO) - This bit is set to ‘1’ when the core times out while waiting for a response from a SD
card. This bit is only used when the core is configured for use with a SD card. The state is refreshed
at every read operation that is performed as a result of an access to the ROM memory area. User
mode accesses can never trigger a timeout. This bit is read only.

3 Error (ERR) - This bit is set to ‘1’ when the core has entered error state. When the core is in this state
all accesses to the ROM memory area will receive AMBA ERROR responses. The error state can be
cleared by writing ‘1’ to this bit. If the core entered error state during a read operation the ROM area
will be available for read accesses again. This bit is follows the negated errorn output signal. The
core will only detect errors when configured for use with an SD card. User mode accesses can never
trigger an error.

2 Initialized (INIT) - This read only bit is set to ‘1’ when the SPI memory device has been initialized.
Accesses to the ROM area should only be performed when this bit is set to ‘1’.

1 Core busy (BUSY) - This bit is set to ‘1’ when the core is performing an SPI operation.

0 Operation done (DONE) - This bit is set to ‘1’ when the core has transferred an SPI command in
user mode.

Reset value: 0x00000000

Table 1191.SPIMCTRL Receive register
31 8 7 0

RESERVED RDATA

31 :8 RESERVED

7:0 Receive data (RDATA) : Contains received data byte

Reset value: 0x000000UU, where U is undefined

Table 1192.SPIMCTRL Transmit register
31 8 7 0

TDATA

31 :8 RESERVED

7:0 Transmit data (TDATA) - Data byte to transmit

Reset value: 0x00000000

Table 1190.SPIMCTRL Status register
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94.5.2 RAM usage

The core does not use any RAM components.

94.6 Configuration options

Table 1193 shows the configuration options of the core (VHDL generics).

Table 1193.Configuration options

Generic name Function Allowed range Default

hindex AHB slave index 0 - (NAHBSLV-1) 0

hirq Interrupt line 0 - (NAHBIRQ-1) 0

faddr ADDR field of the AHB BAR1 defining ROM address
space.

0 - 16#FFF# 16#000#

fmask MASK field of the AHB BAR1 defining ROM address
space.

0 - 16#FFF# 16#FFF#

ioaddr ADDR field of the AHB BAR0 defining register address
space.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR0 defining register space. 0 - 16#FFF# 16#FFF#

spliten If this generic is set to 1 the core will issue AMBA
SPLIT responses when it is busy performing an opera-
tion on the memory device. Otherwise the core will
insert wait states until the operation completes.

0 - 1 0

oepol Select polarity of output enable signals. 0 = active low. 0 - 1 0

sdcard Enable support for SD card 0 - 1 0

readcmd Read instruction of memory device 0 - 16#FF# 16#0B#

dummybyte Output dummy byte after address 0 - 1 0

dualoutput Use dual output when reading data from device 0 - 1 0

scaler Clock divisor used when generating device clock is

2scaler
1 - 512 1

altscaler Clock divisor used when generating alternate device

clock is 2altscaler
1 - 512 1

pwrupcnt Number of clock cycles to wait before issuing first com-
mand to memory device

N/A 0

maxahbaccsz Maximum supported AHB access size. The core will
support accesses ranging from 8-bit (BYTE) to the size
set by maxahbaccsz. The maximum access size is 256
bits (8WORD). For SD card communication, this generic
must be set to 32.

32, 64, 128, 256 AHBDW

offset Specifies offset that will be added to incoming AMBA
address before address is propagated to SPI flash device.
An access to memory positionn in the core’s ROM area
will be translated to an access to SPI memory device
addressn + offset. Note that this only applies to accesses
to the ROM area, accesses via the core’s register inter-
face are unaffected.

- 0
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94.7 Signal descriptions

Table 1194 shows the interface signals of the core (VHDL ports).

94.8 Library dependencies

Table 1195 shows the libraries used when instantiating the core (VHDL libraries).

94.9 Instantiation

This example shows how the core can be instantiated.

Table 1194.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SPII MISO Input Master-input slave-output data line
SD card connection: DAT0

-

MOSI Input Master-output slave-input data line
SD card connection: None

-

CD Input Card detection. Used in SD card mode to detect
if a card is present. Must be pulled high if this
functionality is not used.
SD card connection: CD/DAT3

High

SPIO MOSI Output Master-output slave-input data line
SD card connection: CMD

-

MOSIOEN Output Master-output slave-input output enable -

SCK Output SPI clock
SD card connection: CLK

-

CSN Output Chip select
SD card connection: CD/DAT3

Low

CDCSNOEN Output Chip select output enable. If the core is config-
ured to work with an SD card this signal should
be connected to the I/O pad that determines if
CSN should drive the CD/DAT3 line. For other
SPI memory devices this signal can be left
unconnected and CSN should be connected to an
output pad.

-

ERRORN Output Error signal. Negated version of Error bit in the
core’s Status register.

Low

READY Output When this signal is low the core is busy perform-
ing an operation.

High

INITIALIZED Output This bit goes high when the SPI memory device
has been initialized and can accept read accesses.
This signal has the same value as the Initialized
(INIT) bit in the core’s Status register.

High

* see GRLIB IP Library User’s Manual

Table 1195.Library dependencies

Library Package Imported unit(s) Description

GAISLER SPI Component, signals Component and signal definitions

GRLIB AMBA Signals AMBA signal definitions
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library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.memctrl.all;

entity spimctrl_ex is
  port (
    clk  : in  std_ulogic;
    rstn  : in  std_ulogic;
    -- SPIMCTRL signals

 -- For SD Card
sd_dat  : in  std_ulogic;

 sd_cmd  : out std_ulogic;
 sd_sck  : out std_ulogic;
 sd_dat3  : inout std_ulogic;
 -- For SPI Flash
 spi_c  : out std_ulogic;
 spi_d : out std_ulogic;
 spi_q  : in std_ulogic;
 spi_sn  : out std_ulogic

    );
end;

architecture rtl of spimctrl_ex is
  -- AMBA signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => ahbs_none);

...
  -- SPIMCTRL signals

 signal spmi0, spmi1 : spimctrl_in_type;
  signal spmo0, spmo1 : spimctrl_out_type;
begin

  -- AMBA Components are instantiated here
  ...

-- Two cores are instantiated below. One configured for use with an SD card and one
-- for use with a generic SPI memory device. Usage of the errorn, ready and

 -- initialized signals is not shown.

-- SPMCTRL core, configured for use with SD card
 spimctrl0 : spimctrl

      generic map (hindex => 3, hirq => 3, faddr => 16#a00#, fmask  => 16#ff0#,
                   ioaddr => 16#100#, iomask => 16#fff#, spliten => CFG_SPLIT,

 sdcard => 1, scaler => 1, altscaler => 7)
      port map (rstn, clk, ahbsi, ahbso(3), spmi0, spmo0);

    sd_miso_pad : inpad generic map (tech => padtech)
      port map (sd_dat, spmi0.miso);

 sd_mosi_pad : outpad generic map (tech => padtech)
      port map (sd_cmd, spmo0.mosi);
    sd_sck_pad  : outpad generic map (tech => padtech)
      port map (sd_clk, spmo0.sck);
    sd_slvsel0_pad : iopad generic map (tech => padtech)
      port map (sd_dat3, spmo0.csn, spmo0.cdcsnoen, spmi0.cd);

 -- Alternative use of cd/dat3 if connection detect is not wanted or available:
 -- sd_slvsel0_pad : outpad generic map (tech => padtech)

    --  port map (sd_dat3, spmo0.csn);
 --  spmi0.cd <= ‘1’; -- Must be set if cd/dat3 is not bi-directional

-- SPMCTRL core, configured for use with generic SPI Flash memory with read
-- command 0x0B and a dummy byte following the address.

 spimctrl1 : spimctrl
      generic map (hindex => 4, hirq => 4, faddr => 16#b00#, fmask  => 16#fff#,
                   ioaddr => 16#200#, iomask => 16#fff#, spliten => CFG_SPLIT,

 sdcard => 0, readcmd => 16#0B#, dummybyte => 1, dualoutput => 0,
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scaler => 1, altscaler => 1)
      port map (rstn, clk, ahbsi, ahbso(4), spmi1, spmo1);

    spi_miso_pad : inpad generic map (tech => padtech)
      port map (spi_q, spmi1.miso);
    spi_mosi_pad : outpad generic map (tech => padtech)
      port map (spi_d, spmo1.mosi);
    spi_sck_pad  : outpad generic map (tech => padtech)
      port map (spi_c, spmo1.sck);
    spi_slvsel0_pad : outpad generic map (tech => padtech)
      port map (spi_sn, spmo1.csn);
end;



AEROFLEX GAISLER 1006 GRIP

95 SRCTRL- 8/32-bit PROM/SRAM Controller

95.1 Overview

SRCTRL is an 8/32-bit PROM/SRAM/IO controller that interfaces external asynchronous SRAM,
PROM and I/O to the AMBA AHB bus. The controller can handle 32-bit wide SRAM and I/O, and
either 8- or 32-bit PROM.

The controller is configured through VHDL-generics to decode three address ranges: PROM, SRAM
and I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM area
is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to 0x20000000
- 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to four and two
select signals respectively. The controller generates both a common write-enable signal (WRITEN) as
well as four byte-write enable signals (WREN). If the SRAM uses a common write enable signal the
controller can be configured to perform read-modify-write cycles for byte and half-word write
accesses. Number of waitstates is separately configurable for the three address ranges.

A single write-enable signal is generated for the PROM area (WRITEN), while four byte-write enable
signals (RWEN[3:0]) are provided for the SRAM area. If the external SRAM uses common write
enable signal, the controller can be configured to perform read-modify-write cycles for byte and half-
word write accesses.

Number of waitstates is configurable through VHDL generics for both PROM and SRAM areas.

A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used for selecting the polarity of these enable signals. If output delay is
an issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has

Figure 275. 8/32-bit PROM/SRAM/IO controller
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its own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (if the output they drive is used in the design).

95.2 8-bit PROM access

The SRCTRL controller can be configured to access a 8-bit wide PROM. The data bus of external
PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit mode is
enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area will be
done in four-byte bursts. The whole 32-bit word is then presented on the AHB data bus. Writes should
be done one byte at a time and the byte should always be driven on bit 31-24 on the AHB data bus
independent of the byte address.

It is possible to dynamically switch between 8- and 32-bit PROM mode using the BWIDTH[1:0]
input signal. When BWIDTH is “00” then 8-bit mode is selected. If BWIDTH is “10” then 32-bit
mode is selected. Other BWIDTH values are reserved for future use.

SRAM access is not affected by the 8-bit PROM mode.

95.3 PROM/SRAM waveform

Read accesses to 32-bit PROM and SRAM has the same timing, see figure below.

The write access for 32-bit PROM and SRAM can be seen below.

Figure 276. 32-bit PROM/SRAM/IO read cycle
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If waitstates are configured through the VHDL generics, one extra data cycle will be inserted for each
waitstate in both read and write cycles.

95.4 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills and burst from DMA masters. The timing of a
burst cycle is identical to the programmed basic cycle with the exception that during read cycles, the
lead-out cycle will only occurs after the last transfer.

95.5 Registers

The core does not implement any user programmable registers.

All configuration is done through the VHDL generics.

95.6 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x008. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

95.7 Configuration options

Table 1197 shows the configuration options of the core (VHDL generics).

Table 1196.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space.
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining SRAM address space.
Default SRAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining SRAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space.
Default IO area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area 0 - 15 0

romws Number of waitstates during access to PROM area 0 - 15 2

iows Number of waitstates during access to IO area 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

prom8en Enable 8 - bit PROM accesses 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active
high

0 - 1 0

srbanks Set the number of SRAM banks 1 - 5 1

banksz Set the size of bank 1 - 4. 0 = 8 Kbyte, 1 = 16 Kbyte, ... , 13 =
64Mbyte.

0 - 13 13

romasel address bit used for PROM chip select. 0 - 27 19
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95.8 Signal description

Table 1196 shows the interface signals of the core (VHDL ports).

Table 1197.Signal descriptions

Signal name Field Type Function Polarity

CLK N/A Input Clock -

RST N/A Input Reset Low

SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input BWIDTH=”00” => 8-bit PROM mode

BWIDTH=”10” => 32-bit PROM mode

-

SD[31:0] Input Not used -

SRO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Not used. Driven to ‘1’ (inactive) Low

ROMSN[1:0] Output PROM chip-select Low

RAMN Output Common SRAM chip-select. Asserted when one
of the RAMSN[4:0] signals is asserted.

Low

ROMN Output Common PROM chip-select. Asserted when one
of the ROMSN[1:0] signals is asserted.

Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.

Low/High2

READ Output Read strobe High

SA[14:0] Output Not used High



AEROFLEX GAISLER 1010 GRIP

95.9 Library dependencies

Table 1198 shows libraries used when instantiating the core (VHDL libraries).

95.10 Component declaration

The core has the following component declaration.

component srctrl
  generic (
    hindex  : integer := 0;
    romaddr : integer := 0;
    rommask : integer := 16#ff0#;
    ramaddr : integer := 16#400#;
    rammask : integer := 16#ff0#;;
    ioaddr  : integer := 16#200#;
    iomask  : integer := 16#ff0#;
    ramws   : integer := 0;
    romws   : integer := 2;
    iows    : integer := 2;
    rmw     : integer := 0;-- read-modify-write enable
    prom8en : integer := 0;
    oepol   : integer := 0;

 srbanks : integer range 1 to 5 := 1;
 banksz  : integer range 0 to 13:= 13;
 romasel : integer range 0 to 27:= 19

  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    sri     : in  memory_in_type;
    sro     : out memory_out_type;
    sdo     : out sdctrl_out_type
  );
end component;

95.11 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are driven to inactive state. Low

1) See GRLIB IP Library User’s Manual

2) Polarity is selected with the oepol generic

Table 1198.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration

Table 1197.Signal descriptions

Signal name Field Type Function Polarity



AEROFLEX GAISLER 1011 GRIP

Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and SRAM area is
0x40000000 - 0x40FFFFF. The 8-bit PROM mode is disabled. Two SRAM banks of size 64 Mbyte
are used and the fifth chip select is disabled.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all;
library esa;
use esa.memoryctrl.all;

entity srctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic;

    -- memory bus
    address  : out   std_logic_vector(27 downto 0); -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;

modesel : in  std_logic; --PROM width select
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); -- optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data

 );
end;

architecture rtl of srctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => apb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdctrl_out_type;

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
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  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;

begin

  -- AMBA Components are defined here ...

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
                                tech => virtex2, sdinvclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);

  -- Memory controller
srctrl0 : srctrl generic map (rmw => 1, prom8en => 0, srbanks => 2,

banksz => 13, ramsel5 => 0)
    port map (rstn, clkm, ahbsi, ahbso(0), memi, memo, sdo);

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

 -- Alternative I/O pad instantiation with vectored enable instead
 datapads : for i in 0 to 3 generate

      data_pad : iopadvv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8),
                en => memo.bdrive(31-i*8 downto 24-i*8),
                i => memo.data(31-i*8 downto 24-i*8));
  end generate;

  -- connect memory controller outputs to entity output signals
  address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
  writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
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96 SSRCTRL- 32-bit SSRAM/PROM Controller

96.1 Overview

The memory controller (SSRCTRL) is an 32-bit SSRAM/PROM/IO controller that interfaces external
Synchronous pipelined SRAM, PROM, and I/O to the AMBA AHB bus. The controller acts as a slave
on the AHB bus and has a configuration register accessible through an APB slave interface. Figure
278 illustrates the connection between the different devices.

The controller is configured by VHDL-generics to decode three address ranges: PROM, SSRAM and
I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF; the SSRAM area is
mapped into address range 0x40000000 - 0x40FFFFFF; and the I/O area is mapped to 0x20000000 -
0x20FFFFFF.

One chip select is generated for each of the address areas. The controller generates both a common
write-enable signal (WRITEN) as well as four byte-write enable signals (WRN). The byte-write
enable signal enables byte and half-word write access to the SSRAM.

A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used to select the polarity of these enable signals. If output delay is an
issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has its
own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (in case the output they drive is used in the design).

The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address.

Figure 278. 32-bit SSRAM/PROM/IO controller
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96.2 SSRAM/PROM waveform

Because the SSRAM (Synchronous pipelined SRAM) has a pipelined structure, the data output has a
latency of three clock cycles. The pipelined structure enables a new memory operation to be issued
each clock cycle. Figure 278 and figure 279 show timing diagrams for the SSRAM read and write
accesses.

As shown in the figure above, the controller always perform a burst read access to the memory. This
eliminates all data output latency except for the first word when a burst read operation is executed.

A write operation takes three clock cycles. On the rising edge of the first clock cycle, the address and
control signals are latched into the memory. On the next rising edge, the memory puts the data bus in
high-impedance mode. On the third rising edge the data on the bus is latched into the memory and the
write is complete. The controller can start a new memory (read or write) operation in the second clock
cycle. In figure 280 this is illustrated by a read operation following the write operation.

Due to the memory automatically putting the data bus in high-impedance mode when a write opera-
tion is performed, the output-enable signal (OEN) is held active low during all SSRAM accesses
(including write operations).

Figure 279. 32-bit SSRAM read cycle
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96.2.1 PROM and IO access

For the PROM and I/O operations, a number of waitstates can be inserted to increase the read and
write cycle. The number of waitstates can be configured separately for the I/O and PROM address
ranges, through a programmable register mapped into the APB address space. After a reset the wait-
states for PROM area is set to its maximum (15). Figure 281 and figure 282 show timing diagrams for
the PROM read and write accesses.

Read accesses to 32-bit PROM and I/O has the same timing, see figure 281

The write access for 32-bit PROM and I/O can be seen in figure 282

The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address. A 16-bit access will result in one bus access only. 8-bit accesses
are not allowed.

16-bit PROM/IO operation is enabled by writing “01” to the romwidth field in SSRAM control regis-
ter. At reset, the romwidth field is set by the MEMI.BWIDTH input signal.

Figure 281. 32-bit PROM/IO read cycle
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Read accesses to 16-bit PROM and I/O has the same timing, see figure 283

The write access for 32-bit PROM and I/O can be seen in figure 284

96.3 Registers

The core is programmed through registers mapped into APB address space.

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0, “0001”=1,...
“1111”=15).

Table 1199.SSRAM controller registers

APB address offset Register

0x00 Memory configuration register

Figure 283. 32-bit PROM/IO read cycle in 16-bit mode
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[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (“0000”=0, “0001”=1,...
“1111”=15).
[9:8]: Prom width. Defines the data with of the prom area (“01”=16, “10”=32).

[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area. NOT USED.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled. NOT USED.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
[25]: Bus error (BEXCN) enable. NOT USED.
[26]: Bus ready (BRDYN) enable. NOT USED.
[28:27]:  I/O bus width. Defines the data with of the I/O area (“01”=16, “10”=32).

During power-up (reset), the PROM waitstates fields are set to 15 (maximum) and the PROM bus
width is set to the value of MEMI.BWIDTH. All other fields are initialized to zero.

96.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x00A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

96.5 Configuration options

Table 1200 shows the configuration options of the core (VHDL generics).

96.6 Signal descriptions

Table 1201 shows the interface signals of the core (VHDL ports).

Table 1200.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space.
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining RAM address space.
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space.
Default IO area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#

paddr ADDR field of the APB BAR configuration registers address
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active
high

0 - 1 0

bus16 Enable support for 16-bit PROM/IO accesses 0 - 1 0

Table 1201.Signal descriptions

Signal name Field Type Function Polarity

CLK N/A Input Clock -
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RST N/A Input Reset Low

SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input PROM bus width at reset -

SD[63:0] Input Not used -

CB[7:0] Input Not used -

SCB[7:0] Input Not used -

EDAC Input Not used -

SRO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

SDDATA[63:0] Output Not used -

RAMSN[7:0] Output SSRAM chip-select, only bit 0 is used Low

RAMOEN[7:0] Output Same as OEN Low

IOSN Output I/O chip-select Low

ROMSN[7:0] Output PROM chip-select, only bit 0 is used Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SSRAM byte write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Not used Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.

Low/High2

SVBDRIVE Output Not used -

READ Output Not used -

SA[14:0] Output Not used -

CB[7:0] Output Not used -

SCB[7:0] Output Not used -

VCDRIVE[7:0] Output Not used -

SVCDRIVE[7:0] Output Not used -

CE Output Not used -

AHBSI 1) Input AHB slave input signals -

Table 1201.Signal descriptions

Signal name Field Type Function Polarity
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96.7 Library dependencies

Table 1202 shows libraries used when instantiating the core (VHDL libraries).

96.8 Component declaration

The core has the following component declaration.

component ssrctrl
  generic (
    hindex  : integer := 0;
    pindex  : integer := 0;
    romaddr : integer := 0;
    rommask : integer := 16#ff0#;
    ramaddr : integer := 16#400#;
    rammask : integer := 16#ff0#;
    ioaddr  : integer := 16#200#;
    iomask  : integer := 16#ff0#;
    paddr   : integer := 0;
    pmask   : integer := 16#fff#;

oepol   : integer := 0;
bus16 : integer := 0

  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    apbi    : in  apb_slv_in_type;
    apbo    : out apb_slv_out_type;
    sri     : in  memory_in_type;
    sro     : out memory_out_type

  );
end component;

96.9 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it,
including the memory controller. The external memory bus is defined in the example designs port map
and connected to the memory controller. System clock and reset are generated by the Clkgen_ml401
Clock Generator and GR Reset Generator.

AHBSO 1) Output AHB slave output signals -

APBI 1) Input APB slave input signals -

APBO 1) Output APB slave output signals -

1) See GRLIB IP Library User’s Manual

2) Polarity is selected with the oepol generic

Table 1202.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration

Table 1201.Signal descriptions

Signal name Field Type Function Polarity
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The memory controller decodes default memory areas: PROM area is 0x0 - 0x00FFFFFF, I/O-area is
0x20000000-0x20FFFFFF and RAM area is 0x40000000 - 0x40FFFFFF.

library ieee;
use ieee.std_logic_1164.all;
library grlib, techmap;
use grlib.amba.all;
use grlib.stdlib.all;
use techmap.gencomp.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity ssrctrl_ex is
 port (
    sys_rst_in: in  std_ulogic;
    sys_clk: in  std_ulogic; -- 100 MHz main clock
    sram_flash_addr : out std_logic_vector(22 downto 0);
    sram_flash_data : inout std_logic_vector(31 downto 0);
    sram_cen : out std_logic;
    sram_bw : out std_logic_vector (0 to 3);
    sram_flash_oe_n : out std_ulogic;
    sram_flash_we_n : out std_ulogic;
    flash_ce : out std_logic;
    sram_clk : out std_ulogic;
    sram_clk_fb: in  std_ulogic;
    sram_mode : out std_ulogic;
    sram_adv_ld_n : out std_ulogic;
    sram_zz : out std_ulogic;
    iosn : out std_ulogic;
);
end;

architecture rtl of ssrctrl_ex is

-- Clock generator component
component clkgen_ml401
  generic (
    clk_mul  : integer := 1;
    clk_div  : integer := 1;
    freq     : integer := 100000);-- clock frequency in KHz
  port (
    clkin   : in  std_logic;
    clk     : out std_logic;-- main clock
    ddrclk  : out std_logic;-- DDR clock
    ddrclkfb: in  std_logic;-- DDR clock feedback
    ddrclk90  : out std_logic;-- DDR 90 clock
    ddrclk180 : out std_logic;-- 180 clock
    ddrclk270 : out std_logic;-- DDR clock
    ssrclk  : out std_logic;-- SSRAM clock
    ssrclkfb: in  std_logic;-- SSRAM clock feedback
    cgi     : in clkgen_in_type;
    cgo     : out clkgen_out_type);
end component;

-- signals used to connect memory controller and memory bus
signal memi  : memory_in_type;
signal memo  : memory_out_type;

-- AMBA bus (AHB and APB)
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- Signals used by clock and reset generators
signal clkm, rstn, rstraw, srclkl : std_ulogic;
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signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;
signal ddrclkfb, ssrclkfb, ddr_clkl, ddr_clknl : std_ulogic;

begin

  clkgen0 : clkgen_ml401 -- clock generator
  port map (sys_clk, clkm, ddr_clkl, ddrclkfb, open, ddr_clknl, open, sram_clk,
      sram_clk_fb, cgi, cgo);

  rst0 : rstgen-- reset generator
  port map (sys_rst_in, clkm, cgo.clklock, rstn, rstraw);

  -- AMBA Components are defined here ...

  -- Memory controller
  mctrl0 : ssrctrl generic map (hindex => 0, pindex => 0)
  port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(0), memi, memo);

  -- connect memory controller outputs to entity output signals
  sram_adv_ld_n <=  ’0’; sram_mode <=  ’0’; sram_zz <= ’0’;
  sram_flash_addr <= memo.address(24 downto 2); sram_cen <= memo.ramsn(0);
  flash_ce <= memo.romsn(0); sram_flash_oe_n <= memo.oen; iosn <= memo.iosn;
  sram_bw <= memo.wrn; sram_flash_we_n <= memo.writen;

  -- I/O pad instantiation with vectored enable instead
  bdr : for i in 0 to 31 generate
      data_pad : iopad generic map (tech => padtech)
      port map (sram_flash_data(i), memo.data(i),
             memo.vbdrive(i), memi.data(i));
  end generate;

end;
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97 SVGACTRL - VGA Controller Core

97.1 Overview

The core is a pixel based video controller (frame buffer), capable of displaying standard and custom
resolutions with variable bit depth and refresh rates. The video controller consists of a synchroniza-
tion unit, main control unit, FIFO unit and an AHB master as shown in the figure below.

97.2 Operation

The core uses external frame buffer memory located in the AHB address space. A frame on the dis-
play is created by fetching the pixel data from memory and sending it to the screen through an exter-
nal DAC using three 8-bit color vectors. To hide the AHB bus latency, the pixel data is buffered in a
FIFO inside the core. The start address of the frame buffer is specified in the Frame buffer Memory
Position register, and can be anywhere in the AHB address space. In addition to the color vectors the
video controller also generates HSYNC, VSYNC, CSYNC and BLANK signals control signals.

The video timing is programmable through the Video Length, Front Porch, Sync Length and Line
Length registers. The bit depth selection and enabling of the controller is done through the status reg-
ister. These values make it possible to display a wide range of resolutions and refresh rates.

The pixel clock can be either static or dynamic multiplexed. The frequency of the pixel clock is calcu-
lated asHorizontal Line Length * Vertical Line Length * refresh rate. When using a dynamically mul-
tiplexed clock, bits [5:4] in the status register are used to control the clock selector. The dynamic pixel
clocks should be defined in the core’s VHDL generics to allow software to read out the available pixel
clock frequencies.

The core can use bit depths of 8, 16 and 32 bits. When using 32 bits, bits[23:0] are used, when 16 bits
a [5,6,5] color scheme is used and when using 8 bits a color lookup table “CLUT” is used. The CLUT
has 256 positions, each 24 bits wide, and the 8 bit values read from memory are used to index the
CLUT to obtain the actual color.

97.3 DVI support

In order to initialize a DVI transmitter, an additional core such as the I2C master is normally required.
Additional glue logic may also be required since the interfaces of DVI transmitters differ between
manufacturers and product lines. Examples on how to interface the core to a DVI transmitter are avail-
able in the GRLIB IP Library’s template designs.

VGA
Controller

Hsync, Vsync, Csync, Blank

Red [7:0]
Green[7:0]
Blue[7:0]

AHB
Master

AHB bus

APB bus

Video clocks

Clk sel.

Clk mux
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97.4 Registers

The core is programmed through registers mapped into APB address space.

Table 1203.VGA controller registers

APB address offset Register

0x00 Status register

0x04 Video length register

0x08 Front Porch register

0x0C Sync Length register

0x10 Line Length register

0x14 Framebuffer Memory Position register

0x18 Dynamic Clock 0 register

0x1C Dynamic Clock 1 register

0x20 Dynamic Clock 2 register

0x24 Dynamic Clock 3 register

0x28 CLUT Access register

Table 1204.VGA controller Status register
31 10 9 8 7 6 5 4 3 2 1 0

RESERVED VPOL HPOL CLKSEL BDSEL VR RES RST EN

31:10 RESERVED

9 V polarity (VPOL)- Sets the polarity for the vertical sync pulse.

8 H polarity (HPOL) - Sets the polarity for the horizontal sync pulse.

7:6 Clock Select (CLKSEL) Clock selector when using dynamic pixelclock

5:4 Bit depth selector (BDSEL) - “01” = 8-bit mode; “10” = 16-bit mode; “11” = 32-bit mode

3 Vertical refresh (VR) - High during vertical refresh

2 RESERVED

1 Reset (RST) - Resets the core

0 Enable (EN) - Enables the core

Table 1205.VGA controller Video Length register
31 16 15 0

VRES HRES

31:16 Vertical screen resolution (VRES) - Vertical screen resolution in pixels -1

15:0 Horisontal screen resolution (HRES) - Horizontal screen resolution in pixels -1.

Table 1206.VGA controller Front porch register
31 16 15 0

VPORCH HPORCH

31:16 Vertical front porch (VPORCH) - Vertical front porch in pixels.

15:0 Horisontal front porch (HPORCH) - Horizontal front porch in pixels.
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Table 1207.VGA controller Sync pulse register
31 16 15 0

VPLEN HPLEN

31:16 Vertical sync pulse length (VPLEN) - Vertical sync pulse length in pixels.

15:0 Horisontal sync pulse length (HPLEN) - Horizontal sync pulse length in pixels.

Table 1208.VGA controller Line Length register
31 16 15 0

VLLEN HLLEN

31:16 Vertical line length (VLLEN) - The length of the total line with front and back porch, sync pulse
length and vertical screen resolution.

15:0 Horisontal line length (HLLEN) - The length of the total line with front and back porch, sync pulse
length and horizontal screen resolution,

Table 1209.VGA controller Framebuffer Memory Position register
31 0

FMEM

31:0 Framebuffer memory position (FMEM) - Holds the memory position of the framebuffer, must be
aligned on a 1 Kbyte boundary.

Table 1210.VGA controller Dynamic clock 0 register
31 0

CLK0

31:0 Dynamic pixel clock 0 (CLK0) - Dynamic pixel clock defined in ps.

Table 1211.VGA controller Dynamic clock 1 register
31 0

CLK1

31:0 Dynamic pixel clock 1 (CLK1) - Dynamic pixel clock defined in ps.

Table 1212.VGA controller Dynamic clock 2 register
31 0

CLK2

31:0 Dynamic pixel clock 2 (CLK2) - Dynamic pixel clock defined in ps.
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97.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x063. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

97.6 Configuration options

Table 1215 shows the configuration options of the core (VHDL generics).

Table 1213.VGA controller Dynamic clock 3 register
31 0

CLK3

31:0 Dynamic pixel clock 3 (CLK3) - Dynamic pixel clock defined in ps.

Table 1214.VGA controller CLUT Access register
31 24 23 16 15 6 7 0

CREG RED GREEN BLUE

31:24 Color lookup table register (CREG) - Color lookup table register to set.

23:16 Red color data (RED) - Red color data to set in the specified register.

15:8 Green color data (GREEN) - Green color data to set in the specified register.

7:0 Blue color data (BLUE) - Blue color data to set in the specified register.

Table 1215.Configuration options

Generic name Function Allowed range Default

length Size of the pixel FIFO 3 - 1008 384

part Pixel FIFO part length 1 - 336 128

memtech Memory technology 0 - NTECH 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr 12-bit MSB APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#

hindex AHB master index 0 - NAHBMST-1 0

hirq Interrupt line 0 - NAHBIRQ-1 0

clk0 Period of dynamic clock 0 in ps 0- 16#FFFFFFFF# 40000

clk1 Period of dynamic clock 1 in ps 0- 16#FFFFFFFF# 20000

clk2 Period of dynamic clock 2 in ps 0- 16#FFFFFFFF# 15385

clk3 Period of dynamic clock 3 in ps 0- 16#FFFFFFFF# 0

burstlen AHB burst length. The core will burst 2burstlen words. 2 - 8 8

ahbaccsz Determines the size of the AMBA accesses that the core
will use when fetching data from memory.

32 - AHBDW 32

ayncrst Use asynchronous reset for the VGA clock domain. If
this generic is set to 1 the core will use thearst input to
reset part of the registers in the VGA domain. Asynchro-
nous reset should be used if the VGA clock is not avail-
able during system reset. If this generic is 0 thearst input
is not used.

0 - 1 0
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97.7 Signal descriptions

Table 1216 shows the interface signals of the core (VHDL ports).

97.8 Library dependencies

Table 1217 shows the libraries used when instantiating the core (VHDL libraries).

97.9 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library Gaisler;
use gaiser.misc.all;
.
architecture rtl of test is
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out;
signal vgao : apbvga_out_type;
signal ahbi : ahb_mst_in_type;
signal ahbo : ahb_mst_out_type;
signal clk_sel :std_logic_vector(1 downto 0));
signal clkmvga : std_logic;
begin
.
.

Table 1216.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock -

VGACLK N/A Input Pixel clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

VGAO HSYNC Output Horizontal sync -

VSYNC Output Vertical sync -

COMP_SYNC Output Composite sync -

BLANK Output Blanking -

VIDEO_OUT_R[7:0] Output Video out, red. -

VIDEO_OUT_G[7:0] Output Video out, green. -

VIDEO_OUT_B[7:0] Output Video out, blue. -

BITDEPTH[1:0] Output Value of Status register’s BDSEL field -

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

CLK_SEL[1:0] N/A Output 2-bit clock selector -

ARST N/A Input Asynchronous reset input Low

* see GRLIB IP Library User’s Manual

Table 1217.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals Component and signal definitions.



AEROFLEX GAISLER 1027 GRIP

-- VGA Controller
  vga0 : svgactrl
  generic map(memtech => memtech, pindex => 6, paddr => 6, hindex => 6,
    clk0 => 40000, clk1 => 20000, clk2 => 15385, clk3 => 0)
  port map(rstn,clkm,clkmvga, apbi, apbo(6), vgao,ahbmi,ahbmo(6),clk_sel);
end;

97.10 Linux 2.6 driver

A video driver for the core is provided Snapgear Linux (-p27 and later). The proper kernel command
line options must be used for the driver to detect the core. Please see the SnapGear Linux for LEON
manual for further information.
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98 SYNCRAM - Single-port RAM generator

98.1 Overview

SYNCRAM is a single port RAM that maps on technology-specific RAM blocks. The core has a
common address bus, and separate data-in and data-out buses. All inputs are latched on the on the ris-
ing edge of clk. The read data appears on dataout directly after the clk rising edge.

98.2 Configuration options

Table 1218 shows the configuration options of the core (VHDL generics).

98.3 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enaled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

Table 1218.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

testen Enable bypass logic for scan testing 0 - 1 0

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 286. Scan test support

Clk
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Table 1219 shows the supported technologies for the core.

98.4 Signal descriptions

Table 1220 shows the interface signals of the core (VHDL ports).

Table 1219.Supported technologies

Tech name Technology RAM cell abit range dbit range

altera All Altera devices altsyncram unlimited unlimited

ihp15 IHP 0.25 sram2k (512x32) 2 - 9 unlimited

inferred Behavioral description Tool dependent unlimited unlimited

virtex Xilinx Virtex, VirtexE, Spartan2 RAMB4_Sn unlimited unlimited

virtex2 Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6

RAMB16_Sn unlimited unlimited

axcel / axdsp Actel AX, RTAX and RTAX-DSP RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

lattice Lattice XP/EC/ECP sp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss1_128x32cm4sw0
hdss1_256x32cm4sw0
hdss1_512x32cm4sw0
hdss1_1024x32cm8sw0

7 - 11 32

memartisan Artisan ASIC RAM sp_256x32m32
sp_512x32m32
sp_1kx32m32
sp_2kx32m32
sp_4kx32m32
sp_8kx32m32
sp_16kx32m32

8 - 14 32

memvirage90 Virage 90 nm ASIC RAM SPRAM_HS_32x30
SPRAM_HS_128x32
SPRAM_HS_256x32
SPRAM_HS_1024x32

2 - 10 128

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram, bram 2 - 15 unlimited

easic45 eASIC 45 nm Nextreme2 bRAM, rFile unlimited unlimited

Table 1220.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock. All input signals are latched on the rising
edge of the clock.

-

ADDRESS N/A Input Address bus. Used for both read and write
access.

-

DATAIN N/A Input Data inputs for write data -

DATAOUT N/A Output Data outputs for read data -

ENABLE N/A Input Chip select High

WRITE N/A Input Write enable High

TESTIN Input Test inputs (see text) High
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98.5 Library dependencies

Table 1221 shows libraries used when instantiating the core (VHDL libraries).

98.6 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

  component syncram
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector((dbits -1) downto 0);
    dataout  : out std_logic_vector((dbits -1) downto 0);
    enable   : in std_ulogic;
    write    : in std_ulogic;
    testin   : in std_logic_vector(3 downto 0) := "0000");
  end component;

98.7 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
.

clk      : std_ulogic;
address  : std_logic_vector((abits -1) downto 0);
datain   : std_logic_vector((dbits -1) downto 0);
dataout  : std_logic_vector((dbits -1) downto 0);
enable   : std_ulogic;
write    : std_ulogic);

ram0 : syncram generic map ( tech => tech, abits => addrbits, dbits => dbits)
      port map ( clk, addr, datain, dataout, enable, write);

Table 1221.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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99 SYNCRAMBW - Single-port RAM generator with byte enables

99.1 Overview

SYNCRAMBW implements a single port RAM with byte enables, using the GRLIB technology
wrapping for different target technologies. The core operates identically to SYNCRAM, with the
addition that each byte has a separate chip select (ENABLE) and write select (WRITE). The core is
provided in a generic configuration and also in configurations of 128, 156 and 256 bits, and the corre-
sponding entities are named SYNCRAMBW, SYNCRAM128BW, SYNCRAM156BW and
SYNCRAM256BW. In the simplest case, the IP cores just instantiate several eight bit wide SYN-
CRAM components. SYNCRAM128BW, SYNCRAM156BW and SYNCRAM256BW, used in
GRLIB’s Level-2 cache core, contain specialized maps for several technologies to more efficiently
utilize device resources.

Note that some SYNCRAM components may be missing from the library depending on the type of
GRLIB distribution.

99.2 Configuration options

Table 1222 shows the configuration options of the core (VHDL generics).

99.3 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enaled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

Table 1222.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

testen Enable bypass logic for scan testing 0 - 1 0
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99.4 Technology support

Table 1223 shows the supported technologies for the core.

To add support for a new technology, the following steps should be taken:

• Add technology-specific version for the RAM core in lib/techmap/TECH

• Instantiate the technology-specific RAM core in lib/techmap/maps/syncram256bw.vhd, and set
the has_sram256bw() constant to 1 for the specific technology:

constant has_sram256bw : tech_ability_type := (
virtex2 => 1, virtex4 => 1, virtex5 => 1, spartan3 => 1,
spartan3e => 1, spartan6 => 1, virtex6 => 1,
altera => 1, cyclone3 => 1, stratix2 => 1, stratix3 => 1,
tm65gpl => 0, others => 0);

See also syncrambw.vhd, syncram128bw.vhd and syncram156bw.vhd under lib/techmap/maps/ for
the corresponding SYNCRAM BW IP cores.

Table 1223.Supported technologies

Tech name Technology RAM cell abit range dbit range

altera All Altera devices altsyncram unlimited unlimited

inferred Behavioral description Tool dependent unlimited unlimited

virtex2/4/5/6
Spartan3/3a/3e/6

Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6

RAMB16_Sn unlimited unlimited

all others - syncram core with dwidth=8 tech depend. tech depend.

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 287. Scan test support

Clk
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99.5 Signal descriptions

Table 1224 shows the interface signals of the core (VHDL ports).

99.6 Library dependencies

Table 1225 shows libraries used when instantiating the core (VHDL libraries).

99.7 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

  component syncram_bw128
  generic (tech : integer := 0; abits : integer := 6);
  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector(127 downto 0);
    dataout  : out std_logic_vector(127 downto 0);
    enable   : in std_logic_vector(15 downto 0);
    write    : in std_logic_vector(15 downto 0);
    testin   : in std_logic_vector(3 downto 0) := "0000");
  end component;

  component syncram_bw256
  generic (tech : integer := 0; abits : integer := 6);
  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector(255 downto 0);
    dataout  : out std_logic_vector(255 downto 0);
    enable   : in std_logic_vector(31 downto 0);
    write    : in std_logic_vector(31 downto 0);
    testin   : in std_logic_vector(3 downto 0) := "0000");
  end component;

99.8 Instantiation

This example shows how the core can be instantiated.

library ieee;

Table 1224.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock. All input signals are latched on the rising
edge of the clock.

-

ADDRESS N/A Input Address bus. Used for both read and write
access.

-

DATAIN N/A Input Data inputs for write data -

DATAOUT N/A Output Data outputs for read data -

ENABLE N/A Input Byte Chip select High

WRITE N/A Input Byte Write enable High

TESTIN Input Test inputs (see text) High

Table 1225.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
.

clk      : std_ulogic;
address  : std_logic_vector(9 downto 0);
datain   : std_logic_vector(255 downto 0);
dataout  : std_logic_vector(255 downto 0);
enable   : std_logic_vector(31 downto 0);
write    : std_logic_vector(31 downto 0);

ram0 : syncram generic map ( tech => tech, abits => 10)
      port map ( clk, addr, datain, dataout, enable, write);
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100 SYNCRAM_2P - Two-port RAM generator

100.1 Overview

The two-port RAM generator has a one read port and one write port. Each port has a separate address
and data bus. All inputs are registered on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics.

100.2 Write-through operation

Write-through is supported if the functionsyncram_2p_write_through(tech)returns 1 for the target
technology, or if thewrfst generic is set to 1. Ifwrfst = 1, additional logic will be generated to detect
simultaneous read/write to the same memory location, and in that case bypass the written data to the
data outputs.

100.3 Conflicts

Some technologies will produce unpredictable results when a read and write operation occurs simulta-
neously to the same memory location. The functionsyncram_2p_dest_rw_collision(tech)returns 1 for
technologies that has this characteristic. If SYNCRAM_2P is implemented withsepclk= 0 then logic
will be included that disables the read enable signal, if needed, when a collision is detected. If the core
is implemented withsepclk= 1 (andsyncram_2p_dest_rw_collision(tech)returns 1) then collision
avoidance must be handled by external logic.

100.4 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enaled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 288. Scan test support

Clk
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100.5 Configuration options

Table 1226 shows the configuration options of the core (VHDL generics).

Table 1227 shows the supported technologies for the core.

Table 1226.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

sepclk If 1, separate clocks (rclk/wclk) are used for the two ports. If 0, rclk
is used for both ports.

0 - 1 0

wrfst Enable bypass logic for write-through operation. Can only be
enabled for sepclk = 0.

0 - 1 0

testen Enable bypass logic for scan testing 0 - 1 0

Table 1227.Supported technologies

Tech name Technology RAM cell abit range dbit range

Inferred Behavioural description Tool dependent unlimited unlimited

altera All Altera devices altsyncram umlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2/4/5/6

Spartan3/3a/3e/6

RAMB16_Sn 2 - 14 unlimited

axcel / axdsp Actel AX, RTAX and RTAX-DSP RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM rf2_256x32m4
rf2_512x32m4

8 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited

easic45 eASIC 45 nm Nextreme2 bRAM, rFile unlimited unlimited
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100.6 Signal descriptions

Table 1228 shows the interface signals of the core (VHDL ports).

100.7 Library dependencies

Table 1229 shows libraries used when instantiating the core (VHDL libraries).

100.8 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component syncram_2p
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8; sepclk : integer
:= 0);
  port (
    rclk     : in std_ulogic;
    renable  : in std_ulogic;
    raddress : in std_logic_vector((abits -1) downto 0);
    dataout  : out std_logic_vector((dbits -1) downto 0);
    wclk     : in std_ulogic;
    write    : in std_ulogic;
    waddress : in std_logic_vector((abits -1) downto 0);
    datain   : in std_logic_vector((dbits -1) downto 0);
    testin   : in std_logic_vector(3 downto 0) := "0000");
  end component;

100.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;

rclk     : in std_ulogic;
renable  : in std_ulogic;
raddress : in std_logic_vector((abits -1) downto 0);

Table 1228.Signal descriptions

Signal name Type Function Active

RCLK Input Read port clock -

RENABLE Input Read enable High

RADDRESS Input Read address bus -

DATAOUT Output Data outputs for read data -

WCLK Input Write port clock -

WRITE Input Write enable High

WADDRESS Input Write address -

DATAIN Input Write data -

TESTEN Input Test inputs (see text) High

Table 1229.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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dataout  : out std_logic_vector((dbits -1) downto 0);
wclk     : in std_ulogic;
write    : in std_ulogic;
waddress : in std_logic_vector((abits -1) downto 0);
datain   : in std_logic_vector((dbits -1) downto 0));

ram0 : syncram_2p generic map ( tech => tech, abits => addrbits, dbits => dbits)
      port map ( rclk, renable, raddress, dataout, wclk, write, waddress, datain, enable,
write);
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101 SYNCRAM_DP - Dual-port RAM generator

101.1 Overview

The dual-port RAM generator has two independent read/write ports. Each port has a separate address
and data bus. All inputs are latched on the on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics. Simultaneous write to the same address is technology dependent, and generally not
allowed.

101.2 Configuration options

Table 1230 shows the configuration options of the core (VHDL generics).

Table 1231 shows the supported technologies for the core.

Table 1230.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

Table 1231.Supported technologies

Tech name Technology RAM cell abit range dbit range

altera All altera devices altsyncram unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2/4/5/6

Spartan3/3a/3e/6

RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM dp_256x32m4
dp_512x32m4
dp_1kx32m4

8 - 10 32

memvirage90 Virage 90 nm ASIC RAM DPRAM_HS_256x20
DPRAM_HS_256x32

2 - 8 128

easic45 eASIC 45 nm Nextreme2 bRAM unlimited unlimited
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101.3 Signal descriptions

Table 1232 shows the interface signals of the core (VHDL ports).

101.4 Library dependencies

Table 1233 shows libraries used when instantiating the core (VHDL libraries).

101.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component syncram_dp
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
  port (
    clk1     : in std_ulogic;
    address1 : in std_logic_vector((abits -1) downto 0);
    datain1  : in std_logic_vector((dbits -1) downto 0);
    dataout1 : out std_logic_vector((dbits -1) downto 0);
    enable1  : in std_ulogic;
    write1   : in std_ulogic;
    clk2     : in std_ulogic;
    address2 : in std_logic_vector((abits -1) downto 0);
    datain2  : in std_logic_vector((dbits -1) downto 0);
    dataout2 : out std_logic_vector((dbits -1) downto 0);
    enable2  : in std_ulogic;
    write2   : in std_ulogic);
  end component;

101.6 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library techmap;

Table 1232.Signal descriptions

Signal name Field Type Function Active

CLK1 N/A Input Port1 clock -

ADDRESS1 N/A Input Port1 address -

DATAIN1 N/A Input Port1 write data -

DATAOUT1 N/A Output Port1 read data -

ENABLE1 N/A Input Port1 chip select High

WRITE1 N/A Input Port 1 write enable High

CLK2 N/A Input Port2 clock -

ADDRESS2 N/A Input Port2 address -

DATAIN2 N/A Input Port2 write data -

DATAOUT2 N/A Output Port2 read data -

ENABLE2 N/A Input Port2 chip select High

WRITE2 N/A Input Port 2 write enable High

Table 1233.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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use techmap.gencomp.all;

clk1     : in std_ulogic;
address1 : in std_logic_vector((abits -1) downto 0);
datain1  : in std_logic_vector((dbits -1) downto 0);
dataout1 : out std_logic_vector((dbits -1) downto 0);
enable1  : in std_ulogic;
write1   : in std_ulogic;
clk2     : in std_ulogic;
address2 : in std_logic_vector((abits -1) downto 0);
datain2  : in std_logic_vector((dbits -1) downto 0);
dataout2 : out std_logic_vector((dbits -1) downto 0);
enable2  : in std_ulogic;
write2   : in std_ulogic);

ram0 : syncram_dp generic map ( tech => tech, abits => addrbits, dbits => dbits)
port map ( clk1, address1, datain1, dataout1, enable1, write1, clk2, address2, datain2,

dataout2, enable2, write2);
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102 TAP - JTAG TAP Controller

102.1 Overview

JTAG TAP Controller provides an Test Access Port according to IEEE-1149 (JTAG) Standard. The
core implements the Test Access Port signals, the synchronous TAP state-machine, a number of JTAG
data registers (depending on the target technology) and an interface to user-defined JTAG data regis-
ters.

102.2 Operation

102.2.1 Generic TAP Controller

The generic TAP Controller implements JTAG Test Access Point interface with signals TCK, TMS,
TDI and TDO, a synchronous state-machine compliant to the IEEE-1149 standard, JTAG instruction
register and two JTAG data registers: bypass and device identification code register. The core is capa-
ble of shifting and updating the JTAG instruction register, putting the device into bypass mode
(BYPASS instruction) and shifting out the devices identification number (IDCODE instruction). User-
defined JTAG test registers are accessed through user-defined data register interface.

The access to the user-define test data registers is provided through the user-defined data register
interface. The instruction in the TAP controller instruction register appears on the interface as well as
shift-in data and signals indicating that the TAP controller is in Capture-Data-Register, Shift-Data-
Register or Update-Data-Register state. Logic controlling user-defined data registers should observe
value in the instruction register and TAP controller state signals in order to capture data, shift data or
update data-registers.

JTAG test registers such as boundary-scan register can be interfaced to the TAP controller through the
user data register interface.

102.3 Technology specific TAP controllers

The core instantiates technology specific TAP controller for Altera and Xilinx devices.

102.4 Registers

The core implements three JTAG registers: instruction, bypass and device identification code register.

102.5 Vendor and device identifiers

The core does not have vendor and device identifiers since it does not have AMBA interfaces.

Figure 289. TAP controller block diagram

JTAG TAP
Controller

TCK

TMS

TDI

TDO

Interface to user-defined
data registersTRST

(*optional)



AEROFLEX GAISLER 1044 GRIP

102.6 Configuration options

Table 1234 shows the configuration options of the core (VHDL generics).

Table 1234.Configuration options

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

irlen Instruction register length (generic tech only) 2 - 8 4

idcode JTAG IDCODE instruction code(generic tech only) 0 - 255 9

manf Manufacturer id. Appears as bits 11-1 in TAP controllers device
identification register. Used only for generic technology. Default
is Aeroflex Gaisler manufacturer id.

0 - 2047 804

part Part number (generic tech only). Bits 27-12 in device id. reg. 0 - 65535 0

ver Version number (generic tech only). Bits 31-28 in device id. reg. 0-15 0

trsten Support optional TRST signal (generic tech only) 0 - 1 1

scantest Enable scan test support 0 - 1 0

oepol Polarity for TDOEN signal 0 - 1 1

tcknen Support externally inverted TCK signal (generic tech only) 0 - 1 0
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102.7 Signal descriptions

Table 1235 shows the interface signals of the core (VHDL ports).

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and
TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made
visible to the core through technology-specific TAP macro instantiation.

102.8 Library dependencies

Table 1236 shows libraries used when instantiating the core (VHDL libraries).

102.9 Instantiation

This example shows how the core can be instantiated.

Table 1235.Signal declarations

Signal name Field Type Function Active

TRST N/A Input JTAG TRST signal* Low

TCK N/A Input JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

User-defined data register interface

TAPO_TCK N/A Output TCK signal High

TAPO_TDI N/A Output TDI signal High

TAPO_INST[7:0] N/A Output Instruction in the TAP Ctrl instruction register High

TAPO_RST N/A Output TAP Controller in Test-Logic_Reset state High

TAPO_CAPT N/A Output TAP Controller in Capture-DR state High

TAPO_SHFT N/A Output TAP Controller in Shift-DR state High

TAPO_UPD N/A Output TAP Controller in Update-DR state High

TAPO_XSEL1 N/A Output Xilinx User-defined Data Register 1 selected
(Xilinx tech only)

High

TAPO_XSEL2 N/A Output Xilinx User-defined Data Register 2 selected
(Xilinx tech only)

High

TAPI_EN1 N/A Input Enable shift-out data port 1 (TAPI_TDO1), when
disabled data on port 2 is used

High

TAPI_TDO1 N/A Input Shift-out data from user-defined register port 1 High

TAPI_TDO2 N/A Input Shift-out data from user-defined register port 2 High

Additional signals

TESTEN N/A Input Test mode enable signal High

TESTRST N/A Input Test mode reset signal Low

TESTOEN N/A Input Test mode output-enable control see oepol

TDOEN N/A Output JTAG TDO enable signal* see oepol

TCKN N/A Input Inverted clock (if tcknen generic is set)

Table 1236.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Component TAP Controller component declaration
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library ieee;
use ieee.std_logic_1164.all;

library techmap;
use gaisler.gencomp.all;

entity tap_ex is
  port (
    clk : in std_ulogic;
    rst : in std_ulogic;

    -- JTAG signals
    tck  : in std_ulogic;
    tms  : in std_ulogic;
    tdi  : in std_ulogic;
    tdo  : out std_ulogic
);
end;

architecture rtl of tap_ex is

signal gnd : std_ulogic;

signal tapo_tck, tapo_tdi, tapo_rst, tapo_capt : std_ulogic;
signal tapo_shft, tapo_upd : std_ulogic;
signal tapi_en1, tapi_tdo : std_ulogic;
signal tapo_inst : std_logic_vector(7 downto 0);

begin

 gnd <= ‘0’;
 tckn <= not tck;

-- TAP Controller

  tap0 : tap (tech => 0)
    port map (rst, tck, tckn, tms, tdi, tdo, open, tapo_tck, tapo_tdi, tapo_inst,
      tapo_rst, tapo_capt, tapo_shft, tapo_upd, open, open,
       tapi_en1, tapi_tdo, gnd);

-- User-defined JTAG data registers

  ...

end;
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103 GRUSB_DCL - USB Debug Communication Link

103.1 Overview

The Universal Serial Bus Debug Communication Link (GRUSB_DCL) provides an interface between
a USB 2.0 bus and an AMBA-AHB bus. The core must be connected to the USB through an UTMI,
UTMI+, or ULPI compliant PHY. Both full-speed and high-speed mode are supported. The
GRUSB_DCL rely on the GRUSBDC core for handling the USB communication and communication
with the PHY. The GRUSB_DCL implements the minimum required set of USB requests to be Ver-
sion 2.0 compliant and a simple protocol for performing read and write accesses on the AHB bus. Fig-
ure 290 show how the GRUSB_DCL can be connected to a PHY. For more information on the
GRUSBDC and the connection to the USB PHY please refer to the GRLIB IP Core User’s Manual.

103.2 Operation

103.2.1 System overview

The internal structure of the GRUSB_DCL can be seen in figure 291. The GRUSB_DCL is con-
structed with two internal AHB busses for communication with the GRUSBDC and one external
AHB master interface for reading and writing the external AHB bus. Since the GRUSBDC is con-
nected with point-to-point links there is no need for a conventional AHB arbiter on the internal bus.

The GRUSBDC is configured with two bidirectional endpoints with endpoint zero (EP0) being the
default USB control endpoint and endpoint one (EP1) the communication endpoint for the DCL pro-
tocol. The GRUSBDC is configured to use DMA and its descriptors as well as the DMA buffers are
stored in a local memory with separate read and write ports (SYNCRAM\_2P). The two ports makes
it possible for the GRUSBDC and the internal workings of the GRUSB_DCL to access the memory in
parallel. Arbitration for the read and write port is implemented as two separate procedures. The main
functionality of the GRUSB_DCL is implemented in the main FSM procedure. The FSM can be seen
in figure 292.

GRUSB_DCL

Figure 290. USBDCL connected to an external UTM.

UTMI

AHB USBFPGA

UTMI+
ULPI

Figure 291. Block diagram of the internal structure of the GRUSBDCL. Blocks with rounded corners are implemented as
VHDL procdures while squares represent VHDL entities.
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Upon reset the FSM begins with setting up the DMA descriptors in the local memory and then config-
ures the GRUSBDC such that it becomes active. The FSM then waits for incoming requests on either
EP0 or EP1. For EP0 each request is validated and then appropriate action is taken according to the
USB Version 2.0 standard. For undefined requests the GRUSB_DCL returns an error by stalling EP0.
For EP1 the DCL request is fetched and either data is written to the AHB buss from the local memory
or data is read from the AHB and stored in the local memory. In the case of the AHB is being read the
data is then sent on EP1 IN. To keep track of the state of the DMA descriptors the FSM has help from
the descriptor-state procedure. The descriptor-state procedure uses the IRQ from the GRUSBDC to
identify incoming packets on either EP0 or EP1. By storing the last accessed address by the GRUS-
BDC to the local memory the descriptor-state procedure can tell which EP that has been updated. The
FSM in turn signals the procedure telling it when a DMA descriptor/buffer has been read/write. A
small FSM (ahb_mst_fsm) is also used when the main FSM wants to update the state of the GRUS-
BDC through the AHB slave interface. Finally, the reset-or-vbus-irq procedure listens on irqs from the
USBDC that informs the core that a USB reset or that a change on the VBUS has occured. In that case
the core stops what ever it was doing and moves into the USB default state (no addresse set and not
configured).

Figure 292. The main FSM of the GRUSBDCL. The FSM can be divided into three major parts i) the initialization (reset to
idle), ii) handling of USB requests (seen to the left of idle), and iii) handling of DCL requests (seen to the right of idle).
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103.2.2 Protocol

The protocol used for the AHB commands is very simple and consists of two 32-bit control words.
The first word consists of the 32-bit AHB address and the second consists of a read/write bit at bit 31
and the number of words to be written at bits 16 downto 2. All other bits in the second word are
reserved for future use and must be set to 0. The read/write bit must be set to 1 for writes.

Figure 293 shows the layout of a write command. The command should be sent as the data cargo of an
OUT transaction to endpoint 1. The data for a command must be included in the same packet. The
maximum payload is 512 B when running in high-speed mode and 64 B in full-speed mode. Since the
control information takes 8 B the maximum number of bytes per command is 504 B and 56 B respec-
tively. Subword writes are not supported so the number of bytes must be a multiple of four between 0
and 504.

The words should be sent with the one to be written at the start address first. Individual bytes should
be transmitted msb first, i.e. the one at bits 31-24.

There is no reply sent for writes since the USB handshake mechanism for bulk writes guarantees that
the packet has been correctly received by the target.

Figure 294 shows the layout of read commands and replies. In this case the command only consists of
two words containing the same control information as the two first words for write commands. How-
ever, for reads the r/w bit must be set to 0.

When the read is performed data is read to the buffer belonging to IN endpoint 1. The reply packet is
sent when the next IN token arrives after all data has been stored to the buffer. The reply packets only
contains the read data (no control information is needed) with the word read from the start address
transmitted first. Individual bytes are sent with most significant byte first, i.e. the byte at bit 31 downto
24.

Figure 293. Layout of USBDCL write commands.

addressWord 1

Word 2 r/w length

31 0

31 16 2

Word 3 - data

31 0

128

Figure 294. Layout of USBDCL read commands and replies.
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31 0
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Read Reply
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103.2.3 AHB operations

All AHB operations are performed as incremental bursts of unspecified length. Only word size
accesses are done.

103.2.4 Scan test support

The VHDL genericscantestenables scan test support for both the GRUSB_DCL and GRUSBDC.
When the scanen and testen signals in the AHB master input record are high the GRUSB_DCL will
disable the internal RAM blocks.

See GRUSBDC section of GRLIB IP Core User’s Manual for details on the scan support for GRUS-
BDC.

103.3 Registers

The core does not contain any user accessible registers.

103.4 Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x022. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

The USB vendor identifier is 0x1781 and product identifier is 0x0AA0.

103.5 Configuration options

Table 1237 shows the configuration options of the core (VHDL generics).

Table 1237.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

memtech Memory technology used for blockrams (endpoint buff-
ers).

0 - NTECH 0

uiface Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

dwidth Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

oepol Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

syncprst Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

prsttime Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

sysfreq Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

keepclk Please see GRUSBDC section in the GRLIB IP Core User’s Manual.

functesten Please see GRUSBDC section in the GRLIB IP Core User’s Manual. If this generic is non-zero, the
core will sample the value of its functesten input signal during reset. This value will then be used
when assigning the Functional Testmode field in the GRUSBDC control register. The functesten
input can be useful during netlist simulation as functional test mode reduces simulation time. If this
generic is set to zero, the value of the functesten input will be disregarded and the Functional Test-
mode field will always be written with ‘0’.

burstlength Sets the maximum burst length in 32-bit words. The core
will not burst over a burstlength word boundary.

8 1 - 512

scantest Set this generic to 1 if scan test support should be imple-
mented.

0 - 1 0
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103.6 Signal descriptions

Table 1238 shows the interface signals of the core (VHDL ports).

103.7 Library dependencies

Table 1239 shows libraries used when instantiating the core (VHDL libraries).

103.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.grusb.all;

entity usbdcl_ex is
  port (
    clk : in std_ulogic; --AHB Clock
    rstn : in std_ulogic;

    -- usb signals
    usb_clkout  : in std_ulogic;
    usb_d       : inout std_logic_vector(7 downto 0);
    usb_nxt     : in  std_ulogic;
    usb_stp     : out std_ulogic;
    usb_dir     : in  std_ulogic;
    usb_resetn  : out std_ulogic

Table 1238.Signal descriptions

Signal name Field Type Function Active

UCLK N/A Input USB UTMI Clock -

USBI * Input USB Input signals -

functesten Input Functional test enable. If the core has been
implemented with support for functional test
mode (VHDL genericfunctesten), this signal
will be sampled during core reset. Its value will
then be used to set the functional testmode
enable bit in the GRUSBDC core’s control regis-
ter.

High

USBO * Output USB Output signals -

HCLK Input AMBA Clock -

HRST Input AMBA Reset Low

AHBMI ** Input AHB master input signals -

AHBMO ** Output AHB master output signals -

* see GRUSBDC section og GRLIB IP Core User’s Manual

** see GRLIB IP Library User’s Manual

Table 1239.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER GRUSB Signals, components GRUSB_DCL and GRUSBDC component dec-
larations, USB signals
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end;

architecture rtl of usbdcl_ex is
  constant padtech : integer := inferred;
  constant memtech : integer := inferred;

  -- AMBA signals
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
  -- USB signals
  signal usbi : grusb_in_type;
  signal usbo : grusb_out_type;
begin

  -- AMBA Components are instantiated here
  ...

  -- GRUSB_DCL
  usb_d_pad: iopadv
    generic map(tech => padtech, width => 8)
    port map (usb_d, usbo.dataout, usbo.oen, usbi.datain);
  usb_nxt_pad : inpad generic map (tech => padtech)
    port map (usb_nxt, usbi.nxt);
  usb_dir_pad : inpad generic map (tech => padtech)
    port map (usb_dir, usbi.dir);
  usb_resetn_pad : outpad generic map (tech => padtech)
    port map (usb_resetn, usbo.reset);
  usb_stp_pad : outpad generic map (tech => padtech)
    port map (usb_stp, usbo.stp);

  usb_clkout_pad : clkpad
    generic map (tech => padtech)
    port map (usb_clkout, uclk);

usbi.urstdrive <= ‘0’;

 usbdcl0: grusb_dcl
    generic map (
        hindex  => 0,
        memtech => memtech,
        uiface  => 1,
        dwidth  => 8,
        oepol   => 0)
    port map (
        uclk => uclk,
        usbi => usbi,
        usbo => usbo,
        hclk => clk,
        hrst => rstn,
        ahbi => ahbmi,
        ahbo => ahbmo(0));
end;
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