(N\EROFLEX

GAISLER

GRLIB IP Core User's Manual

Version 1.2.7 - B4130, May 2013

Copyright Aeroflex Gaisler, 2013

AEROFLEX GAISLER 2 GRIP

© 00 N OO O A W N B

W W W W W N DN N NN DN DN DNDNDMDNMNDNPFP P P P P PP P PP
A W N P O O 00 N OO O b WODN P OO 0O NO O W N P O

Table of contents

T oo 18 Tox 1o o PP 5
AHB2AHB - Uni-directional AHB/AHB DIidge.........cooiiiiiiiiiiiiiiieieeeeeeeeeee e 15
AHBBRIDGE - Bi-directional AHB/AHB Dridgecccooeiiiiiiiieeiiceee e 32
AHBCTRL - AMBA AHB controller with plug&play Support............ccoovviiieiiiiiiiiiieeeeeeiinnn, 37
AHBJTAG - JTAG Debug Link with AHB Master Interfacecccccceeviiiiiiiiiiiiiiiiiiiiee 44
AHBRAM - Single-port RAM with AHB interfaceccccooviiiiiiiiiiiiiieee e 50
AHBDPRAM - Dual-port RAM with AHB interfaceccoovuiiiiiiiieeien e, 52
AHBROM - Single-port ROM with AHB INtEIfacCecoooviiiiiiiiiiiie e 54
AHBSTAT - AHB Status REQISIEIS......ccoiiieeeeeeeeci it e e e e e e e e e e e e eeeeaeannnes 56
AHBTRACE - AHB Trace DUTEI ... et 60
AHBUART- AMBA AHB Serial Debug INterface ... 65
AMBAMON - AMBA BUS MONITOT ...ciiiiiiiiiiiii ettt e e e e e e e e e e e e e s e s seeeeeneeees 69
APBCTRL - AMBA AHB/APB bridge with plug&play SUpport..........ccooevviiiiiiiiiiinieeeeeeee, 75
APBPS2 - PS/2 host controller with APB INterfaceuuueiiiiiiiieeeeeeeeeeeeeee e 79
APBUART - AMBA APB UART Serial Interface ..ot 89
APBVGA - VGA controller with APB INterface..........cccoiiiiiiiiiiiiiieeeei e 97
B1553BC - AMBA plugé&play interface for Actel Corel553BBCcccccceeeiiiiiiieeeeennnnne. 101
B1553BRM - AMBA plugé&play interface for Actel Corel553BRMccccceeveiiiiieeeennnnn. 107
B1553RT - AMBA plugé&play interface for Actel Corel553BRTcccovvviiiiiiiiiiiiiiiieeees 115
CAN_OC - GRLIB wrapper for OpenCores CAN Interface Core.........cccceeeeeeiiiieeeeeeeennnnnne. 126
CLKGEN - ClIOCK QENEIALION......cii i e e eeeeeieeeeeei e s e e e e e e e e e e e e e et e s e s e e e e e e eeeaaeeeeeennnnes 145
DDRSPA - 16-, 32- and 64-bit DDR266 CONtroller.............coooviiiiiiiiiiiiiiiiiiiiiiceceeee e 168
DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller................... 181
DIV32 - Signed/unsigned 64/32 divider moduleooovrriiiiiiiiiiiiie e 198
DSU3 - LEONS3 Hardware Debug Support Unit............cooviiiiiiiiiiiiiiee e 200
DSU4 - LEON4 Hardware Debug SUpPOrt UNit.............uueiiiiiiiiiiiiiiiiaeeeeee e 211
FTAHBRAM - On-chip SRAM with EDAC and AHB interfacecccccceeeeeieiiiiviinninnns 225
FTMCTRL - 8/16/32-bit Memory Controller with EDAC ..o 230
FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDACcooovvevvieiiiiiicieeennn. 255
FTSDCTRL64 - 64-bit PC133 SDRAM Controller with EDACcccceveeiiiiiiiieiee e 264
FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controllerccccceeiiiiiieiiiiinnnnnee. 274
FTSRCTRLS - 8-bit SRAM/16-bit IO Memory Controller with EDAC..............ccovvvveeeeen... 290
GR1553B - MIL-STD-1553B / AS15531 INterfaceccvveiiiiiiiiiieeeeiiiiiee e 303

GPTIMER - General Purpose Timer UNit...........oiiiiiiiiiiii et 327

AEROFLEX GAISLER 3 GRIP

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

GRTIMER - General Purpose Timer UNit..........coiiiiiiiiioe s e e e e e e e e e eeeeannneens 332
GRACECTRL - AMBA System ACE Interface Controller...........cccccoeeeieiiiiiiiie e, 338
GRAES - Advanced EncCryption Standardcoooeiiiiiiiiiiiiiiiiiiiiee e 342
GRAES_DMA - Advanced Encryption Standard with DMAoovviiiiiiiiiiiiiee e, 348
GRCAN - CAN 2.0 Controller With DMAe e 353
GRCLKGATE - ClOCK gating UNIT........cooiiiiiiiiiiiiiiiiiiiii et 375
GRECC - Elliptic Curve Cryptographiyccccocieee e e e e e 380
GRETH - Ethernet Media Access Controller (MAC) with EDCL Supportccceeeeeeeees 391
GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL 409
GRFIFO - FIFO INTEITACEuuttiiiiiiiiiiiieieeee ettt e e e e e e e e e e e e e e e e s ane e 428
GRADCDAC - ADC / DAC INTEITACEuvvviiiee e i ittt a e e e e e e e nnnaeee s 451
GRFPU - High-performance IEEE-754 Floating-point Unit..............coooiiiiiiiiiiiiiiiiiceceeeeeen 464
GRFPC - GRFPU CONrOl UNIt ...eiiiiiiiiiiiiiie ettt e e e e e e s s nnnnneeae e 471
GRFPU Lite - IEEE-754 Floating-Point Unit............coooiiiiiiiiiii i 473
GRLFPC - GRFPU Lite Floating-point unit Controller ... 476
GRGPIO - General PUrPOSE 1/O POIt.......cuuuiiiiiiiiie et s s e e e e e e e e e eeeeeeeeannnnnes 478
GRGPREG - General PUIPOSE REQISIENcoviiiiiee et 485
GRIOMMU - AHB/AHB bridge with access protection and address translation................ 489
GRPULSE - General Purpose INput OULPULoooiiii e e e e e e e e e eeeeeennnnnne 530
GRPWM - Pulse Width Modulation GENEALOruuueiiiiieee e 537
GRSPW - SpaceWire codec with AHB host Interface and RMAP target................ooeeeee 548
GRSPW?2 - SpaceWire codec with AHB host Interface and RMAP target............cccceeenn.. 591
GRSYSMON - AMBA Wrapper for Xilinx System MONitorcooovviiiiiiiiiiiiiiiiiiieennnn 635
GRUSBDC - USB DEVICE CONIOIEIueiiieiiee e 641
GRUSBHC - USB 2.0 HOSt CONIOIETceviiiiiiiiiieee ettt 665
GRVERSION - Version and Revision information register............cccooveeviiiiiiiiieeeviiiiiieeeeeeans 682
[2C2AHB - [2C 10 AHB DIIOQE ...ttt ettt e e e 684
[2CMST = 12C MBSO ...ttt e e et e e e e e e e e e e ee e a e e e e ennnn e e eeeennes 693
[2CSLY = 12C SIAVEeviiiie ettt e e e e e e e e e r e e e e a e raaa e 702
IRQMP - Multiprocessor Interrupt Controller..............uuueiiiiiiiiiii e 709
IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support............... 717
L2C - Level 2 Cache CONIOIIEr..... ..o eeeaeee 730
LASTAT - LEONAZ StatiStiCS UNITeeiiiiiiii i e e et e e e eenaaaaes 747
LEONS - High-performance SPARC V8 32-bit ProCeSSOr.........uciiiiiiiiieeeiiieeeeeeeeiivinn 752

LEONSFT - Fault-Tolerant SPARC V8 PIrOCESSONeueeeeeeeeeeeeeee e 779

AEROFLEX GAISLER 4 GRIP

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

LEON4 - High-performance SPARC V8 32-bit ProCeSSOr.........ueiiiiiiiieeeeeieeeeeeeeeiin 785
LOGAN - ONn-chip LOQIC ANAIYZETeviiieeeeie e 813
MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controllercccccuvvvvnnee. 820
MEMSCRUB - AHB Memory Scrubber and Status Registercccceevvvvvivveiiviiiiiieeeenn. 839
MULS32 - Signed/unsigned 32x32 multiplier module..............cccooiiiiiiiiiiiiin 848
MULTLIB - High-performance MuUltIPHErS ... 852
NANDFCTRL - NAND Flash Memory Controller.........cccouvieeeeeeiiiiiieeeeieeee e 854
GRPCI - 32-bit PCI Master/Target with configurable FIFOs and AHB back end............... 875
GRPCI2 - 32-bit PClI(Initiator/Target) / AHB(Master/Slave) bridge...........ccceviiiiiiiinnnnnee. 894
PCIDMA - DMA Controller for the GRPCI INterface............uvvviiiiiiiiieiiiiicciivviee 921
PCITB_MASTER_SCRIPT - Scriptable PCI testbench master...............oiiiiiiiiiniiieeeeennn. 925
PCITARGET - Simple 32-bit PCI target with AHB interface...........ccccccovviiiiiiiiiiiiiiiiiee 930
PCITRACE - PCI Trace BUfEI.....ccoei ettt 932
PHY - Ethernet PHY simulation MOdel ... 938
REGFILE_3P 3-port RAM generator (2 read, 1 WIE)eeieiviiiiiiiiieeeeeeeeeeeeeiiieee 941
RSTGEN - RESEt ENEIALIONceeeviiiiiiiee et eeeas 943
GR(2"4)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decodet.................... 947
RS(24, 16, 8, E=1) - Reed-Solomon encoder/deCoder............cooveevereueriniiiiiiaeeeeeeeeeeeeeeeeeaenens 951
RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleavedccccceevvvnnees 955
RS(40, 32, 8, E=1) - Reed-Solomon encoder/deCoder.............ooouuiiiuiiiimiiiiiine e eeeeeeeeeeeiieens 957
RS(48, 32, 16, E=2) - Reed-Solomon encoder/deCoder..............oovuuuuuiuniiiiiiieeeeeeeeeeeeeeeeninens 961
SDCTRL - 32/64-bit PC133 SDRAM CONtroller........ccuvviiiiieiiiiiiiiee et 964
SPI2AHB - SPIt0 AHB BHAQEvvviiiiic et 974
0] o (O I IS I o] 1 0] =T 982
SPIMCTRL - SPI MemOory CONtrOlEr.......ccccoeieieeeeeeec e 997
SRCTRL- 8/32-bit PROM/SRAM CONIOIENuveiieiiiiiiiieeeeeeee e 1006
SSRCTRL- 32-bit SSRAM/PROM CoONtroller..........ooovveiiiiiiiiiiieeee e 1013
SVGACTRL - VGA CONIOIEI COIE..ueiiiiiiiiiiiiieeee oottt a e e 1022
SYNCRAM - Single-port RAM gENEIALONcciiiiiiiiiiiiiiiiiee e 1028
SYNCRAMBW - Single-port RAM generator with byte enables.................ccccciiiiiiinnee. 1032
SYNCRAM_2P - TWO-POIrt RAM gENETALONcceviiiiiiiiee ittt 1036
SYNCRAM_DP - Dual-port RAM geNEeratOr...........ccuuiiiieiiiiiiiie et 1040
TAP - JTAG TAP CONIIOIET ...t e e e e e e e e e e e eeeeeeeeennnne 1043

GRUSB_DCL - USB Debug Communication LinKccccoovvrviiiiiiiiiiii e, 1047

AEROFLEX GAISLER 5 GRIP

1

11

1.2

Introduction

Scope

This document describes specific IP cores provided with the GRLIB IP library. When applicable, the
cores use the GRLIP plug&play configuration method as described in the ‘GRLIB User’s Manual'.

IP core overview

The tables below lists the provided IP cores and their AMBA plug&play device ID. The columns on
the right indicate in which GRLIB distributions a core is available. GPL is the GRLIB GNU GPL
(free) distribution, COM is the commercial distribution, FT the full fault-tolerant distribution and FT-
FPGA is the GRLIB release targeted for raditation-tolerant programmable devices. Some cores can
only be licensed separately or as additions to existing releases, this is marked\iatéseolumn.
Contact Aeroflex Gaisler for licensing details.

Note: The open-source version of GRLIB includes only cores marked with “Yes” in the GPL column.
Note: IP core FT features are only supported in FT or FT-FPGA distributions.

Note: For encrypted RTL, contact Aeroflex Gaisler to ensure that your EDA tool is supported by
GRLIB for encrypted RTL. Supported tools are listed in the GRLIB IP Library user’s manual.

Table 1. Processors and support functions

3

I & §
Name Function Vendor:Device ?5 8 n E 2
LEON3 SPARC V8 32-hit processor 0x01 : 0x003 es Yes |Yes |Yes
LEON3FT Fault-tolerant SPARC V8 32-bit Processor 0x01 : 0x053 No [No |[Yes| Yes| 2)
DSU3 Multi-processor Debug support unit (LEON3) 0x01 : 0x004 'Yes |Yes |Yes | Yes
LEON4 SPARC V8 32-bit processor 0x01 : 0x048 No No No No)
L4STAT LEON4 statistics unit 0x01 : 0x047 Np No No No 1),

3)

Dsu4 Multi-processor Debug support unit (LEON4) 0x01 : 0x049 No |No [No [No |1)
LEON3/4 LEON processor double clocking (includes speciat No | Yes| Yes| Yesg
CLK2x LEON entity, interrupt controller and qualifier unit
CLKGEN Clock generation - Yes Yes Yes Yes
DIV32 Divider module - Yed Yes Yes Yes
GPTIMER General purpose timer unit 0x01 : 0x011 Yes [es |Yes |Yes
GRCLKGATE Clock gate unit 0x01 : 0x02C Np Yes Yes Yes
GRTIMER General purpose timer unit 0x01 : 0x038 INo Yes |Yes |Yes
GRFPU / High-performance IEEE-754 Floating-point unit | - No | No | No | No | 1),
GRFPC with floating-point controller to interface LEON 2)
GRFPU-Lite / Low-area IEEE-754 Floating-point unit with floating- No [No | No | No | 1),
GRFPC-lite point controller to interface LEON 2)
IRQMP Multi-processor Interrupt controller 0x01 : Ox00D Yes Yes Yes [|Yes
IRQ(A)MP Multi-processor Interrupt controller 0x01 : Ox00D No Yes Yes Yes
MUL32 32x32 multiplier module - Yes Yes Yes Yes
MULTLIB High-performance multipliers - Yes Yes Yds Yes

1) Available as separate package or as addition to existing releases.

2) Only available as netlist or encrypted RTL

3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

AEROFLEX GAISLER 6 GRIP
Table 2. Memory controllers and supporting cores
T Ll o
Name Function Vendor:Device ?5 8 n E 2
DDRSPA Single-port 16/32/64 bit DDR controller 0x01 : 0x025 Yes [Yes |Yes |Yes
DDR2SPA Single-port 16/32/64-bit DDR2 controller 0x01 : Ox02E Yes [Yes |Yes |Yes
MCTRL 8/16/32-bit PROM/SRAM/SDRAM controller 0x04 : 0x00F Yes Yes Yes [es
SDCTRL 32-bit PC133 SDRAM controller 0x01 : 0x009 Yes Yes Yes [|Yes
SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 Yes Yes Yes Nes
SSRCTRL 32-bit Synchronous SRAM (SSRAM) controller 0x01 : OxO0A No |[Yes |Yes | Yes
FTMCTRL 8//132-bit PROM/SRAM/SDRAM controller w. RS/| 0x01 : 0x054 No| No| Yes Yep
BCH EDAC
FTSDCTRL 32/64-bit PC133 SDRAM Controller with EDAC 0x01 : 0x055 No No [es |Yes
FTSDCTRL64 64-bit PC133 SDRAM controller with EDAC 0x01 : 0x058 No No |Yes [Yes
FTSRCTRL 8/32-bit PROM/SRAM/IO Controller w. BCH 0x01 : 0x051 No| No| Yes Yep
EDAC
FTSRCTRLS8 8-bit SRAM / 16-bit IO Memory Controller with | 0x01 : 0x056 No| No| Yes Yep
EDAC
NANDFCTRL NAND Flash memory controller 0x01 : 0x059 No VYes Yes Yes
SPIMCTRL SPI Memory controller 0x01 : 0x045 Yes Yes Yes Yes
AHBSTAT AHB status register 0x01 : 0x052 Yes Yes Yes Yes
MEMSCRUB Memory scrubber 0x01 : 0x057 No No VYes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

Table 3. AMBA Bus control

| 2 Ll o
Name Function Vendor:Device ?5 8 n E 2
AHB2AHB Uni-directional AHB/AHB Bridge 0x01 : 0x020 No Yegs Yes Yes
AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01 : 0x020 No Yes Yes Yes
AHBCTRL AMBA AHB bus controller with plug&play - Yes Yes Yes Yes
APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 Yes Yes Yes Yes
AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 Yes Yes Yes VYes
GRIOMMU 1/0 Memory management unit 0x01 : Ox04F No Yes Yes |Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

4)
4)

1)

AEROFLEX GAISLER

Table 4. PCI interface

GRIP

T Ll o
Name Function Vendor:Device ?5 8 n E 2
GRPCI2 Advanced 32-bit PCI bridge 0x01 : 0Ox07C No Yes [Yes |Yes
PCITARGET 32-bit target-only PCI interface 0x01 : 0x012 es [Nes |Yes |Yes
PCIMTF/GRPCI| 32-bit PCI master/target interface with FIFO 0x01 : 0x014 Yes | Yes| Yes| Yes
PCITRACE 32-bit PCI trace buffer 0x01 : 0x015 Yes Yes Yes |Yes
PCIDMA DMA controller for PCIMTF 0x01 : 0x016 Yes Yes Yes VYes
PCIARB PCI Bus arbiter 0x04 : 0x010 Yes Yes Yes Yes

Table 5. On-chip memory functions
3

T Ll o
Name Function Vendor:Device ?5 8 n E §
AHBRAM Single-port RAM with AHB interface 0x01 : Ox00E Yes Yes Yes Yes
AHBDPRAM Dual-port RAM with AHB and user back-end intef-Ox01 : 0OXO0F Yes Yes Yes Yes

face
AHBROM ROM generator with AHB interface 0x01 : 0x01B Yes Yes Yes |Yes
FTAHBRAM RAM with AHB interface and EDAC protection 0x01 : 0x050 No No Yes Yes
L2CACHE Level-2 cache controller 0x01 : 0x04B No No No No 1
3)

REGFILE_3P Parametrizable 3-port register file - es [es |Yes |Yes
SYNCRAM Parametrizable 1-port RAM - Yas Yes Yes Yes
SYNCRAM_2P | Parametrizable 2-port RAM - Yes Yes Yes Yes
SYNCRAM_DP | Parametrizable dual-port RAM - Yes \qes es Jes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

AEROFLEX GAISLER 8 GRIP
Table 6. Serial communication
T Ll o

Name Function Vendor:Device ?5 8 n E 2
AHBUART Serial/AHB debug interface 0x01 : 0x007 Yes Yes Yes \es
AHBJTAG JTAG/AHB debug interface 0x01 : 0x01C Yes Yes Yes |es
APBPS2 PS/2 host controller with APB interface 0x01 : 0x060 Yes |Yes | Yes| Yes
APBUART Programmable UART with APB interface 0x01 : 0Ox00C Yes [es |Yes |Yes
CAN_OC Opencores CAN 2.0 MAC with AHB interface 0x01 : 0x019 Yes [Yes |Yes |Yes
GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D No Yes Yes Ygs
GRSPW SpaceWire link with RMAP and AHB interface 0x01 : Ox01F No [No |Yes |Yes| 1),

2)
GRSPW2 SpaceWire link with RMAP and AHB interface 0x01 : 0x029 No |No |Yes |Yes| 1),

2)
12C2AHB 12C (slave) to AHB bridge 0x01 : Ox00B Yes Yes Yes Yes
I2CMST 12C Master with APB interface 0x01 : 0x028 Yes Yes Yes |Yes
12CSLV I12C Slave with APB interface 0x01 : Ox03E Yes Yes Yes [es
SPI2AHB SPI (slave) to AHB bridge 0x01 : 0x05C Yes Yes Yes [Yes
SPICTRL SPI Controller with APB interface 0x01 : 0x02D es Yes [es |[Yes
TAP JTAG TAP controller - No| Yes Yes Yes

1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies

Table 7. Ethernet interface

1)

<
g
23|28
Name Function Vendor:Device 0| O i §
GRETH Aeroflex Gaisler 10/100 Mbit Ethernet MAC with | 0x01 : 0x01D Yeg Yes Yes Yes
AHB I/F
GRETH_GBIT | Aeroflex Gaisler 10/100/1000 Mbit Ethernet MAC 0x01 : 0x01D No| Yes Yes Yes
with AHB
Table 8. USB interface
<
g
2|3 |8
Name Function Vendor:Device 0| O Tl el 2
GRUSBHC USB-2.0 Host controller (UHCI/EHCI) with AHB I/ 0x01 : 0x027 No No No No
GRUSBDC / | USB-2.0 device controller / AHB debug communicat 0x01 : 0x022 No| No| No| No| 1)
GRUSB_DCL | tion link

1) Available as separate package or as addition to existing releases.

2) Only available as netlist or encrypted RTL

3) Always included with LEON4 license

4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.

AEROFLEX GAISLER

Table 9. MIL-STD-1553 Bus interface

GRIP

<
g
213|| | 8
Name Function Device ID 0| O i §
GR1553B Advanced MIL-ST-1553B / AS15551 Interface 0x01 : 0x040 No |No |No |No [1)
B1553BC AHB interface for Actel B1553BC 0x01 : 0x070 No No Yes JYes
B1553RT AHB interface for Actel B1553RT 0x01 : 0x071 No No Yes Yes
B1553BRM AHB interface for Actel B1553BRM 0x01 : 0x072 No No Yes Yes
1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEON4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
Table 10Encryption
<
g
213|| | 8
Name Function Vendor:Device olol|k] 2
GRAES 128-bit AES Encryption/Decryption Core 0x01 : 0x073 No No |No |No |[1)
GRAES_DMA | Advanced Encryption Standard with DMA 0x01 : 0x07B No No No No [1)
GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 No No No No)
1) Available as separate package or as addition to existing releases.
2) Only available as netlist or encrypted RTL
3) Always included with LEONA4 license
4) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
Table 11 .Simulation and debugging
<
g
2|3 |8
Name Function Vendor:Device o|lo| |k 2
SRAM SRAM simulation model with srecord pre-load - Yes Yes [es |Yes
MT48LC16M16 | Micron SDRAM model with srecord pre-load - Yes Yes Yes [|Yes
MT46V16M16 Micron DDR model - Yes Yes Ygs Yes
CY7C1354B Cypress ZBT SSRAM model with srecord pre-lopd - Yes |Yes | Yes| Yes
AHBMSTEM AHB master simulation model with scripting (depredx01 : 0x040 Yes Yes Yes Yes
cated)
AHBSLVEM AHB slave simulation model with scripting (depre-0x01 : 0x041 Yes Yes Yes Yas
cated)
AMBAMON AHB and APB protocol monitor - No| Yes Yes Yes
ATF AMBA test framework consisting of master, slave| 0x01 : No | Yes| Yes| Yesg
and arbiter. 0x068 - 0x06A
LOGAN On-chip Logic Analyzer 0x01 : 0x062 No Yes Yes \qes

AEROFLEX GAISLER 10 GRIP

Table 12 Graphics functions

T Ll o
Name Function Vendor:Device ?5 8 n E 2
APBVGA VGA controller with APB interface 0x01 : 0x061 Yes Yes Yes Yes
SVGACTRL VGA controller core with DMA 0x01 : 0x063 Yas Yes Yes Yes
Table 13 Auxiliary functions
T Ll o
Name Function Vendor:Device ?5 8 n E §
GRACECTRL AMBA SystemACE interface controller 0x01 : 0x067 es Yes |Yes |Yes
GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 No Yes Yes |es
GRFIFO External FIFO Interface with DMA 0x01 : 0x035 No Yes Yes [es
GRGPIO General purpose /O port 0x01 : Ox01A es |Yes |[Yes |Yes
GRGPREG General purpose Register 0x01 : 0x087 Yes | Yes| Yes| Yes
GRPULSE General purpose I/O with pulses 0x01 : 0x037| No |Yes |Yes| Yes
GRPWM PWM generator 0x01 : Ox04A Np Yes Yes Yes
GRSYSMON AMBA Wrapper for Xilinx System Monitor 0x01 : 0x066 Yes Yes Yes |es
GRVERSION Version and revision register 0x01 : Ox03A No Yes [Yes |Yes

Table 14 Error detection and correction functions

3

| 2 &)
Name Function % 8 n E g
RS(24, 16, 8, E=1) 16 bit data, 8 check bits, corrects 4-bit error in 1 nibble No| No| Yes Yes
RS(40, 32, 8, E=1) 32 bit data, 8 check bits, corrects 4-bit error in 1 nibble No| No| Yeg Yes
RS(48, 32, 16, E=1+1) 32 bit data, 16 check bits, corrects 4-bit error in 2 nibbles No| No| Yes Yes
RS(48, 32, 16, E=2) 32 bit data, 16 check bits, corrects 4-bit error in 2 nibbles No| No| Yes Yes
GR(274)(68, 60, 8, T=1)] QEC/QED error correction code encoder/decoder No| No| Yes Yes

AEROFLEX GAISLER 11 GRIP

1.3 Supported technologies

Technology support and instructions for extending GRLIB with support for additional technologies is
documented in the ‘GRLIB User's Manual’. The table below shows the technology maps available
from Aeroflex Gaisler for GRLIB and in which GRLIB distributions these techology maps are

included.
o €
z| 3 i+ 5
Vendor Technology o|lo| |k o
Actel ProASIC3, ProASIC3e, ProASIC3l, | No | Yes| Yes| Yes
Axcelerator, Axcelerator DSP, Fusion
Altera Cyclone2 - 4, Statix - Stratix3 Yes Yes No No
Lattice - Yes| Yes No| No
Xilinx Unisim (Virtex2 - Virtex7) Yes| Yes| Yes Yes
Other ASIC - No| - - No| Contact Aeroflex Gaisler for details.
See als@GRLIB IP Library User’s
Manual

AEROFLEX GAISLER 12 GRIP

1.4

Implementation characteristics

The table below shows the approximate area for some of the GRLIP IP blocks mapped on Virtex2,
Actel-AX and typical ASIC technologies. The area depends strongly on configuration options (gener-
ics), optimization constraints and used synthesis tools. The data in the table should therefore be seen
as an indication only. The tools used to obtain the area was Synplify-8.1 for FPGA and Synopsys DC
for ASIC. The LUT area for Altera Stratix devices is roughly the same as for Virtex2. Using XST
instead of Synplify for Xilinx FPGAs gives typically 15% larger area.

Table 15Approximate area consumption for some standard GRLIB IP cores

Virtex2 AX/RTAX ASIC
Block LUT RAM16 |Cells RAM64 | Gates
AHBCTRL 200 500 1,000
AHBJTAG 120 350 1,000
AHBUART (DSU UART) 450 800 2,000
APBCTRL 150 200 800
APBPS2 450 800 2,000
APBUART 200 300 1,000
APBVGA 250 4 - 1,400
CAN_OC (CAN-2.0 core with AHB I/F) 1,600 | 2 2,800 2 8,000
GRCAN (CAN 2.0 Controller with DMA) 2,300 4,800 20,000
DDRCTRL 1,600 | 2 - 10,000
DDRSPA (32-bit) 900 2 - -
DIV32 (64/32-bit iterative divider) 400 500 2,000

AEROFLEX GAISLER 13 GRIP

Table 15Approximate area consumption for some standard GRLIB IP cores

Virtex2 AX/RTAX ASIC
Block LUT RAM16 |Cells RAM64 Gates
GPTIMER (16-bit scaler + 2x32-bit timers) 250 400 1,300
GRETH 10/100 Mbit Ethernet MAC 1,500 2,500 2 8,000
GRETH 10/100 Mbit Ethernet MAC with EDCL 2,600 1 4,000 4 15,000
GRFPU-Lite including LEONS3 controller 4,000 6 7,000 4 35,000
GRFPU IEEE-754 floating-point unit 8,500 2 - 100,000
GRFPC for LEON3 5,000 4 - 25,000
GRGPIO, 16-bit configuration 100 150 800
GRSPW Spacewire link 1,900 3 2,800 3 15,000
GRSPW Spacewire link with RMAP 3,000 4 4,500 4 25,000
GRTC CCSDS telecommad decoder front-end 2,000 3,000 15,000
GRTM CCSDS telemetry Generator 4,500 2 6,000 4 30,000
I2CMST 12C Master 200 300 1,500
I2CSLV 12C Slave 150 250 1,000
IRQMP (1 processor) 300 350 1,500
LEONS3, 8 + 8 Kbyte cache 4,300 12 6,500 40 20,000
LEONS, 8 + 8 Kbyte cache + DSU3 5,000 12 7,500 40 25,000
LOGAN, 32 channels, 1024 traces, 1 trigger 300 2 - -
MCTRL 350 1,000 1,500
MCTRL including SDRAM support 600 1,400 2,000
MUL32 (32x32 multiplier, 4-cycle iterative) 200 1,400 5,500
PCI_TARGET, simple PCI target 150 500 800
PCI_MTF, master/target PCI with FIFO 1,100 4 2,000 4 6,000
PCIDMA, master/target PCI with FIFO/DMA 1,800 4 3,000 4 9,000
PCITRACE 300 2 600 4 1,400
SRCTRL 100 200 500
SDCTRL 300 600 1,200
SPICTRL 450 900 2,500
SPIMCTRL 300 600 1,200
SVGACTRL 1,200 2 1,600 2 8,000
USBDCL 2,000 - 12,000

Table 16 Approximate area consumption for some FT GRLIB IP cores

Block RTAX2000 (Cells) ASIC (gates)
GRFPU-Lite-FT including LEON3 controller 7,100 + 4 RAM64K36 36,000
GRFPCFT for LEON3 - 30,000 + RAM
LEONSFT, 8 + 4 Kbyte cache 7,500 + 40 RAM64K36 22,000 + RAM
LEONSFT, 8 + 4 Kbyte cache + DSU3 8,500 + 44 RAM64K36 27,000 + RAM
LEONSFT, 8 + 4 Kbyte cache with FPU + DSU3 16,000 + 48 RAM64K36 60,000 + RAM
FTSRCTRL 700 2,500
FTSRCTRL8 750 -

FTSDCTRL 1,000 3,500

FTAHBRAM (2 Kbyte with EDAC) 300 + 5 RAM64K36 2,000 + RAM

AEROFLEX GAISLER 14 GRIP

The table below show the area resources for some common FPGA devices. It can be used to quickly
estimate if a certain GRLIB design will fit the target device.

Table 17 Area resources for some common FPGA devices

FPGA Logic Memory

Actel AX1000 18,144 Cells 32 RAM64K36
Actel AX2000 32,248 Cells 64 RAM64K36
Xilinx Spartan3-1500 33,248 LUT 64 RAMB16
Xilinx Virtex2-3000 28,672 LUT 96 RAMB16
Xilinx Virtex2-6000 67,584 LUT 144 RAMB16

AEROFLEX GAISLER 15 GRIP
2 AHB2AHB - Uni-directional AHB/AHB bridge

2.1 Overview

The uni-directional AHB/AHB bridge is used to connect two AMBA AHB buses clocked by synchro-
nous clocks with any frequency ratio. The bridge is connected through a pair consisting of an AHB
slave and an AHB master interface. AHB transfer forwarding is performed in one direction, where
AHB transfers to the slave interface are forwarded to the master interface. Applications of the uni-
directional bridge include system partitioning, clock domain partitioning and system expansion.

Features offered by the uni-directional AHB to AHB bridge are:

* Single and burst AHB transfers

» Data buffering in internal FIFOs

« Efficient bus utilization through (optional) use of SPLIT response and data prefetching
* Posted writes

* Read and write combining, improves bus utilization and allows connecting cores with differing
AMBA access size restrictions.

» Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional
bridge (one example is the bi-directional AHB/AHB bridge core (AHBBRIDGE))

MASTER 1 MASTER 2 MASTER N

AHB Bus 0

BUS
CONTROL

SLAVE 1 SLAVE 2
SLAVE IIF

AHB/AHB
BRIDGE

MASTER I/F

MASTER 1 MASTER N

AHB Bus 1
BUS

CONTROL |

SLAVE 1 SLAVE 2

Figure 1. Two AHB buses connected with (uni-directional) AHB/AHB bridge

2.2 Operation

2.2.1 General

The address space occupied by the AHB/AHB bridge on the slave bus is configurable and determined
by Bank Address Registers in the slave interface’s AHB Plug&Play configuration record.

The bridge is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.

For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the bridge uses GRLIB’'s AMBA Plug&Play information to determine

AEROFLEX GAISLER 16 GRIP

whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.

The bridge can be implemented to use SPLIT responses or to insert wait states when handling an
access. With SPLIT responses enabled, an AHB master initiating a read transfer to the bridge is
always splitted on the first transfer attempt to allow other masters to use the slave bus while the bridge
performs read transfer on the master bus.The descriptions of operation in the sections below assume
that the bridge has been implemented with support for AMBA SPLIT responses. The effects of dis-
abling support for AMBA SPLIT responses are described in section 2.2.11.

If interrupt forwarding is enabled the interrupts on the slave bus interrupt lines will be forwarded to
the master bus and vice versa.

2.2.2 AHB read transfers

When a read transfer is registered on the slave interface the bridge gives a SPLIT response. The mas-
ter that initiated the transfer will be de-granted allowing other bus masters to use the slave bus while
the bridge performs a read transfer on the master side. The master interface then requests the bus and
starts the read transfer on the master side. Single transfers on the slave side are normally translated to
single transfers with the same AHB address and control signals on the master side, however read com-
bining can translate one access into several smaller accesses. Translation of burst transfers from the
slave to the master side depends on the burst type, burst length, access size and the AHB/AHB bridge
configuration.

If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL genericrburst). The bridge can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL geaumsi)c

When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the bridge will return data with zero
wait states.

If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the master bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.

In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

2.2.3 AHB write transfers

The AHB/AHB bridge implements posted writes. During the AHB write transfer on the slave side the
data is buffered in the internal write FIFO and the transfer is completed on the slave side by always
giving an OKAY response. The master interface requests the bus and performs the write transfer
when the master bus is granted. If the burst transfer crosses the write burst boundary (defined by
VHDL genericwburs), a SPLIT response is given. When the bridge has written the contents of the

AEROFLEX GAISLER 17 GRIP

FIFO out on the master side, the bridge will allow the master on the slave side to perform the remain-
ing accesses of the write burst transfer.

Writes are accepted with zero wait states if the bridge is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the bridge will not flush the write FIFO during the BUSY cycle.

2.2.4 Deadlock conditions

When two bridges are used to form a bi-drectional bridge, a deadlock situation can occur if the
bridges are simultaneously accessed from both buses. The bridge that has been configured as a slave
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response, or by issuing SPLIT complete followed by a new SPLIT response. When the core resolves a
deadlock while prefetching data, any data in the prefetch buffer will be dropped when the core’s slave
interface issues the AMBA RETRY response. When the access is retried it may lead to the same
memory locations being read twice.

Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wating
for its release. In this scenario, the accesses from the processor on bus B could, depending on system
configuration, continuously trigger a deadlock condition where the core will drop data in, or be pre-
vented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this kind
the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.

Other deadlock conditions exist with locked transfers, see section 2.2.5.

2.2.5 Locked transfers

The AHB/AHB bridge supports locked transfers. The master bus will be locked when the bus is
granted and remain locked until the transfer completes on the slave side. Locked transfers can lead to
deadlock conditions, the core’s VHDL genelikdacdetermines if and how the deadlock conditions

are resolved.

With the VHDL generidckdacset to 0, locked transfers mayt be made after another read access
which received SPLIT until the first read access has received split complete. This is because the
bridge will return split complete for the first access first and wait for the first master to return. This
will cause deadlock since the arbiter is not allowed to change master until a locked transfer has been
completed. The AMBA specification requires that the locked transfer is handled before the previous
transfer, which received a SPLIT response, is completed.

With Ickdacset to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT responsdchifabset to 2 the bridge

will save state for the read access that received a SPLIT response, allow the locked access to com-
plete, and then complete the first access. All non-locked accesses from other masters will receive
SPLIT responses until the saved data has been read out.

If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL dekésicis set

to 0 the core will deadlock. lickdacis set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.

2.2.6 Read and write combining

Read and write combining allows the bridge to assemble or split AMBA accesses on the bridge’s
slave interface into one or several accesses on the master interface. This functionality can improve bus

AEROFLEX GAISLER 18 GRIP

utilization and also allows cores that have differing AMBA access size restrictions to communicate
with each other. The functionality attained by read and write combining depends on the VHDL gener-
ics rdcomb(defines type of read combiningyrcomb(defines type of write combining¥lvmstaccsz
(defines maximum AHB access size supported by the bridge’s slave interfacenstnthccsz
(defines maximum AHB access size that can be used by bridge’s master interface). These VHDL
generics are described in section 2.6. The table below shows the effect of different settings. BYTE and
HALF-WORD accesses are special cases. The table does not list illegal combinations, for instance
mstmaccsz= slvmaccszequires thatvrcomb/= 0 andrdcomb/= 0.

Table 18 Read and write combining

Access on slave interface Access size wrcomb rdcomp Resulting access(es) on master interface

BYTE or HALF-WORD sin-
gle read access to any ared

Single access of same size

BYTE or HALF-WORD - - - Incremental read burst of same access size gs on
read burst to prefetchable slave interface, the length is the same as the
area number of 32-bit words in the read buffer, but

will not cross the read burst boundary.
BYTE or HALF-WORD - - - Incremental read burst of same access size gs on
read burst to non-prefetch- slave interface, the length is the same as the
able area length of the incoming burst. The master inter-

face will insert BUSY cycles between the
sequential accesses.

BYTE or HALF-WORD sin-

Single access of same size

gle write
BYTE or HALF-WORD - - - Incremental write burst of same size and length,
write burst the maximum length is the number of 32-bit

words in the write FIFO.

Single read access to any | Access size <= Single access of same size

area mstmaccsz

Single read access to any | Access size > | - 1 Sequence of single accesses of mstmaccsz.
area mstmaccsz Number of accesses: (access size)/mstmaccsz
Single read access to any | Access size > | - 2 Burst of accesses of size mstmaccsz. Length| of
area mstmaccsz burst: (access size)/mstmaccsz

Read burst to prefetchable | - - 0 Burst of accesses of incoming access size up to
area address boundary defined by rburst.

Read burst to prefetchable | - - lor2 Burst of accesses of size mstmaccsz up to
area address boundary defined by rburst.

Read burst to non-prefetch{ Access size <= Incremental read burst of same access size as on
able area mstmaccsz slave interface, the length is the same as the
length of the incoming burst. The master inter
face will insert BUSY cycles between the
sequential accesses.

'
[EEY

Read burst to non-prefetch{ Access size > or2 Burst of accesses of size mstmaccsz. Length of
able area mstmaccsz burst:
(incoming burst length)*(access size)/mstmaccsz

Single write Access size < - - Single write access of same size
mstmaccsz

Single write Access size >| 1 - Sequence of single access of mstmaccsz. NUm-
mstmaccsz ber of accesses: (access size)/mstmaccsz.

Single write Access size >| 2 - Burst of accesses of mstmaccsz. Length of burst:
mstmaccsz (access size)/mstmaccsz.

Write burst - 0 - Burst of same size as incoming burst, up to

address boundary defined by VHDL generic
wburst.

AEROFLEX GAISLER 19 GRIP

Table 18 Read and write combining

Access on slave interface Access size wrcomb rdcomp Resulting access(es) on master interface

Write burst - lor2 - Burst write of maximum possible size. The
bridge will use the maximum size (up to mst-
maccsz) that it can use to empty the writebuffer.

Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 2.2.7 for a discussion on burst operation.

Read and write combining with VHDL generiegcomb/rdcomtset to 1 cause the bridge to use sin-

gle accesses when divding an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the bridge before the
bridge has read or written all the data. In bi-directional configurations, an incoming access on the
master bridge may cause a collision that aborts the operation on the slave bridge. This may cause the
bridge to read the same memory locations twice. This is normally not a problem when accessing
memory areas. The same issues apply when using an AHB arbiter that performs early burst termina-
tion. The standard GRLIB AHBCTRL core does not perform early burst termination.

To ensure that the bridge does not re-read an address, and that all data in an access from the bridge’s
slave interface is propagated out on the master interface without interruption the VHDL generics
rdcombandwrcombshould both be setto O or 2. In addition to this, the AHB arbiter may not perform
early burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).

Read and write combining can be limited to specified address ranges. See descriptiooarfithe
maskVHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

2.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.

If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then setalftst generic to 0 and skip the remainder of this section.

The VHDL genericallbrst controls if the core will support fixed length and wrapping burst accesses.

If allbrstis set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for
fixed length and wrapping bursts is enabled by settiltigrst to 1 or 2. Table 19 describes how the
core will handle different burst types depending on the settiagt.

AEROFLEX GAISLER

Table 19Burst handling

20

GR

P

w

naxi-
ncre-

~

ata.

naxi-
ncre-

Value of | Access type*| Undefined length Fixed length incrementing | Wrapping burst

allbrst incrementing burst burst WRAP{4,8,16}

generic INCR INCR{4,8,16}

0 Reads to Incrementing burst with | Fixed length burst with Malfunction. Not supported
non- BUSY cycles inserted. | BUSY cycles inserted. If the

prefetchable | Same behaviour with | burst is short then the burst|

area read and write combin- | may end with a BUSY cycle

ing. If access combining is used
the HBURST signal will get
incorrect values.

Reads to Incrementing burst of maximum allowed size, filling | Malfunction. Not supported

prefetchable | prefetch buffer, starting at address boundary defined| by

area prefetch buffer.

Write burst Incrementing burst Incrementing burst, if writeWrite combining is not sup-
combining is enabled, and | ported. Same access size will I
triggered, the burst will be | used on both sides of the bridg
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcombshould not be set to
1 (but to O or 2) in this case

1 Reads to Incrementing burst with| Same burst type with BUSY Same burst type with BUSY
non- BUSY cycles inserted. | cycles inserted. If read com-cycles inserted. If read combin
prefetchable | Same behaviour with | bining is enabled, and trig- | ing is enabled, and triggered by
area read and write combin- | gered by the incoming accesghe incoming access size, an

ing. size, an incremental burst gfincremental burst of unspecifie
unspecified length will be | length will be used. This will
used. If the burstis short thepcause AMBA violations if the
the burst may end with a | wrapping burst does not start
BUSY cycle. from offset 0.

Reads to Incrementing burst of | For reads, the core will perform full (or part that fits in prefet

prefetchable | maximum allowed size, | buffer) fixed/wrapping burst on master interface and then

area filling prefetch buffer. respond with data. No BUSY cycles are inserted.

If the access made to the slave interface is larger than the n
mum supported access size on the master interface then a
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

2 Reads to Incrementing burst with

non- BUSY cycles_ msert_ed. Reads are treated as a prefetchable burst. See below.

prefetchable | Same behaviour with

area read and write combin-

ing.

Reads to Incrementing burst of | Core will perform full (or part that fits in prefetch buffer) fixed

prefetchable | maximum allowed size, | wrapping burst on master interface and then respond with d

area filling prefetch buffer, No BUSY cycles are inserted.

starting at adz_jress If the access made to the slave interface is larger than the n

boundary defined by | 1\, supported access size on the master interface then a

prefetch buffer. menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0

* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).

AEROFLEX GAISLER 21 GRIP

2.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The bridge is configured at implementation to use one of two available schemes to handle incoming
accesses. The bridge will issue SPLIT responses when it is busy and on incoming read accesses. If the
bridge has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the bridge will give some advantage to the master it has a response for and then allow all mas-
ters in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the bridge to the bus arbitration.

When designing a system containing a bridge the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the bridge will affect the system. The two different schemes are further described in sec-
tions 2.2.9 and 2.2.10.

2.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL gefafss non-zero.

With first-come, first-served ordering the bridge will keep track of the order of incoming accesses.
The accesses will then be served in the same order. For instance, if master O initiates an access to the
bridge, followed by master 3 and then master 5, the bridge will propagate the access from master O
(and respond with SPLIT on a read access) and then respond with SPLIT to the other masters. When
the bridge has a response for master 0, this master will be allowed in arbitration again by the bridge
asserting HSPLIT. When the bridge has finished serving master 0 it will allow the next queued master
in arbitration, in this case master 3. Other incoming masters will receive SPLIT responses and will not
be allowed in arbitration until all previous masters have been served.

An incoming locked access will always be given precedence over any other masters in the queue.

A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the bridge has been configured for.

It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The bridge will not prioritize any
master, except for masters performing locked accesses.

2.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL genéceisis set to zero.

When several masters have received SPLIT and the bridge has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the bridge asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the bridge asserts their HSPLIT signals simulta-
neously. By doing this the bridge defers the decision on the master to be granted next to the AHB arbi-
ter. The bridge does not show any preference based on the order in which itissued SPLIT responses to
masters, except to the master that initially started a read or write operation. Care has been taken so
that the bridge shows a consistent behavior when issuing SPLIT responses. For instance, the bridge
could be simplified if it could issue a SPLIT response just to be able to change state, and not initiate a
new operation, to an access coming after an access that read out prefetched data. When the bridge
entered its idle state it could then allow all masters in bus arbitration and resume normal operation.
That solution could lead to starvation issues such as:

TO: Master 1 and Master 2 have received SPLIT responses, the bridge is prefetching data for Master 1
T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT
T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration

AEROFLEX GAISLER 22 GRIP

T3: Master 2 performs an access, receives SPLIT, however the bridge does not initiate an access, it
just stalls in order to enter its idle state.

T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response

T5: Master 2 performs an access, receives SPLIT since the bridge is prefetching data for master 1
T6: Go backto TO

This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the bridge. In most systems it is unlikely that this behavior would intro-
duce a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to
complete its access. Please note that the example above is illustrative and the problem does not exist
in the core as the core does not issue SPLIT responses to (non-locked) accesses in order to just change
state but a similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is
given higher priority than Master 2.

In the case of write operations the scenario is slightly different. The bridge will accept a write imme-
diately and will not issue a SPLIT response. While the bridge is busy performing the write on the mas-
ter side it will issue SPLIT responses to all incoming accesses. When the bridge has completed the
write operation on the master side it will continue to issue SPLIT responses to any incoming access
until there is a cycle where the bridge does not receive an access. In this cycle the bridge will assert
HSPLIT for all masters that have received a SPLIT response and return to its idle state. The first mas-
ter to access the bridge in the idle state will be able to start a new operation. This can lead to the fol-
lowing behavior:

TO: Master 1 performs a write operation, does NOT receive a SPLIT response

T1: Master 2 accesses the bridge and receives a SPLIT response

T2: The bridge now switches state to idle since the write completed and asserts HSPLIT for Master 2.
T3: Master 1 is before Master 2 in the arbitration order and we are back at TO.

In order to avoid this last pattern the bridge would have to keep track of the order in which it has
issued SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-
served ordering described in section 2.2.9.

2.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL ges@iticSPLIT sup-

port should be enabled in most systems. The benefits of using SPLIT responses is that the bus on the
bridge’s slave interface side can be free while the bridge is performing an operation on the master
side. This will allow other masters to access the bus and generally improve system performance. The
use of SPLIT responses also allows First-come, first-served transaction ordering.

For configurations where the bridge is the only slave interface on a bus, it can be beneficial to imple-
ment the bridge without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the bridge and may also reduce the time required to perform accesses that
traverse the bridge. It should be noted that building a bi-directional bridge without support for SPLIT
responses will increase the risk of access collisions.

If SPLIT support is disabled the bridge will insert wait states where it would otherwise issue a SPLIT
response to a master initiating an access. This means that the arbitration ordering will be left to the bus
arbiter and the bridge cannot be implemented with the First-come, first-served transaction ordering
scheme. The bridge will still issue RETRY responses to resolve dead lock conditions, to split up long
burst and also when the bridge is busy emptying it's write buffer on the master side.

AEROFLEX GAISLER 23 GRIP

2.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. Table 20 below shows core behavior in a system where both AMBA buses are running
at the same frequency and the core has been configured to use AMBA SPLIT responses. Table 21 fur-
ther down shows core behavior in the same system without support for SPLIT responses.

Table 20 Example of single read with FFACT = 1, and SPLIT support

Clock cycle | Core slave side activity Core master side activity
Discovers access and transitions from idle state Idle
1 Slave side waits for master side, SPLIT respon&scovers slave side transition. Master interface output
is given to incoming access, any new incomingsignals are assigned.
2 accesses also receive SPLIT responses. If bus access is granted, perform address phase. Qther-

wise wait for bus grant.

3 Register read data and transition to data ready state.

Discovers that read data is ready, assign read Idle
data output and assign SPLIT complete

SPLIT complete output is HIGH

Typically a wait cycle for the SPLIT:ed maste
to be allowed into arbitration. Core waits for
master to return. Other masters receive SPLIT

responses.
7 Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high
8 Access data phase. Core has returned to idle
state.

Table 21 Example of single read with FFACT = 1, without SPLIT support

Clock cycle | Core slave side activity Core master side activity
Discovers access and transitions from idle state Idle

Slave side waits for master side, wait states grBiscovers slave side transition. Master interface output
inserted on the AMBA bus. signals are assigned.

Bus access is granted, perform address phase.

Register read data and transition to data ready state.

Discovers that read data is ready, assign Idle
HREADY output register and data output regis-
ter.

5 HREADY is driven on AMBA bus. Core has
returned to idle state

U

While the transitions shown in tables 20 and 21 are simplified they give an accurate view of the core
delay. If the master interface needs to wait for a bus grant or if the read operation receives wait states,
these cycles must be added to to the cycle count in the tables. The behavior of the core with a fre-

AEROFLEX GAISLER 24 GRIP

quency factor of two between the buses is shown in tables 22 and 23 (best case, delay may be larger
depending on on which slave clock cycle an access is made to the core).

Table 22 Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side | Core slave side activity Master side | Core master side activity
clock cycle clock cycle
0 Discovers access and transitions from idle 0 Discovers slave side transition. Master inter-
state face output signals are assigned.
1 Slave side waits for master side, wait states
2 are inserted on the AMBA bus. 1 Bus access is granted, perform address
3 phase.
4 2 Register read data and transition to data
5 ready state.
6 Discovers that read data is ready, assign 3 Idle
HREADY output register and data output
register.
7 HREADY is driven on AMBA bus. Core

has returned to idle state

Table 23 Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side | Core slave side activity Master side | Core master side activity
clock cycle clock cycle
0 Discovers access and transitions from igle 0 Idle
state 1
1 Slave side waits for master side, wait stajes 2 Discovers slave side transition. Master inter-
are inserted on the AMBA bus. face output signals are assigned.
3 Bus access is granted, perform address
phase.
2 Discovers that read data is ready, assign 4 Register read data and transition to data
HREADY output register and data output ready state.
register. 5 Idle
3 HREADY is driven on AMBA bus. Core

has returned to idle state

Table 24 below lists the delays incurred for single operations that traverse the bridge while the bridge

is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present

if the master accessed any other slave.

Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

AEROFLEX GAISLER 25 GRIP

If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.

Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

Table 24 Access latencies

Access Master acc. cycles Slave cycles Delay incurred by performing access over core
Single read 3 1 1 *cll, + 3 * clkyst

Burst read with prefetchl 2 + (purst length) | 2 2 * clkgyy, + (2 + burst length)* cliqs;

Single writé* 2 0 0

Burst write™ (2 + (burst length)) 0 0

X A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
XX The core implements posted writes, the number of cycles taken by the master side can only affect the next access.

2.3 Regqisters

The core does not implement any registers.

2.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

2.5 Implementation

2.5.1 Technology mapping

The uni-directional AHB to AHB bridge has two technology mapping generiesntechand fcf-
smtechmemtectselects which memory technology that will be used to implement the FIFO memo-
ries. fcfsmtechselects the memory technology to be used to implement the First-come, first-served
buffer, if FCFS is enaled.

2.5.2 RAM usage

The uni-directional AHB to AHB bridge instantiates one or seveyalcram_2plocks from the tech-
nology mapping library (TECHMAP). If prefetching is enabled mmas{maccszslvaccsy32
syncram_2pblock(s) with organization (mdrburst,iburs)-maxmstmaccszslvaccsy32) x 32 is
used to implement read FIFO (m@aurst,iburs) is the size of the read FIFO in 32-bit words).
max(nstmaccszslvaccsy32 syncram_2pblock(s) with organization(wburst - max{mstmaccsz
slvaccs¥32) x 32, is always used to implement the write FIFO (whebairstis the size of the write
FIFO in 32-bit words).

If the core has support for first-come, first-served ordering therfafsa 4 syncram_2olock will be
instantiated, using the technology specified by the VHDL gefefsmtech

AEROFLEX GAISLER

2.6

26

Configuration options

Table 25 shows the configuration options of the core (VHDL generics).

Table 25.Configuration options (VHDL generics)

GRIP

Generic

Function

Allowed range

Default

memtech

Memory technology

hsindex

Slave I/F AHB index

0 to NAHBMAX-1

hmindex

Master I/F AHB index

0 to NAHBMAX-1

dir

0 - clock frequency on the master bus is lower than d
equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than
equal to the frequency on the slave bus

(for VHDL genericffact = 1 the value of dir does not
matter)

-1

or

ffact

Frequency scaling factor between AHB clocks on ma:
and slave buses.

ster 15

slv

Slave bridge. Used in bi-directional bridge configurati
whereslvis set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge 6lv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.

This generic must only be set to 1 for a bridge where
frequency of the bus connecting the master interface
higher or equal to the frequency of the AHB bus con
necting to the bridge’s slave interface. Otherwise a r3
condition during access collisions may cause the bri
to deadlock.

o -1

is

Ace
lge

pfen

Prefetch enable. Enables read FIFO.

irgsync

Interrupt forwarding. Forward interrupts from slave
interface to master interface and vice versa.

0 - no interrupt forwarding, 1 - forward interrupts 1 - 1
2 - forward interrupts O - 31.

Since interrupts are forwarded in both directions, inte
rupt forwarding should be enabled for one bridge only
a bi-directional AHB/AHB bridge.

0-2

=4l

.=
[

wburst

Length of write bursts in 32-bit words. Determines wr
FIFO size and write burst address boundary. If the

whburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generi

ite - 32

Cc

must be set so that the buffer can contain two of the max-

imum sized accesses that the bridge can handle.

iburst

Instruction fetch burst length. This value is only useg
the generigbrstenis set to 1. Determines the length o
prefetching instruction read bursts on the master sid
The maximum of (iburst,rburst) determines the size ¢
the core’s read buffer FIFO.

#-8
f

D

f

AEROFLEX GAISLER

27

Table 25.Configuration options (VHDL generics)

GRIP

Generic

Function

Allowed range

Default

rburst

Incremental read burst length. Determines the maxi
length of incremental read burst of unspecified lengt
(INCR) on the master interface. The maximunriofirst
andiburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8
bridge will not perform read bursts over a 8x4=32 byt
boundary.

This generic must be set so that the buffer can contd
two of the maximum sized accesses that the bridge
handle.

For systems where AHB masters perform fixed lengt|
burst (INCRx , WRAPXx)burst should not be less than
the length of the longest fixed length burst.

4m 32

the

)

in
can

8

bar0

Address area 0 decoded by the bridge’s slave interfg
Appears as memory address register (BARO) on the s
interface. The generic has the same bit layout as ba
address registers with bits [19:18] suppressed (use fi
tions ahb2ahb_membar and ahb2ahb_iobar in
gaisler.misc package to generate this generic).

adke: 1073741823
ave

nk

unc-

barl

Address area 1 (BAR1)

0-1073741823

bar2

Address area 2 (BAR2)

0-1073741823

bar3

Address area 3 (BAR2)

0-1073741823

shus

The number of the AHB bus to which the slave interf
is connected. The value appears in bits [1:0] of the u
defined register 0 in the slave interface configuration
record and master configuration record.

n6e3
ser-

mbus

The number of the AHB bus to which the master intg
face is connected. The value appears in bits [3:2] of
user-defined register 0 in the slave interface configur
tion record and master configuration record.

210-3
the
a_

ioarea

Address of the 1/O area containing the configuration
for AHB bus connected to the bridge’s master interfal
This address appears in the bridge’s slave interface
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the
connected to the bridge’s master interface, the I/O a
must be mapped on one of the bridge’s BARSs.

If this generic is set to 0, some tools, such as Aeroflg
Gaisler's GRMON debug monitor, will not perform
Plug’'n’Play scanning over the bridge.

n@a 16#FFF#
ce.
iser-

bus
ea

x

ibrsten

Instruction fetch burst enable. If set, the bridge will ¢
form bursts ofburstlength for opcode access
(HPROTI[O] = ‘0’), otherwise bursts aburstlength will
be used for both data and opcode accesses.

-1

AEROFLEX GAISLER

28

Table 25.Configuration options (VHDL generics)

GRIP

Generic

Function

Allowed range

Default

Ickdac

Locked access error detection and correction. Locked - 2
accesses may lead to deadlock if a locked access is made

while an ongoing read access has received a SPLIT
response. The value tdkdacdetermines how the core
handles this scenario:

0: Core will deadlock

1: Core will issue an AMBA ERROR response to the
locked access

2: Core will allow both accesses to complete.

If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made

simultaneously in both directions. Wiitkdacset to 0
the core will deadlock. Witlkckdacset to a non-zero
value the slave bridge will issue an ERROR respons
the incoming locked access.

0

slvmaccsz

The maximum size of accesses that will be made tg 8- 256

bridge’s slave interface. This value must equat-
maccsanlessdcomb/= 0 andwrcomb/= 0.

32

mstmaccsz

The maximum size of accesses that will be performe®By- 256

the bridge’s master interface. This value must emsit
maccsainlessdcomb/= 0 andwrcomb/= 0.

32

rdcomb

Read combining. If this generic is set to a non-zero v
the core will use the master interface’s maximum AH
access size when prefetching data and allow data to
read out using any other access size supported by th
slave interface.

alde 2

be
e

If slvmaccsz > 32 and mstmaccsz > 32 and an incoming

single access, or access to a non-prefetchable area,
larger than the size supported by the master interface
bridge will perform a series of small accesses in orde
fetch all the data. If this generic is set to 2 the core

use a burst of small fetches. If this generic is set to 1
bridge will not use a burst unless the incoming acces
was a burst.

Read combining is only supported for single accesse
and incremental bursts of unspecified length.

is
the
to
ill
the
S

wrcomb

Write combining. If this generic is set to a non-zero
value the core may assemble several small write acce
(that are part of a burst) into one or more larger acces
or assemble one or more accesses into several smal
accesses. The settings are as follows:

0: No write combining
1: Combine if burst can be preserved

2: Combine if burst can be preserved and allow singl
accesses to be converted to bursts (only applicable i
maccsz > 32)

Only supported for single accesses and incremental

0-2
sses
ses
ler

e
f slv-

bursts of unspecified length

AEROFLEX GAISLER

29

Table 25.Configuration options (VHDL generics)

GRIP

Generic

Function

Allowed range

Default

combmask

Read/write combining mask. This generic determin
which ranges that the core can perform read/write cd
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmas
treated as a 16-bit vector with LSB bit (right-most) in
cating address 0x0 - 0x10000000. Making an access
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb =0 and wrcomb = 0. However, combmask is
taken into account when the core performs a prefetc
operation (see pfen generic). When a prefetch opera
is initiated, the core will always use the maximum su
ported access size (when rdcomb /= 0).

2 - 16#FFFF#
m_

hot
h
tion
p_

16#FFFF#

allbrst

Support all burst types

2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.

1: Support all types of bursts

0: Only support incremental bursts of unspecified len

See section 2.2.7 for more information.
When allbrst is enabled, the core’s read buffer (size

via rburst/iburst generics) must have at least 16 slots.

0-2

Oth

set

ifctrlen

Interface control enable. When this genericis setto 1
input signalgfctrl. mstifenandifctrl.slvifen can be used
to force the AMBA slave respectively master interfac
into an idle state. This functionality is intended to be
used when the clock of one interface has been gateq
and any stimuli on one side of the bridge should not
propagated to the interface on the other side of the
bridge.

When this generic is set to 0, the ifctrl.* input signals 3
unused.

the 1

ww

off
be

re

fcfs

First-come, first-served operation. When this generig
set to a non-zero value, the core will keep track of th
order of incoming accesses and handle the requestsii
same order. If this generic is set to zero the bridge w
not preserve the order and leave this up to bus arbitr,
tion. If FCFS is enabled the value of this generic must
higher or equal to the number of masters that may p
form accesses over the bridge.

8 - NAHBMST

2

nthe
il
a_
be
pr-

fcfsmtech

Memory technology to use for FCFS buffer. When
VHDL genericfcfsis set to a non-zero value, the core
will instantiate a 4 bit xcfs buffer to keep track of the
incoming master indexes. This generic decides the nj
ory technology to use for the buffer.

0 - NTECH

em-

0 (inferred)

scantest

Enable scan support

0-1

split

Use AMBA SPLIT responses. When this generic is se
1 the core will issue AMBA SPLIT responses. When t
generic is set to O the core will insert waitstates inste
and may also issue AMBA RETRY responses. If this
generic is set to 0, tHefsgeneric must also be set to
otherwise a simulation failure will be asserted.

t@- 1
is

2.7

AEROFLEX GAISLER 30 GRIP

Signal descriptions

Table 26 shows the interface signals of the core (VHDL ports).
Table 26.Signal descriptions (VHDL ports)

Signal name Field Type Function Active

RST Input Reset Low

HCLKM Input AHB master bus clock -

HCLKS Input AHB slave bus clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSO2 * Input AHB slave input vector signals (on master i/f| -

side). Used to decode cachability and prefetch-
ability Plug&Play information on bus connectegd
to the bridge’s master interface.

LCKI slck Input Used in systems with multiple AHB/AHB High
blck bridges (e.g. bi-directional AHB/AHB bridge) to
mick detect deadlock conditions. Tie to “000” in sy$-

tems with only uni-directional AHB/AHB bus.

LCKO slck Output Indicates possible deadlock condition High
blck
mick

IFCTRL mstifen Input Enable master interface. This input signal is | High

unused if the VHDL generiiéctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface. This sig-
nal is intended to be used to keep the core’s
master interface in a good state when the corg’s
slave interface clock has been gated off. Care
should be taken to ensure that the bridge is idle
when the master interface is disabled.

slvifen Input Enable slave interface. This input signal is | High

unused if the VHDL generidctrlen is 0. If
VHDL genericifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’'s AMBA
slave interface, otherwise the interface will

always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interfage
to the core’s AMBA master interface. This signgal
is intended to be used to keep the slave interface
in a good state when the core’s master interfgce

clock has been gated off. Care should be taken to

ensure that the bridge is idle when the slave
interface is disabled.

* see GRLIB IP Library User's Manual

GRIP

AEROFLEX GAISLER 31

2.8 Library dependencies
Table 27 shows the libraries used when instantiating the core (VHDL libraries).

Table 27 Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration

2.9 Instantiation
GRLIB contains two example designs with AHB2AHB and LEON processdesigns/leon3-
ahb2ahb(only available in commercial distributions) awsigns/leon4-ahb2ah@nly in distribu-
tions that include LEON4 processor). The LEON/GRLIB Configuration and Development Guide con-

tains more information on how to use the bridge to create multi-bus systems.

AEROFLEX GAISLER 32 GRIP

3

3.1

3.2

AHBBRIDGE - Bi-directional AHB/AHB bridge

Overview

A pair of uni-directional bridges (AHB2AHB) can be instantiated to form a bi-directional bridge. The
bi-directional AHB/AHB bridge (AHBBRIDGE) instantiates two uni-directional bridges that are con-
figured to suit the bus architecture shown in figure 2. The bus architecture consists of two AHB buses:
a high-speed AHB bus hosting LEON3 CPU(s) and an external memory controller and a low-speed
AHB bus hosting communication IP-cores.

Note: For other architectures, a more general bi-directional bridge that is more suitable can be created
by instantiating two uni-directional AHB to AHB bridges (see AHB2AHB core). AHBBRIDGE is
not suitable for LEON4 systems and for other systems with wide AHB buses.

LEON3 LEON3 DSU3
SDRANM M— SDRAM I I I AHB
Controller I High-speed bus CTRL
AHB/AHB Serial JTAG
Bridge Dbg Link Dbg Link
Async Mem I I I
PROM AHB
Controller I Low-speed bus I I CTRL
SRAM AHB/APB PCI Ethernet
Bridge MAC
110 I
|]]
UARTS || Timers IrqCtrl
Figure 2. LEONS3 system with a bi-directional AHB/AHB bridge
Operation
3.2.1 General

The AHB/AHB bridge is connected to each AHB bus through a pair consisting of an AHB master and
an AHB slave interface. The address space occupied by the AHB/AHB bridge on each bus is deter-
mined by Bank Address Registers which are configured through VHDL generics. The bridge is capa-
ble of handling single and burst transfers in both directions. Internal FIFOs are used for data
buffering. The bridge implements the AMBA SPLIT response to improve AHB bus utilization. For
more information on AHB transfers please refer to the documentation for the uni-directional AHB/
AHB bridge (AHB2AHB).

The requirements on the two bus clocks are that they are synchronous. The two uni-directional
bridges forming the bi-directional AHB/AHB bridge are configured asymmetrically. Configuration of

the bridge connecting high-speed bus with the low-speed bus (down bus) is optimized for the bus traf-
fic generated by the LEON3 CPU since the CPU is the only master on the high-speed bus (except for
the bridge itself). Read transfers generated by the CPU are single read transfers generated by single
load instructions (LD), read bursts of length two generated by double load instructions (LDD) or
incremental read bursts of maximal length equal to cache line size (4 or 8 words) generated during
instruction cache line fill. The size of the read FIFO for the down bridge is therefore configurable to 4
or 8 entries which is the maximal read burst length. If a read burst is an instruction fetch (indicated on
AHB HPROT signal) to a prefetchable area the bridge will prefetch data to the end of a instruction

AEROFLEX GAISLER 33 GRIP

3.3

3.4

cache line. If a read burst to a prefetchable area is a data access, two words will be prefetched (this
transfer is generated by the LDD instruction). The write FIFO has two entries capable of buffering the
longest write burst (generated by the STD instruction). The down bridge also performs interrupt for-
warding, interrupt lines 1-15 on both buses are monitored and an interrupt on one bus is forwarded to
the other one.

Since the low-speed bus does not host a LEON3 CPU, all AHB transfers forwarded by the uni-direc-
tional bridge connecting the low-speed bus and the high-speed bus (up bridge) are data transfers.
Therefore the bridge does not make a distinction between instruction and data transfers. The size of
the read and write FIFOs for this bridge is configurable and should be set by the user to suite burst
transfers generated by the cores on the low-speed bus.

Note that the bridge has been optimized for a LEON3 system with a specific set of masters and a spe-
cific bus topology. Therefore the core may not be suitable for a design containing later versions of the
LEON processor or other masters. In general it is not recommended instantiate the AHBBRIDGE
core and instead instantiate two uni-directional AHB to AHB bridges (AHB2AHB cores) with config-
urations tailored for a specific design.

3.2.2 Deadlock conditions

A deadlock situation can occur if the bridge is simultaneously accessed from both buses. The bridge
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response on the low-speed bus.

There are several deadlock conditions that can occur with locked accesses. If the VHDL b#reric

dacis 0, the bridge will deadlock if two simultaneous accesses from both buses are locked, or if a
locked access is made while the bridge has issued a SPLIT response to a read access and the splitted
access has not completedldkdacis greater than 0, the bridge will resolve the deadlock condition

from two simultaneous locked accesses by giving an ERROR response on the low-speeldhulesc If

is 1 and a locked access is made while the bridge has issued a SPLIT response to a read access, the
bridge will respond with ERROR to the incoming locked acceskkidlacis 2 the bridge will allow

both the locked access and the splitted read access to complete. Note tHekaédtset to 2 and two
incoming locked accesses, the access on the low-speed bus will still receive an ERROR response.

3.2.3 Read and write combining

The bridge can be configured to support read and write combining so that prefetch operations and
write bursts are always performed with the maximum access size possible on the master interface.
Please see the documentation for the uni-directional AHB/AHB bridge (AHB2AHB) for a description
of read and write combining and note that the same VHDL generics are used to specify both the max-
imum master and maximum slave access size on the bi-directional AHB/AHB bridge.

Registers

The core does not implement any registers.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

AEROFLEX GAISLER 34 GRIP
3.5 Configuration options
Table 28 shows the configuration options of the core (VHDL generics).
Table 28 Configuration options
Generic Function Allowed range Default
memtech Memory technology - 0
ffact Frequency ratio 1- 2
hsb_hsindex AHB slave index on the high-speed bus 0 to NAHBMAX-1
hsb_hmindex AHB master index on the high-speed bus 0 to NAHBMAX-1
hsb_iclsize Cache line size (in number of 32-bit words) for CPUS dn8 8
the high-speed bus. Determines the number of the words
that are prefetched by the bridge when CPU performs
instruction bursts.
hsb_bank0 Address area 0 mapped on the high-speed bus and 0 - 1073741823 0
decoded by the bridge’s slave interface on the low-speed
bus. Appears as memory address register (BARO) onl the
bridge’s low-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).
hsb_bank1 Address area 1 mapped on the high-speed bus 0-1073741823
hsb_bank2 Address area 2 mapped on the high-speed bus 0-1073741823
hsb_bank3 Address area 3 mapped on the high-speed bus 0-1073741823
hsb_ioarea Address of high-speed bus I/O area that contains thé® - 16#FFF# 0
high-speed bus configuration area. Will appear in the
bridge’s user-defined register 1 on the low-speed bus.
Note that to allow low-speed bus masters to read the
high-speed bus configuration area, the area must be
mapped on one of thesb_banlkgenerics.
Isb_hsindex AHB slave index on the low-speed bus 0 to NAHBMAX-1
Isb_hmindex AHB master index on the low-speed bus 0 to NAHBMAX-1
Isb_rburst Size of the prefetch buffer for read transfers initiated o6, 32 16
the low-speed-bus and crossing the bridge.
Isb_wburst Size of the write buffer for write transfers initiated on {hk6, 32 16
low-speed bus and crossing the bridge.
Isb_bank0 Address area 0 mapped on the low-speed bus and | 0 - 1073741823 0
decoded by the bridge’s slave interface on the high-speed
bus. Appears as memory address register (BARO) on/the
bridge’s high-speed bus slave interface. The genericlhas
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).
Isb_bank1 Address area 1 mapped on the low-speed bus 0-1073741823
Isb_bank2 Address area 2 mapped on the low-speed bus 0-1073741823
Isb_bank3 Address area 3 mapped on the low-speed bus 0-1073741823
Isb_ioarea Address of low-speed bus I/0 area that contains the Gowi6#FFF# 0
speed bus configuration area. Will appear in the bridge’s
user-defined register 1 on the high-speed bus. Note that
to allow high-speed bus masters to read the low-speged
bus configuration area, the area must be mapped on one
of thelsb_bankgenerics.

AEROFLEX GAISLER

35

Table 28 Configuration options

GRIP

Generic

Function

Allowed range

Default

Ickdac

Locked access error detection and correction. This
generic is mapped to the generic with the same nam

the two AHB2AHB cores instantiated by AHBBRIDGE.

Please see the documentation for the AHB2AHB corj
VHDL generics for more information.

0-2
e on

e’s

0

maccsz

This generic is propagated to the slvmaccsz and mst32 - 256

maccsz VHDL generics on the two AHB2AHB cores

instantiated by AHBBRIDGE. The generic determines
the maximum AHB access size supported by the briﬂige.

Please see the documentation for the AHB2AHB co
VHDL generics for more information.

e’s

32

rdcomb

Read combining, this generic is mapped to the gene

- 2

with the same name on the two AHB2AHB cores instan-

tiated by AHBBRIDGE. Please see the documentatig
for the AHB2AHB core’s VHDL generics for more
information.

n

wrcomb

Write combining, this generic is mapped to the gene
with the same name on the two AHB2AHB cores inst|
tiated by AHBBRIDGE. Please see the documentatic
for the AHB2AHB core’s VHDL generics for more
information.

re- 2
an-

combmask

Read/Write combining mask, this generic is mappe
the generic with the same name on the two AHB2AH
cores instantiated by AHBBRIDGE. Please see the d
mentation for the AHB2AHB core’s VHDL generics fg
more information.

Qo 16#FFFF#
B

DCU-

r

16#FFFF#

allbrst

Support all burst types, this generic is mapped to thg
generic with the same name on the two AHB2AHB co
instantiated by AHBBRIDGE. Please see the docum
tation for the AHB2AHB core’s VHDL generics for
more information.

20-2
es
en-

fcfs

First-come, first-served operation, this generic is map
to the generic with the same name on the two

AHB2AHB cores instantiated by AHBBRIDGE. Pleas
see the documentation for the AHB2AHB core’s VHI
generics for more information.

péd NAHBMST

scantest

Enable scan support

AEROFLEX GAISLER

3.6

3.7

Signal descriptions

36

Table 29 shows the interface signals of the core (VHDL ports).

Table 29.Signal descriptions

GRIP

Signal name Type Function Active
RST Input Reset Low
HSB_HCLK Input High-speed AHB clock -
LSB_HCLK Input Low-speed AHB clock -
HSB_AHBSI Input High-speed bus AHB slave input signals -
HSB_AHBSO Output High-speed bus AHB slave output signals -
HSB_AHBSOV Input High-speed bus AHB slave input signals -
HSB_AHBMI Input High-speed bus AHB master input signals -
HSB_AHBMO Output High-speed bus AHB master output signals -
LSB_AHBSI Input Low-speed bus AHB slave input signals -
LSB_AHBSO Output Low-speed bus AHB slave output signals -
LSB_AHBSOV Input Low-speed bus AHB slave input signals -
LSB_AHBMI Input Low-speed bus AHB master input signals -
LSB_AHBMO Output Low-speed bus AHB master output signals -

Library dependencies

Table 30 shows the libraries used when instantiating the core (VHDL libraries).

Table 30Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration

AEROFLEX GAISLER 37 GRIP

4

4.1

4.2

AHBCTRL - AMBA AHB controller with plug&play support

Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.

The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and NAH-
BMST. It can also be set with tirahbmandnahbsVHDL generics.

MASTER MASTER

7 3
AHBCTRL
F— = - — — — — - — |17 — —
| v |
| | ARBITER/ |

DECODER 2 2
| |
Lo I — g
v
SLAVE SLAVE

Figure 3. AHB controller block diagram
Operation

4.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generigobin. In fixed-priority mode (robin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index O (set by the VHDL gendeitnastwill be granted.

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL genapcio can be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.

Note that there are AHB slaves that implement split-like functionality by giving AHB retry responses
until the access has finished and the original master tries again. All masters on the bus accessing such
slaves must be round-robin arbitrated without prioritization to avoid deadlock situations. For GRLIB
this applies to the GRPCI and GRPCI2 cores.

During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL gérbrit

should be set to 1.

4.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is OxFFF00000, but can be changed wiihattiér andiomaskVHDL gener-

ics. Access to unused addresses will cause an AHB error response.

AEROFLEX GAISLER 38 GRIP

Identification Register 00 VENDOR ID DEVICE ID 00 VERSION IRQ

04 USER-DEFINED

08 USER-DEFINED

oc USER-DEFINED
BARO 10 ADDR 00 [P|C MASK TYPE
BAR1 14 ADDR 00 [P|C MASK TYPE

Bank Address Registers

BAR2 18 ADDR 00 [P|C MASK TYPE
BAR3 1C ADDR 00 [P|C MASK TYPE

4.3

4.4

The I/O area can be placed within a memory area occupied by a slave. The slave will not be selected
when the I/O area is accessed.

4.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit.

The plug&play information is mapped on a read-only address area, defined bfgtudrand cfg-
maskVHDL generics, in combination with thimaddr andiomaskVHDL generics. By default, the

area is mapped on address OxFFFFF000 - OxFFFFFFFF. The master information is placed on the first
2 kbyte of the block (OxFFFFF000 - OxFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus OxFFFFFO00 + n*32, and OxFFFFF800 + n*32 for slaves.

31 24 23 121110 9 5 4 0

31 201918 17 16 15 4 3 0

TYPE
0001 = APB /O space
0010 = AHB Memory space
0011 = AHB I/O space

P = Prefetchable
C = Cacheable

Figure 4. AHB plug&play information record

AHB split support

AHB SPLIT functionality is supported if theplit VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.

It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

Locked accesses

The GRLIB AHB controller treats HLOCK as coupled to a specific access. If a previous access by a
master received a SPLIT/RETRY response then the arbiter will disregard the current value of
HLOCK. This is done as opposed to always treating HLOCK as being valid for the next access which
can result in a previously non-locked access being treated as locked when it is retried. Consider the
following sequence:

AEROFLEX GAISLER 39

4.5

4.6

4.7

GRIP

TO: MSTx write O
T1: MSTx write 1, HLOCK asserted as next access performed by master will be locked
T2: MSTx locked read

If (the non-locked) write 0 access at TO receives a RETRY or SPLIT response (given at time T1), then
the next access to be performed may be a retry of write 0. In this case the arbiter will disregard the
HLOCK setting and the retried access will not have HMASTLOCK set.

AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled withehbusmormeneric. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation.

Registers

The core does not implement any registers.

Configuration options

Table 31 shows the configuration options of the core (VHDL generics).

Table 31.Configuration options

Generic Function Allowed range Default
ioaddr The MSB address of the 1/O area. Sets the 12 most|siy- 16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address (i.e. 31 downtp
20)
iomask The 1/O area address mask. Sets the size of the I/O|dyed 64#FFF# 16#FFF#
and the start address together with ioaddr.
cfgaddr The MSB address of the configuration area. Sets 13 Bits16#FFF# 16#FFO#
in the 32-bit AHB address (i.e. 19 downto 8).
cfgmask The address mask of the configuration area. Sets the 8izd 6#FFF# 16#FFO#
of the configuration area and the start address together
with cfgaddr. If set to 0, the configuration will be dis-
abled.
rrobin Selects between round-robin (1) or fixed-priority (0) bug - 1 0
arbitration algorithm.
split Enable support for AHB SPLIT response 0-1 0
defmast Default AHB master 0 - NAHBMST-1 0
ioen AHB /O area enable. Set to 0 to disable the I/O area 0-1 1
disirq Set to 1 to disable interrupt routing 0-1 0
nahbm Number of AHB masters 1 - NAHBMST NAHBMST
nahbs Number of AHB slaves 1- NAHBSLV NAHBSLV
timeout Perform bus timeout checks (NOT IMPLEMENTED) 0-1 0
fixbrst Enable support for fixed-length bursts 0-1 0
debug Print configuration (O=none, 1=short, 2=all cores) 0-2 2
fpnpen Enables full decoding of the PnP configuration records- 1 0
When disabled the user-defined registers in the PnP|con-
figuration records are not mapped in the configuration
area.
icheck Check bus index 0-1
devid Assign unique device identifier readable from plug antl/A 0
play area.
enbusmon Enable AHB bus monitor 0-1 0

AEROFLEX GAISLER

40

Table 31.Configuration options

GRIP

Generic

Function

Allowed range

Default

assertwarn

Enable assertions for AMBA recommendations. Vig
tions are asserted with severity warning.

1®- 1

0

asserterr

Enable assertions for AMBA requirements. Violation® - 1

are asserted with severity error.

hmstdisable

Disable AHB master rule check. To disable a master
check a value is assigned so that the binary represe
tion contains a one at the position corresponding to t
rule number, e.g 0x80 disables rule 7.

MNIA
hta-
he

hslvdisable

Disable AHB slave tests. Values are assigned as fo
hmstdisable.

N/A

arbdisable

Disable Arbiter tests. Values are assigned as for hm
able.

sidia-

mprio

Master(s) with highest priority. This value is converte
to a vector where each position corresponds to a ma

To prioritize masters x and y set this genericte 2.

dN/A
ster.

mcheck

Check if there are any intersections between core n
ory areas. If two areas intersect an assert with level f
ure will be triggered (in simulation). mcheck = 1 doeg
not report intersects between AHB 10 areas and AH
memory areas (as IO areas are allowed to override 1
ory areas). mcheck = 2 triggers on all overlaps.

@m-2
ail-

nem-

ccheck

Perform sanity checks on PnP configuration records
simulation).

(n1

acdm

AMBA compliant data multiplexing (for HSIZE >
word). If this generic is set to 1, and the AMBA bus d3
width in the system exceeds 32-bits, the core will ens
AMBA compliant data multiplexing for access sizes
(HSIZE) over 32-bits. GRLIB cores have an optimiza

tion where they drive the same data on all lanes. Read

data is always taken from the lowest lanes. If an AM
compliant core from another vendor is introduced in
design, that core may not always place valid data on
low part of the bus. By setting this generic to 1, the
AHBCTRL core will replicate the data, allowing the

non-GRLIB cores to be instantiated without modificat

tion.

0-1
ta
ure

BA
he
the

index

AHB index for trace print-out, currently unused

N/A

ahbtrace

AHB trace print-out to simulator console in simulati

n. 0-1

hwdebug

Enable hardware debug registers. If this generic is g
1 the configuration area will include to diagnostic reg
ters at offsets OxFF4 and OxFF8.

Offset OxFF4 will show a 32-bit register where bit n

shows the current status of AHB master n's HBUSRE

signal.

Offset OxFF8 will show a 32-bit register where bit n
shows the current SPLIT status of AHB master n. The|
will be set when AHB master n receives a SPLIT rep|
and will be re-set to ‘0’ when HSPLIT for AHB master
has been asserted.

This functionality is not intended to be used in produ
tion systems but can provide valuable information wh
debugging systems with cores that have problems wj
AMBA SPLIT replies.

al tdl
is-

AEROFLEX GAISLER

4.8

4.9

4.10

Signal descriptions

41

Table 32 shows the interface signals of the core (VHDL ports).

Table 32.Signal descriptions

GRIP

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
MSTI * Output AMBA AHB master interface record array -
MSTO * Input AMBA AHB master interface record array -
SLVI * Output AMBA AHB slave interface record array -
SLVO * Input AMBA AHB slave interface record array -

* see GRLIB IP Library User's Manual

Library dependencies

Table 33 shows libraries used when instantiating the core (VHDL libraries).

Table 33Library dependencies

Library Package Imported unit(s) Description

AMBA

GRLIB Types

AMBA signal type definitions

Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl
generic (

defmast : integer := 0;-- default master
split : integer := 0;-- split support
rrobin : integer := 0;-- round-robin arbitration
timeout : integer range 0 to 255 := 0; -- HREADY timeout
ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
iomask : ahb_addr_type := 16#fff#; -- /O area address mask
cfgaddr : ahb_addr_type := 16#ffO#; -- config area MSB address
cfgmask : ahb_addr_type := 16#ffO#; -- config area address maskk

nahbm :integer range 1 to NAHBMST := NAHBMST; -- number of masters
nahbs :integer range 1 to NAHBSLV := NAHBSLYV; -- number of slaves
ioen :integerrange Oto 15:=1; -- enable I/O area

disirq : integer range 0 to 1 := O; -- disable interrupt routing

fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts

debug : integer range 0 to 2 := 2; -- print configuration to consolee
fpnpen : integer range 0 to 1 :=0; -- full PnP configuration decoding
icheck :integerrangeOtol:=1

devid rinteger :=0; -- unique device ID
enbusmon :integer range 0 to 1 := 0; --enable bus monitor
assertwarn : integer range 0 to 1 := 0; --enable assertions for warnings
asserterr : integer range 0 to 1 := 0O; --enable assertions for errors
hmstdisable : integer := 0; --disable master checks
hslvdisable : integer := 0; --disable slave checks
arbdisable : integer := 0; --disable arbiter checks

mprio : integer := 0; --master with highest priority
enebterm :integer range 0 to 1 :=0 --enable early burst termination
)i
port (

rst :in std_ulogic;

clk :in std_ulogic;

msti : out ahb_mst_in_type;
msto :in ahb_mst_out_vector;
slvi :outahb_slv_in_type;

AEROFLEX GAISLER 42 GRIP

slvo :in ahb_slv_out_vector;
testen :in std_ulogic :='0’;
testrst : in std_ulogic :="1’;
scanen :in std_ulogic :='0’;
testoen : in std_ulogic :='1’
)

end component;

411 Instantiation

This example shows the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

-- AMBA signals

signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin
-- ARBITER

ahbO0 : ahbctrl -- AHB arbiter/multiplexer
generic map (defmast => CFG_DEFMST, split => CFG_SPLIT,

rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm => 8, nahbs => 8)
port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- AHB slave

sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

el:eth _oc

generic map (mstndx => 2, slvndx => 5, ioaddr => CFG_ETHIO, irq => 12, memtech =>
memtech)

port map (rstn, clkm, ahbsi, ahbso(5), ahbmi => ahbmi,
ahbmo => ahbmo(2), ethil, ethol);

.e.ﬁd;
4.12 Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units are printed to the
console during the start of simulation. Reporting starts by scanning the master interface array from 0
to NAHBMST - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid
vendor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
descriptions for these ids are obtained from the GRLIB.DEVICES package, and are then printed on
standard out together with the master number. If the index check is enabled (done with a VHDL
generic), the report module also checks if the hindex number returned in the record matches the array
number of the record currently checked (the array index). If they do not match, the simulation is
aborted and an error message is printed.

AEROFLEX GAISLER 43

GRIP

This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0

to NAHBSLYV - 1 and the same information is printed and the same checks are done as for the master

interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-

rently defined are AHB memory, AHB I/O and APB I/0O. APB 1I/O ranges are ignored by this module.

vsim -c -quiet leon3mp
VSIM 1> run
LEON3 MP Demonstration design

GRLIB
Target

ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:

ahbctrl

ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:

apbctrl

apbctrl:

Version 1.0.7
technology: inferred, memory library: inferred
AHB arbiter/multiplexer rev 1
Common I/O area disabled
Configuration area at 0xfffff000, 4 kbyte
mst0: Aeroflex Gaisler Leon3 SPARC V8 Processor
mstl: Aeroflex Gaisler AHB Debug UART
: slv0: European Space Agency Leon2 Memory Controller
memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
memory at 0x20000000, size 512 Mbyte
memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
slvl: Aeroflex Gaisler AHB/APB Bridge
memory at 0x80000000, size 1 Mbyte
APB Bridge at 0x80000000 rev 1
slv0: European Space Agency Leon2 Memory Controller
1/0 ports at 0x80000000, size 256 byte
slvl: Aeroflex Gaisler Generic UART
1/0 ports at 0x80000100, size 256 byte
slv2: Aeroflex Gaisler Multi-processor Interrupt Ctrl.
1/0O ports at 0x80000200, size 256 byte
slv3: Aeroflex Gaisler Modular Timer Unit
1/0 ports at 0x80000300, size 256 byte
slv7: Aeroflex Gaisler AHB Debug UART
1/0 ports at 0x80000700, size 256 byte
: slvll: Aeroflex Gaisler General Purpose I/O port
1/0O ports at 0x80000b00, size 256 byte

grgpioll: 8-bit GPIO Unit rev 0

gptime
irgmp:

r3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
Multi-processor Interrupt Controller rev 3, #cpu 1

apbuartl: Generic UART rev 1, fifo 4, irq 2
ahbuart7: AHB Debug UART rev 0

leon3_|
leon3_|

VSIM 2>

0: LEON3 SPARC V8 processor rev 0
0: icache 1*8 kbyte, dcache 1*8 kbyte

AEROFLEX GAISLER 44 GRIP

5

5.1

5.2

AHBJTAG - JTAG Debug Link with AHB Master Interface

Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

TDI

|

Tck —P JTAG TAP
T™s — | Controller JTAG Communication
Interface ,
Tbo AHB master interface
l T AMBA AHB
Figure 5. JTAG Debug link block diagram
Operation

5.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 34.JTAG debug link Command/Address register

34 33 32 31 0
‘ w ‘ SIZE ‘ AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer

33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11"- reserved

31 30 AHB address

Table 35.JTAG debug link Data register
32 31 0
‘ SEQ ‘ AHB DATA ‘

32 Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out or write
data shifted in, the subsequent transfer will be to next word address. When read out from the device,
this bit is ‘1’ if the AHB access has completed and ‘0’ otherwise.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

AEROFLEX GAISLER 45 GRIP

5.3

5.4

5.5

As of version 1 of the JTAG debug link the core will signal AHB access completion by setting bit 32

of the data register. In previous versions the debug host could not determine if an AHB accesses had
finished when the read data was shifted out of the JTAG debug link data register. As of version 1 a
debug host can look at bit 32 of the received data to determine if the access was successful. If bit 32 is
‘1’ the access completed and the data is valid. If bit 32 is ‘0’, the AHB access was not finished when
the host started to read data. In this case the host can repeat the read of the data register until bit 32 is
set to ‘1, signaling that the data is valid and that the AMBA AHB access has completed.

It should be noted that while bit 32 returns ‘0’, new data will not be shifted into the data register. The
debug host should therefore inspect bit 32 when shifting in data for a sequential AHB access to see if
the previous command has completed. If bit 32 is ‘0’, the read data is not valid and the command just
shifted in has been dropped by the core.

Inspection of bit 32 should not be done for JTAG Debug links with version number O.

Implementation

5.3.1 Clocking

Except for the TAP state machine and instruction register, the JTAG debug link operates in the AMBA
clock domain. To detect when to shift the address/data register, the JTAG clock and TDI are resyn-
chronized to the AMBA domain. The JTAG clock must be less than 1/3 of the AHB clock frequency
for the debug link commands to work when nsync=2, and less than 1/2 of the AHB frequency when
nsync=1.

Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

Vendor and device identifiers

The core has vendor identifier 0Ox01 (Aeroflex Gaisler) and device identifier Ox01C. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 46 GRIP

5.6 Configuration options

Table 36 shows the configuration options of the core (VHDL generics).

Table 36.Configuration options

Generic Function Allowed range Default
tech Target technology 0 - NTECH 0
hindex AHB master index 0 - NAHBMST-1 0
nsync Number of synchronization registers between clock | 1 - 2 1
regions
idcode JTAG IDCODE instruction code (generic tech only) 0 - 255 9
manf Manufacturer id. Appears as bits 11-1 in TAP controllefs- 2047 804
device identification register. Used only for generic tech-
nology. Default is Aeroflex Gaisler manufacturer id.
part Part number (generic tech only). Bits 27-12 in device|i@.- 65535 0
reg.
ver Version number (generic tech only). Bits 31-28 in devjdg- 15 0
id. reg.
ainst Code of the JTAG instruction used to access JTAG | 0 - 255 2
Debug link command/address register.
For Actel TAPs (tech VHDL generic is set to an Acte
technology) this generic should be set to 16, for all other
technologies the default value (2) can be used.
dinst Code of the JTAG instruction used to access JTAG | 0 - 255 3
Debug link data register
For Actel TAPs (tech VHDL generic is set to an Acte
technology) this generic should be set to 17, for all other
technologies the default value (3) can be used.
scantest Enable scan test support 0-1 0
oepol Output enable polarity for TDOEN 0-1 1
tcknen Support externally inverted TCK (generic tech only) 0-1 0

AEROFLEX GAISLER 47 GRIP

5.7

5.8

Signal descriptions

Table37 shows the interface signals of the core (VHDL ports).

Table 37.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TMS N/A Input JTAG TMS signal* High
TDI N/A Input JTAG TDI signal* High
TDO N/A Output JTAG TDO signal* High
AHBI rxx Input AHB Master interface input -
AHBO Fork Output AHB Master interface output -
TAPO_TCK N/A Output TAP Controller User interface TCK signal** High
TAPO_TDI N/A Output TAP Controller User interface TDI signal** High
TAPO_INST[7:0] | N/A Output TAP Controller User interface INSTsignal** High
TAPO_RST N/A Output TAP Controller User interface RST signal** High
TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High
TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High
TAPO_UPD N/A Output TAP Controller User interface UPD signal** High
TAPI_TDO N/A Input TAP Controller User interface TDO signal** High
TRST N/A Input JTAG TRST signal Low
TDOEN N/A Output Output-enable for TDO See oepol
TCKN N/A Input Inverted JTAG clock* (if tcknen is set) -

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and TDO are not used.
Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core through TAP controller
instantiation.

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

***) see GRLIB IP Library User's Manual

Signal definitions and reset values

The signals and their reset values are described in table 38.

Table 38.Signal definitions and reset values

Signal name Type Function Active Reset value
dsutck Input JTAG clock - -

dsutms Input JTAG TMS High -

dsutdi Input JTAG TDI High -

dsutdo Output JTAG TDO High undefined

AEROFLEX GAISLER 48 GRIP

59 Timing

The timing waveforms and timing parameters are shown in figure 6 and are defined in table 39.

tAHBJITAGO tAHBITAGL
dsutck _/_\

tAHBITAG2 = |

dsutdi, dsutms X X X XX X

tAHBITAGA— | — taHBITAG3

X XXX XX

Figure 6. Timing waveforms

Table 39.Timing parameters

Name Parameter Reference edge Min Max Unit
tAHBITAGO clock period - 100 - ns
tAHBITAGL clock low/high period - 40 - ns
tAHBITAG? data input to clock setup risirdsutckedge 15 - ns
tAHBITAGS data input from clock hold risindsutckedge 0 - ns
tAHBITAGA clock to data output delay fallirdsutckedge - 25 ns

5.10 Library dependencies

Table 40 shows libraries used when instantiating the core (VHDL libraries).

Table 40Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER JTAG Signals, component Signals and component declaration

5.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.jtag.all;

entity ahbjtag_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;

-- JTAG signals

tck :in std_ulogic;

tms :in std_ulogic;

tdi : in std_ulogic;

tdo : out std_ulogic
)i

end;

architecture rtl of ahbjtag_ex is

AEROFLEX GAISLER 49 GRIP

-- AMBA signals

signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal gnd : std_ulogic;

constant clkperiod : integer := 100;
begin
gnd <=0,

-- AMBA Components are instantiated here

-- AHB JTAG
ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
open, open, open, open, open, open, open, gnd);

jtagproc : process
begin
wait;
jtagcom(tdo, tck, tms, tdi, 100, 20, 16#40000000#, true);
wait;
end process;

end;

5.12 Simulation

DSU communication over the JTAG debug link can be simulated ysiggomprocedure. Thétag-
comprocedure sends JTAG commands to the AHBJTAG on JTAG signals TCK, TMS, TDI and TDO.
The commands read out and report the device identification code, optionally put the CPU(s) in debug
mode, perform three write operations to the memory and read out the data from the memory. The
JTAG test works if the generic JTAG tap controller is used and will not work with built-in TAP mac-
ros (such as Altera and Xilinx JTAG macros) since these macros don’t have visible JTAG pins. The
jtagcom procedure is part pagtstpackage imaislerlibrary and has following declaration:

procedure jtagcom(signal tdo :in std_ulogic;
signal tck, tms, tdi : out std_ulogic;
cp, start, addr :in integer;

-- cp - TCK clock period in ns

-- start - time in us when JTAG test is started

-- addr - read/write operation destination address
haltcpu :in boolean);

AEROFLEX GAISLER 50 GRIP

6

6.1

6.2

6.3

AHBRAM - Single-port RAM with AHB interface

Overview

AHBRAM implements on-chip RAM with an AHB slave interface. Memory size is configurable in
binary steps through a VHDL generic. Minimum size is 1KiB and maximum size is dependent on tar-
get technology and physical resources. Read accesses have zero or one waitstate (configured at imple-
mentation time), write access have one waitstate. The RAM supports byte- and half-word accesses, as
well as all types of AHB burst accesses.

Internally, the AHBRAM instantiates a SYNCRAM block with byte writes. Depending on the target
technology map, this will translate into memory with byte enables or to multiple 8-bit wide SYN-
CRAM blocks.

The size of the RAM implemented within AHBRAM can be read via the core’s AMBA plugé&play
version field. The version field will display log2(number of bytes), for a 1 KiB SYNCRAM the ver-
sion field will have the value 10, wheré’2 1024 bytes = 1 KiB.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier OXOOE. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options

Table 41 shows the configuration options of the core (VHDL generics).

Table 41 Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 mos} 8ig-16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.

hmask The AHB area address mask. Sets the size of the AHB- 16#FFF# 16#FFO#
area and the start address together tsthdr.

tech Technology to implement on-chip RAM 0- NTECH 0

kbytes RAM size in KiB. The size of the RAM implemented| target-dependent 1

will be the minumum size that will hold the size spec
fied bykbytes A value of 1 here will instantiate a 1 KiB
SYNCRAM, a value of 3 will instantiate a 4 KiB SYN
CRAM. The actual RAM usage on the target technolagy
then depends on the available RAM resources and the
technology map.

pipe Add registers on data outputs. If set to 0 the AMBA data- 1 0
outputs will be connected directly to the core’s interngl
RAM. If set to 1 the core will include registers on the
data outputs. Settings this generic to 1 makes read

accesses have one waitstate, otherwise the core will
respond to read accesses with zero waitstates.

maccsz Maximum access size supported. This generic resti@g, 64, 128, 256 AHBDW
the maximum AMBA access size supported by the cpre
and selects the width of the SYNCRAMBW RAM used
internally. The default value is assigned from AHBDW,
which sets the maximum bus width for the GRLIB
design.

AEROFLEX GAISLER

6.4

6.5

6.6

6.7

Signal descriptions

51

Table 42 shows the interface signals of the core (VHDL ports).

Table 42 Signal descriptions

GRIP

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User's Manual

Library dependencies

Table 43 shows libraries used when instantiating the core (VHDL libraries).

Table 43Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration

Component declaration

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.misc.all;

component ahbram

generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
tech : integer := 0; kbytes : integer := 1);

port (

rst : in std_ulogic;

clk : in std_ulogic;

ahbsi : in ahb_slv_in_type;

ahbso : out ahb_slv_out_type

)i

end component;

Instantiation

This example shows how the core can be instantiated.

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.misc.all;

ahbramO : ahbram generic map (hindex => 7, haddr => CFG_AHBRADDR,
tech => CFG_MEMTECH, kbytes => 8)
port map (rstn, clkm, ahbsi, ahbso(7));

AEROFLEX GAISLER 52 GRIP

7

7.1

7.2

7.3

AHBDPRAM - Dual-port RAM with AHB interface

Overview

AHBDPRAM implements a 32-bit wide on-chip RAM with one AHB slave interface port and one
back-end port for a user application. The AHBDPRAM is therefore useful as a buffer memory
between the AHB bus and a custom IP core with a RAM interface

The memory size is configurable in binary steps throughathiess VHDL generic. The minimum size

is 1kB while maximum size is dependent on target technology and physical resources. Read accesses
are zero-waitstate, write access have one waitstate. The RAM optionally supports byte- and half-word
accesses, as well as all types of AHB burst accesses. Internally, the AHBRAM instantiates one 32-bit
or four 8-bit wide SYNCRAM_DP blocks. The target technology must have support for dual-port
RAM cells.

The back-end port consists of separate clock, address, datain, dataout, enable and write signals. All
these signals are sampled on the rising edge of the back-end clock (CLKDP), implementing a syn-
chronous RAM interface. Read-write collisions between the AHB port and the back-end port are not
handled and must be prevented by the user. If byte write is enabled, the WRITE(0:3) signal controls
the writing of each byte lane in big-endian fashion. WRITE(0) controls the writing of DATAIN(31:24)
and so on. If byte write is disabled, WRITE(O) controls writing to the complete 32-bit word.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0XOOF. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

Configuration options

Table 44 shows the configuration options of the core (VHDL generics).

Table 44 Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most Sig-16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.

hmask The AHB area address mask. Sets the size of the AHB- 16#FFF# 16#FFO#
area and the start address together tgitidr.

tech Technology to implement on-chip RAM 0-NTECH 2

abits Address bits. The RAM size in Kbytes is equal to 8-19 8

2**(abits +2)
bytewrite If set to 1, enabled support for byte and half-word writes 0 -1 0

AEROFLEX GAISLER

53

GRIP

7.4 Signal descriptions
Table 45 shows the interface signals of the core (VHDL ports).
Table 45.Signal descriptions
Signal name Field Type Function Active
RST N/A Input AHB Reset Low
CLK N/A Input AHB Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
CLKDP Input Clock for back-end port -
ADDRESS(abits-1:0) Input Address for back-end port -
DATAIN(31: 0) Input Write data for back-end port -
DATAOUT(31:0) Output Read data from back-end port -
ENABLE Input Chip select for back-end port High
WRITE(O : 3) Input Write-enable byte select for back-end gort High
* see GRLIB IP Library User's Manual
7.5 Library dependencies

Table 46 shows libraries used when instantiating the core (VHDL libraries).

Table 46 Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration

7.6 Component declaration

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.misc.all;

component ahbdpram
generic (
hindex : integer := 0;
haddr :integer :=0;

hmask :integer := 16#fff#;

tech :integer:=2;

abits :integer range 8 to 19 := 8;
bytewrite : integer range 0to 1:=0

);

port (

rst :in std_ulogic;
clk :in std_ulogic;

ahbsi :in ahb_slv_in_type;
ahbso : outahb_slv_out_type;

clkdp :in std_ulogic;

address : in std_logic_vector((abits -1) downto 0);

datain :in std_logic_vector(31 downto 0);

dataout : out std_logic_vector(31 downto 0);
enable : in std_ulogic;-- active high chip select
write : in std_logic_vector(0 to 3)-- active high byte write enable

);

end component;

AEROFLEX GAISLER 54 GRIP

8

8.1

8.2

8.3

8.4

AHBROM - Single-port ROM with AHB interface

Overview

The AHBROM core implements a 32-bit wide on-chip ROM with an AHB slave interface. Read
accesses take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM supports
byte- and half-word accesses, as well as all types of AHB burst accesses.

PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -0 prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA tar-
gets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For ASIC
implementations, the ROM will be synthesized as gates. It is then recommended to pigpe tpion

to improve the timing.

Vendor and device identifiers

The core has vendor identifier Ox01 (Aeroflex Gaisler) and device identifier 0x01B. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

Configuration options
Table 47 shows the configuration options of the core (VHDL generics).

Table 47 Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most Sig-16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.

hmask The AHB area address mask. Sets the size of the AHB- 16#FFF# 16#FFO#
area and the start address together tditidr.

tech Not used

pipe Add a pipeline stage on read data 0 0

kbytes Not used

AEROFLEX GAISLER

8.5

8.6

8.7

8.8

Signal descriptions

55

Table 48 shows the interface signals of the core (VHDL ports).

Table 48.Signal descriptions

GRIP

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User's Manual

Library dependencies
Table 49 shows libraries used when instantiating the core (VHDL libraries).

Table 49 Library dependencies

Library

Package

Imported unit(s)

Description

GRLIB

AMBA

Types

AMBA signal type definitions

Component declaration

component ahbrom

generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;

pipe : integer := 0; tech : integer := 0);

port (
rst : in std_ulogic;
clk : in std_ulogic;

ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type

);

end component;

Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;

brom : entity work.ahbrom

generic map (hindex => 8, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP)
port map (rstn, clkm, ahbsi, ahbso(8));

AEROFLEX GAISLER 56 GRIP

9

9.1

9.2

9.3

AHBSTAT - AHB Status Registers

Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tol-
erant core.

The status register and the failing address register are accessed from the AMBA APB bus.

Operation

9.2.1 Errors

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP =“01") is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated, as described hereunder.

Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

9.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only
difference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected.

When the CE bit is set the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the CE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.

The correctable error signals from the fault tolerant units should be connectedsiatiheerrorinput
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response.

9.2.3 Interrupts

The interrupt is generated on the line selected bpithe/HDL generic.

The interrupt is connected to the interrupt controller to inform the processor of the error condition.
The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit and the monitoring becomes active again.
Interrupts are generated for both AMBA error responses and correctable errors as described above.

Registers

The core is programmed through registers mapped into APB address space.

Table 50AHB Status registers

APB address offset Registers
0x0 AHB Status register
0x4 AHB Failing address register

AEROFLEX GAISLER

9.4

9.5

9.6

57 GRIP

Table 51. AHB Status register
10 9 8 7 6 3 2 0

31
RESERVED [CE[NE| HWRITE [HVMASTER [HSIZE |
31:10 RESERVED
9 CE: Correctable Error. Set if the detected error was caused by a correctable error and zero otherwise.
8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by
writing a zero to it.
7 The HWRITE signal of the AHB transaction that caused the error.
6: 3 The HMASTER signal of the AHB transaction that caused the error.
2.0 The HSIZE signal of the AHB transaction that caused the error
Table 52. AHB Failing address register
31 0
AHB FAILING ADDRESS
31:0 The HADDR signal of the AHB transaction that caused the error.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options
Table 53 shows the configuration options of the core (VHDL generics).

Table 53.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAHBSLV-1 0

paddr APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#
pirq Interrupt line driven by the core 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1- NAHBSLV-1 3

Signal descriptions
Table 54shows the interface signals of the core (VHDL ports).

Table 54 Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB slave input signals -
AHBSI * Input AHB slave output signals -
STATI CERROR Input Correctable Error Signals High
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER 58

9.7

9.8

Library dependencies

Table 55 shows libraries used when instantiating the core (VHDL libraries).

Table 55Library dependencies

GRIP

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MISC Component Component declaration

Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
registercerror vector. The connection of the different memory controllers to external memory is not

shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.tech.all;
library gaisler;

use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;
--other signals

)y

end;
architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- signals used to connect memory controller and memory bus

signal memi : memory_in_type;

signal memo : memory_out_type;

signal sdo, sdo2: sdctrl_out_type;

signal sdi : sdctrl_in_type;
-- correctable error vector

signal stati : ahbstat_in_type;

signal aramo : ahbram_out_type;
begin

-- AMBA Components are defined here ...
-- AHB Status Register

astatO : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 3)

AEROFLEX GAISLER 59 GRIP

port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
stati.cerror(3 to NAHBSLV-1) <= (others => ‘0);

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
errcnt => 1, cntbits => 4)
port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);
stati.cerror(0) <= aramo.ce;
-- SDRAM controller
sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
cntbits => 4)
port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);
stati.cerror(1) <= sdo.ce;

-- Memory controller
mctrlO : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,
edacen => 1, errcnt => 1, cnthits => 4)
port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);
stati.cerror(2) <= memo.ce;
end;

AEROFLEX GAISLER 60 GRIP
10 AHBTRACE - AHB Trace buffer

10.1 Overview

The trace buffer consists of a circular buffer that stores AMBA AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis.

AHB Trace Buffer

Trace control Trace buffer RAM

i v 1

AHB slave interface

IRQ
- - - 4+ - - - - — — — — — J
AMBA AHB

Figure 7. Block diagram

The trace buffer is 128 bits wide, the information stored is indicated in the table below:

Table 56 AHB Trace buffer data allocation

Bits Name Definition

127:96 Time tag The value of the time tag counter
95 AHB breakpoint hit Setto ‘1’ if a DSU AHB breakpoint hit occurred.
94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag.

10.2 Operation

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AMBA

AHB transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each transfer.
Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is gener-

ated when a breakpoint is hit.

Note: the LEON3 and LEON4 Debug Support Units (DSU3/DSU4) also includes an AHB trace
buffer. The standalone trace buffer is intended to be used in system without a processor or when the
DSU3 is not present.

AEROFLEX GAISLER 61 GRIP

The size of the trace buffer is configured by means ofkihyeesVHDL generic, defining the size of the
complete buffer in kbytes.

The size of the trace bufferkbyteskbyte, with the resulting line depth kibyte$16 kbyte.
10.3 Registers

10.3.1 Register address map

The trace buffer occupies 128 KiB of address space in the AHB I/O area. The following register
address are decoded:

Table 57 Trace buffer address space

Address Register

0x000000 Trace buffer control register
0x000004 Trace buffer index register
0x000008 Time tag counter
0x00000C Trace buffer master/slave filter register
0x000010 AHB break address 1
0x000014 AHB mask 1

0x000018 AHB break address 2
0x00001C AHB mask 2

0x010000 - 0x020000 Trace buffer

.0 Trace bits 127 - 96

.4 Trace bits 95 - 64

.8 Trace bits 63 - 32

..C Trace bits 31 -0

10.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

Table 58.Trace buffer control register

31 16 15 14 12 11 5 4 3 2 1 0
DCNT ‘BA‘ BSEL ‘ RESERVED ‘AF ‘ FR ‘FW‘DM‘ EN‘

31:16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15 Bus select Available (BA) - If this field is set to ‘1’, the core has several buses connected. The bus to
trace is selected via the BSEL field. If this field is ‘0’, the core is only capable of tracing one AHB
bus.

14:12 Bus select (BSEL) - If the BA field is ‘1’ this field selects the bus to trace. If the BA field is ‘0, this
field is not writable.

11:5 RESERVED

4 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer

breakpoint 2’s address and mask will be included in the trace buffer. This bit can only be set of the
core has been implemented with support for filtering

3 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer. This
bit can only be set of the core has been implemented with support for filtering.

2 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.
This bit can only be set of the core has been implemented with support for filtering.

1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.

Trace enable (EN) - Enables the trace buffer

AEROFLEX GAISLER 62 GRIP

10.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

Table 59.Trace buffer index register

31 4 3 0
INDEX ‘ 0x0 ‘
31: 4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on
the size of the trace buffer
30 Read as 0x0

10.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace buffer is
enabled. The value of the counter is stored in the trace to provide a time tag.

Table 60.Trace buffer time tag counter
31 0

‘ TIME TAG VALUE

10.3.5 Trace buffer master/slave filter register

The master/slave filter register allows filtering out specified master and slaves from the trace. This
register can only be assigned if the trace buffer has been implemented with support for filtering.

Table 61.Trace buffer master/slave filter register

31 16 15 0
SMASK[15:0] \ MMASK[15:0] \
31:16 Slave Mask (SMASK) - If SMASK(n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.
15: 0 Master Mask (MMASK) - If MMASK]n] is set to ‘1’, the trace buffer will not save accesses per-

formed by master n.

10.3.6 Trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the DCNT
field in the trace buffer control register to a non-zero value. In this case, the DCNT value will be dec-
remented for each additional trace until it reaches zero and after two additional entries, the trace
buffer is frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1" are compared during break-
point detection. To break on AHB load or store accesses, the LD and/or ST bits should be set.

Table 62 Trace buffer AHB breakpoint address register
31 2 10
BADDR[31:2] \ 0b00 \

31:2 Breakpoint address (BADDR) - Bits 31:2 of breakpoint address
1: 0 Reserved, read as 0

Table 63.Trace buffer AHB breakpoint mask register
31 2 10
BMASK([31:2] ‘ LD ‘ ST‘

AEROFLEX GAISLER 63 GRIP

Table 63.Trace buffer AHB breakpoint mask register

31:2 Breakpoint mask (BMASK) - Bits 31:2 of breakpoint mask
1 Load (LD) - Break on data load address
0 Store (ST) - Break on data store address

10.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x017. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

10.5 Configuration options
Table 64 shows the configuration options of the core (VHDL generics).

Table 64 Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
ioaddr The MSB address of the 1/O area. Sets the 12 most|siy- 16#FFF# 16#000#
nificant bits in the 20-bit I/O address.
iomask The 1/O area address mask. Sets the size of the 1/O|dyed 64#FFF# 16#E00#
and the start address together with ioaddr.
irq Interrupt number 0 - NAHBIRQ-1 0
tech Technology to implement on-chip RAM 0 - NTECH 0
kbytes Trace buffer size in kbytes 1-64
ahbfilt If this generic is set to 1 the core will be implementedO - 1 0
with support for AHB trace buffer filters.
ntrace Number of buses to trace. This generic is only availaldle 8 1
if the entity ahbtrace_mmb is instantiated. T

10.6 Signal descriptions
Table65 shows the interface signals of the core (VHDL ports).

Table 65.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User's Manual

10.7 Library dependencies

Table 66 shows libraries used when instantiating the core (VHDL libraries).

Table 66 Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration

AEROFLEX GAISLER 64 GRIP

10.8 Component declaration

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.misc.all;

component ahbtrace is
generic (
hindex : integer := 0;
ioaddr : integer := 16#000%#;
iomask : integer := 16#E00#;
tech :integer:=0;
irq :integer:=0;
kbytes :integer := 1);
port (
rst :in std_ulogic;
clk :in std_ulogic;
ahbmi :in ahb_mst_in_type;
ahbsi :in ahb_slv_in_type;
ahbso : out ahb_slv_out_type);
end component;

-- Tracebuffer that can trace separate bus:
component ahbtrace_mb is

generic (
hindex :integer:=0;
ioaddr :integer := 16#000#;

iomask :integer := 16#E00#;
tech :integer := DEFMEMTECH;
irq :integer:=0;

kbytes : integer ;= 1);

port (
rst :in std_ulogic; clk :in std_ulogic;
ahbsi :in ahb_slv_in_type; -- Register interface

ahbso : out ahb_slv_out_type;
tahbmi : in ahb_mst_in_type; tahbsi : in ahb_slv_in_type -- Trace
)

end component;

-- Tracebuffer that can trace several separate buses:
component ahbtrace_mmb is
generic (
hindex : integer :=0;
ioaddr :integer := 16#000#;
iomask :integer := 16#EO00#;
tech :integer := DEFMEMTECH;
irq :integer :=0;
kbytes :integer := 1;
ntrace :integer range 1to 8 ;= 1);

port (
rst 1in std_ulogic; clk :in std_ulogic;
ahbsi :in ahb_slv_in_type; -- Register interface

ahbso :outahb_slv_out_type;
tahbmiv : in ahb_mst_in_vector_type(0 to ntrace-1);
tahbsiv : in ahb_slv_in_vector_type(0 to ntrace-1) -- Trace
)

end component;

AEROFLEX GAISLER

11

11.1

65 GRIP

AHBUART- AMBA AHB Serial Debug Interface

Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
a read or write transfer can be generated to any address on the AMBA AHB bus.

Baud-rate e Serial port
generator 8*bitclk Controﬁler 4¢—» AMBA APB
RX K}——» Receiver shift register Transmitter shift register ——»KJ TX
AHB master interface AHB data/response

l AMBA AHB T

Figure 8. Block diagram

11.2 Operation

11.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

TStart‘ DO ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Stop‘

Figure 9. Data frame

Write Command

Send [11]Length -1|| Addr[31:24] || Addr[23:16] || Addr{15:8] || Addr[7:0] || Data[31:24] || Data[23:16]|| Data[15:8] || Data[7:0] |

Read command

Send [10[Length -1|| Addr[31:24] || Addr[23:16]|| Addr{15:8] | | Addr[7:0] |

Receive | pata[31:24] || Data[23:16] || Data[15:8] || Data[7:0] |

Figure 10. Commands

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

AEROFLEX GAISLER 66 GRIP

read accesses, the control byte and address is sent once and the corresponding number of data words
is returned.

11.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL bit is set in the UART control register. If the BL bit

is reset by software, the baud rate discovery process is restarted. The baud-rate discovery is also
restarted when a ‘break’ or framing error is detected by the receiver, allowing to change to baudrate
from the external transmitter. For proper baudrate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((system_clk*10)/(baudrate*8))-5)/10

11.3 Registers
The core is programmed through registers mapped into APB address space.

Table 67 AHB UART registers

APB address offset Register
0x4 AHB UART status register
0x8 AHB UART control register
0xC AHB UART scaler register
31 2 10
RESERVED [BLJEN

Figure 11. AHB UART control register

0: Receiver enable (EN) - if set, enables both the transmitter and receiver. Reset value: ‘0’.
Baud rate locked (BL) - is automatically set when the baud rate is locked. Reset value: ‘0’.

=

31 76543210
RESERVED FE| |oviBRTH|TS|DR

Figure 12. AHB UART status register

0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface. Read only. Reset
value: ‘0’

1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Read only. Reset value:
“qr

2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. Read only. Reset value:
qr

3: Break (BR) - indicates that a BREAKE has been received. Reset value: ‘0’

4: Overflow (OV) - indicates that one or more character have been lost due to receiver overflow. Reset value: ‘0’

6: Frame error (FE) - indicates that a framing error was detected. Reset value: ‘0’

AEROFLEX GAISLER 67 GRIP

31 18 17 0
RESERVED SCALER RELOAD VALUE

Figure 13. AHB UART scaler reload register

17:0 Baudrate scaler reload value = (((system_clk*10)/(baudrate*8))-5)/10. Reset value: “3FFFF".

11.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11.5 Configuration options
Table 68 shows the configuration options of the core (VHDL generics).

Table 68.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

11.6 Signal descriptions
Table 69shows the interface signals of the core (VHDL parts).

Table 69.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
UARTI RXD Input UART receiver data High
CTSN Input UART clear-to-send High
EXTCLK Input Use as alternative UART clock -
UARTO RTSN Output UART request-to-send High
TXD Output UART transmit data High
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER

11.7 Library dependencies

11.8

68

Table 70 shows libraries used when instantiating the core (VHDL libraries).

Table 70Library dependencies

GRIP

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER UART Signals, component Signals and component declaration

Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.uart.all;

entity ahbuart_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;

-- UART signals
ahbrxd :in std_ulogic;
ahbtxd : out std_ulogic
)i

end;

architecture rtl of ahbuart_ex is

-- AMBA signals

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- UART signals

signal ahbuarti : uart_in_type;

signal ahbuarto : uart_out_type;

begin

-- AMBA Components are instantiated here

-- AHB UART
ahbuartO : ahbuart

generic map (hindex => 5, pindex => 7, paddr => 7)

port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

-- AHB UART input data
ahbuarti.rxd <= ahbrxd;

-- connect AHB UART output to entity output signal
ahbtxd <= ahbuarto.txd,;

end;

AEROFLEX GAISLER

12

12.1

12.2

69

AMBAMON - AMBA Bus Monitor

Overview

The AMBA bus monitor checks the AHB and APB buses for violations against a set of rules. When

GRIP

an error is detected a signal is asserted and error message is (optionally) printed.

Rules

This section lists all rules checked by the AMBA monitor. The rules are divided into four different

tables depending on which type of device they apply to.

Some requirements of the AMBA specification are not adopted by the GRLIB implementation (on a

system level). These requirements are listed in the table below.

Table 71 Requirements not checked in GRLIB

Rule
Number | Description References
1 A slave which issues RETRY must only be accessed by one masterAViBA Spec. Rev 2.0 3-38.

time.

Table 72 AHB master rules.

Rule
Number | Description References
1 Busy can only occur in the middle of bursts. That is only after a N@NBA Spec. Rev 2.0 3-9.
SEQ, SEQ or BUSY. http://www.arm.com/support/faqip/
492 .html
2 Busy can only occur in the middle of bursts. It can be the last acces&bBA Spec. Rev 2.0 3-9.
a burst but only for INCR bursts. http://www.arm.com/support/fagip/
492 .html
3 The address and control signals must reflect the next transfer in {h@MBA Spec. Rev 2.0 3-9.
burst during busy cycles.
4 The first transfer of a single access or a burst must be NONSEQ (thi&MBA Spec. Rev 2.0 3-9.
ensured together with rule 1).
HSIZE must never be larger than the bus width. AMBA Spec. Rev 2.0 3-43.
HADDR must be aligned to the transfer size. AMBA Spec. Rev 2.0 3-12, 3-25.
http://www.arm.com/support/faqip/
582.html
7 Address and controls signals can only change when hready is loyhttp://www.arm.com/support/faqip/
the previous HTRANS value was IDLE, BUSY or if an ERROR, | 487.html
SPLIT or RETRY response is given. http://www.arm.com/support/fagip/
579.html
8 Address and control signals cannot change between consecutivg AMBA Spec. Rev 2.0 3-9.
BUSY cycles.
9 Address must be related to the previous access according to HBURSIBA Spec. Rev 2.0 3-9.
and HSIZE and control signals must be identical for SEQUENTIAL
accesses.
10 Master must cancel the following transfer when receiving an RETRABA Spec. Rev 2.0 3-22.
response.
11 Master must cancel the following transfer when receiving an SPLIARMBA Spec. Rev 2.0 3-22.
response.

AEROFLEX GAISLER

70

Table 72 AHB master rules.

GRIP

Rule

Number | Description References

12 Master must reattempt the transfer which received a RETRY response. AMBA Spec. Rev 2.0 3-21.
http://www.arm.com/support/faqip/
603.html.

13 Master must reattempt the transfer which received a SPLIT response. AMBA Spec. Rev 2.0 3-21.
http://www.arm.com/support/faqip/
603.html.

14 Master can optionally cancel the following transfer when receivingAMBA Spec. Rev 2.0 3-23.

ERROR response. Only a warning is given if assertions are enabled if
it does not cancel the following transfer.
15 Master must hold HWDATA stable for the whole data phase when WANBA Spec. Rev 2.0 3-7. AMBA
states are inserted. Only the appropriate byte lanes need to be dri&pec. Rev 2.0 3-25.
for subword transfers.

16 Bursts must not cross a 1 kB address boundary. AMBA Spec. Rev 2.0 3-11.

17 HMASTLOCK indicates that the current transfer is part of a lockgdAMBA Spec. Rev 2.0 3-28.

sequence. It must have the same timing as address/control.
18 HLOCK must be asserted at least one clock cycle before the addréddBA Spec. Rev 2.0 3-28.
phase to which it refers.

19 HLOCK must be asserted for the duration of a burst and can only bgp://www.arm.com/support/fagip/
deasserted so that HMASTLOCK is deasserted after the final addregg.html
phase.

20 HLOCK must be deasserted in the last address phase of a burst http://www.arm.com/suppo
588.html

21 HTRANS must be driven to IDLE during reset. http://www.arm.com/support/fag
495.html

22 HTRANS can only change from IDLE to NONSEQ or stay IDLE | http://www.arm.com/support/faqip/

when HREADY is deasserted. 579.html

Table 73 AHB slave rules.

t/faqip/

ip/

faqip/

Rule

Number | Description References

1 AHB slave must respond with a zero wait state OKAY response toAMBA Spec. Rev 2.0 3-9.
BUSY cycles in the same way as for IDLE.

2 AHB slave must respond with a zero wait state OKAY response tbAMBA Spec. Rev 2.0 3-9.
IDLE.

3 HRESP should be set to ERROR, SPLIT or RETRY only one cycléAMBA Spec. Rev 2.0 3-22.
before HREADY is driven high.

4 Two-cycle ERROR response must be given. AMBA Spec. Rev 2.0 3-22.

5 Two-cycle SPLIT response must be given. AMBA Spec. Rev 2.0 3-22.

6 Two-cycle RETRY response must be given. AMBA Spec. Rev 2.0 3-22.

7 SPLIT complete signalled to master which did not have pending | AMBA Spec. Rev 2.0 3-36.
access.

8 Split complete must not be signalled during same cycle as SPLIT|. http://www.arm.com/support

616.html

9 It is recommended that slaves drive HREADY high and HRESP tp http://www.arm.com/support/faqip/
OKAY when not selected. A warning will be given if this is not fol-| 476.html
lowed.

AEROFLEX GAISLER 71

Table 73 AHB slave rules.

GRIP

Rule

Number | Description References

10 Itis recommended that slaves do not insert more than 16 wait stateAMBA Spec. Rev 2.0 3-20.
this is violated a warning will be given if assertions are enabled.

11 Slaves should not assert the HSPLIT (Split complete) signal for mble reference
than one cycle for each SPLIT response. If a slave asserts HSPLIT for
more than one cycle it will not cause the system to malfunction. It can

however be a indication that a core does not perform as expected.

Therefore assertion of HSPLIT during more than one cycle for a

SPLIT response is reported as a warning.

Table 74 APB slave rules.

Rule

Number | Description References

1 The bus must move to the SETUP state or remain in the IDLE stattMBA Spec. Rev 2.0 5-4.
when in the IDLE state.

2 The bus must move from SETUP to ENABLE in one cycle. AMBA Spec. Rev 2.0 5-4.

3 The bus must move from ENABLE to SETUP or IDLE in one cycle. = AMBA Spec. Rev 2.0 5-5.

4 The bus must never be in another state than IDLE, SETUP, ENABLE. AMBA Spec. Rev 2.0 5-4.

5 PADDR must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

6 PWRITE must be stable during transition from SETUP to ENABLE. = AMBA Spec. Rev 2.0 5-5.

7 PWDATA must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

8 Only one PSEL must be enabled at a time. AMBA Spec. Rev 2.0 5-4.

9 PSEL must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

Table 75 Arbiter rules

Rule

Number | Description References

1 Hreadyln to slaves and master must be driven by the currently seledtieg://www.arm.com/support/fagip/
device. 482 .html

2 A master which received a SPLIT response must not be granted [HeMBA Spec. Rev 2.0 3-35.
bus until the slave has set the corresponding HSPLIT line.

3 The dummy master must be selected when a SPLIT response is| http://www.arm.com/support/faqip/
received for a locked transfer. 14307 .html

AEROFLEX GAISLER

72

12.3 Configuration options

Table 76 shows the configuration options of the core (VHDL generics).

Table 76.Configuration options

GRIP

Generic Function Allowed range Default
asserterr Enable assertions for AMBA requirements. Violation® - 1 1
are asserted with severity error.
assertwarn Enable assertions for AMBA recommendations. Vigl#® - 1 1
tions are asserted with severity warning.
hmstdisable Disable AHB master rule check. To disable a master rule 0
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.
hslvdisable Disable AHB slave tests. Values are assigned as fof - 0
hmstdisable.
pslvdisable Disable APB slave tests. Values are assigned as for himst- 0
disable.
arbdisable Disable Arbiter tests. Values are assigned as for hmstdis- 0
able.
nahbm Number of AHB masters in the system. 0 - NAHBMST NAHBMS$T
nahbs Number of AHB slaves in the system. 0 - NAHBSLV NAHBSLY
napb Number of APB slaves in the system. 0 - NAPBSLV NAPBSLV
ebterm Relax rule checks to allow use in systems with early 0 - 1 0
burst termination. This generic should be set to 0 for $ys-
tems that use GRLIB's AHBCTRL core.
12.4 Signal descriptions
Table 77 shows the interface signals of the core (VHDL ports).
Table 77 Signal descriptions
Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBMI * Input AHB master interface input record -
AHBMO * Input AHB master interface output record array -
AHBSI * Input AHB slave interface input record -
AHBSO * Input AHB slave interface output record array -
APBI * Input APB slave interface input record
APBO * Input APB slave interface output record array
ERR N/A Output Error signal (error detected) High

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER 73

12.5

12.6

Library dependencies

Table 78 shows libraries used when instantiating the core (VHDL libraries).

Table 78Library dependencies

GRIP

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
GAISLER SIM Component Component declaration
Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.sim.all;

entity ambamon_ex is
port (
clk : in std_ulogic;
rst : in std_ulogic
end;

architecture rtl of ambamon_ex is
-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin
-- AMBA Components are instantiated here

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.sim.all;

entity ambamon_ex is
port (
clk : in std_ulogic;
rst:in std_ulogic;
err : out std_ulogic
end;

architecture rtl of ambamon_ex is
-- AHB signals
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => apb_none);

-- AHB signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => apb_none);

-- APB signals

AEROFLEX GAISLER 74 GRIP

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin

mon0 : ambamon

generic map(
assert_err =>1,
assert_war => 0,
nahbm =>2,

nahbs =>2,
napb =1

)

port map(
rst => rst,
clk => clk,
ahbmi =>ahbmi,
ahbmo =>ahbmo,
ahbsi => ahbsi,
ahbso => ahbso,
apbi => apbi,
apbo => apbo,
err => err);

end;

AEROFLEX GAISLER 75 GRIP

13

13.1

13.2

APB Plugé&play record

APBCTRL - AMBA AHB/APB bridge with plug&play support

Overview

The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard.

The controller supports up to 16 slaves. The actual maximum number of slaves is defined in the
GRLIB.AMBA package, in the VHDL constant NAPBSLV. The number of slaves can also be set
using thenslavesvHDL generic.

r—— - - - - — - — A
AHB BUS | AHB/APB Bridge
APBO[O!
| o APB SLAVE |«
AHBSI |
AHB Slave ¢ APBOI[N]
AHBSO[n] Interface APB SLAVE

APBI

Figure 14. AHB/APB bridge block diagram
Operation

13.2.1 Decoding

Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in the
GRLIB IP Library User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte. Writes to unassigned areas will be ignored, while reads from unassigned areas
will return an arbitrary value. AHB error response will never be generated.

13.2.2 Plugé&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB IP Library User’s Manual for more information). These records
are combined into an array which is connected to the APB bridge.

The plug&play information is mapped on a read-only address area at the top 4 kbytes of the bridge
address space. Each plug&play block occupies 8 bytes. The address of the plug&play information for
a certain unit is defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the
address for the plugé&play records is thus 0x800FF000 + n*8.

31 24 23 121110 9 5 4 0

0X00 VENDOR ID DEVICE ID 00 | VERSION IRQ Configuration word

0x04 ADDR c/p MASK TYPE BAR

31 20 19 16 15 4 3 0

Figure 15. APB plug&play information

AEROFLEX GAISLER 76 GRIP

13.3 APB bus monitor
An APB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the APB parts in the AMBA monitor core (AMBAMON). For more information
on which rules are checked se the AMBAMON documentation.

13.4 Vendor and device identifiers
The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x006. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13.5 Configuration options
Table 79 shows the configuration options of the core (VHDL generics)

Table 79.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 mos} 8ig-16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.

hmask The AHB area address mask. Sets the size of the AHB- 16#FFF# 16#FFF#
area and the start address together with haddr.

nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV

debug Print debug information during simulation 0-2 2

icheck Enable bus index checking (PINDEX) 0-1 1

enbusmon Enable APB bus monitor 0-1 0

asserterr Enable assertions for AMBA requirements. Violation® - 1 0

are asserted with severity error.

assertwarn Enable assertions for AMBA recommendations. Vigl@® - 1 0
tions are asserted with severity warning.

pslvdisable Disable APB slave rule check. To disable a slave ruleN/A 0
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the

rule number, e.g 0x80 disables rule 7.

mcheck Check if there are any intersections between APB s|ad¥e 1 1
memory areas. If two areas intersect an assert with level
failure will be triggered (in simulation).

ccheck Perform sanity checks on PnP configuration records (i 1 1
simulation).

AEROFLEX GAISLER

13.6 Signal descriptions

77

Table 80shows the interface signals of the core (VHDL ports).

Table 80.Signal descriptions

GRIP

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBI * Input AHB slave input -
AHBO * Output AHB slave output -
APBI * Output APB slave inputs -
APBO * Input APB slave outputs -

13.7

13.8

13.9

* see GRLIB IP Library User's Manual

Library dependencies

Table 81 shows libraries used when instantiating the core (VHDL libraries).

Table 81 Library dependencies

Library Package

Imported unit(s)

Description

GRLIB AMBA

Types

AMBA signal type definitions

Component declaration

library grlib;
use grlib.amba.all;

component apbctrl
generic (
hindex : integer := 0;
haddr :integer :=0;
hmask :integer := 16#fff#;

nslaves : integer range 1 to NAPBSLV := NAPBSLYV;

debug :integerrange Oto 2 :=2;
icheck :integerrangeOtol:=1
)
port (
rst :in std_ulogic;
clk :in std_ulogic;
ahbi :in ahb_slv_in_type;
ahbo :outahb_slv_out_type;
apbi :outapb_slv_in_type;
apbo :in apb_slv_out_vector
)

end component;

Instantiation

-- print config to console

This example shows how an APB bridge can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

AEROFLEX GAISLER 78 GRIP

-- AMBA signals

signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin

-- APB bridge

apbO : apbctrl-- AHB/APB bridge
generic map (hindex => 1, haddr => CFG_APBADDR)
port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo);

-- APB slaves

uartl : apbuart
generic map (pindex => 1, paddr => 1, pirq => 2)
port map (rstn, clk, apbi, apbo(1), uli, ulo);

irgctrl0 : irgmp
generic map (pindex => 2, paddr => 2)
port map (rstn, clk, apbi, apbo(2), irqo, irqi);

end;

13.10 Debug print-out

The APB bridge can print-out the plug-play information from the attached during simulation. This is
enabled by setting the debug VHDL generic to 2. Reporting starts by scanning the array from 0 to
NAPBSLYV - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid ven-
dor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
description for these ids are obtained from the GRLIB.DEVICES package, and is printed on standard
out together with the slave number. If the index check is enabled (done with a VHDL generic), the
report module also checks if the pindex number returned in the record matches the array number of
the record currently checked (the array index). If they do not match, the simulation is aborted and an
error message is printed.

The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and APB I/
O. All APB devices are in the APB I/O range so the type does not have to be checked. From this infor-
mation, the report module calculates the start address of the device and the size of the range. The
information finally printed is start address and size.

AEROFLEX GAISLER 79 GRIP
14 APBPS2 - PS/2 host controller with APB interface

14.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 16
shows a model of APBPS2 and the electrical interface.

Vce
FPGA/ASIC
-

PS2Data_out

0 Data

I
I
I
I
| Keyboard
I
[
I
I

Clock

PS2Clk

I
I
I
I
| PS2Data
I
I
I
I

=

APBPS2 PS2CIk_out \I
RN

L

b

~

Figure 16. APBPS2 electrical interface

PS/2 data is sentin 11 bits frames. The first bit is a start bit followed by eight data bits, one odd parity
bit and finally one stop bit. Figure 17 shows a typical PS/2 data frame.

Data frame with parity: TStart‘ Do | b1 | b2 b3 | D4 | D5 | D6 | D7 aritystop

Figure 17. PS/2 data frame

14.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboard or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the receiver buffer full (RF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it's up to
the software to handle any resend operations if the parity bit is wrong. Figure 18 shows a flow chart
for the operations of the receiver state machine.

AEROFLEX GAISLER 80 GRIP

14.3

14.4

I

Stop

ps2_clk_fall

1

ps2_data_sync

0

shift_reg =1111 111,

Frame_error =1

Start

ps2_clk_fall

1

ps2_data_sync
update parity flag

0

Idle

Figure 18. Flow chart for the receiver state machine

Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 89.

If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 19 shows the flow chart for the transmission state machine.

Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 kHz. To transmit data, a PS/2 host must inhibit
communication by pulling the clock low for at least 100 microseconds. To do this, APBPS2 divides
the APB clock with either a fixed or programmable division factor. The divider consist of a 17-bit
down-counter and can divide the APB clock with a factor of 1 - 131071. The division rate, and the
reset value of the timer reload register, is set tofidz generic divided by 10 in order to generate the

100 microsecond clock low time. If the VHDL genefigedis 0, the division rate can be programmed
through the timer reload register and should be programmed with the system frequency in kHz
divided by ten. The reset value of the reload register is always set tiKHievalue divided by ten.
However, the register will not be readable via the APB interface unlesBxi@VHDL generic has

been set to 0.

AEROFLEX GAISLER 81 GRIP

Idle Start

ps2clkoe = 1
read FIFO

Data

0
ps2clk =0
ps2clkoe = 0

ps2data = 1
ps2dataoe = 0

Ack

Waitreques

timer = timer + 1

timer < 5000

0

ps2clk = 1, ps2data =Y)
timer =0

Parity |«

1
ps2data = parity bi

Figure 19. Flow chart for the transmitter state machine

14.5 Registers
The core is controlled through registers mapped into APB address space.

Table 82 APB PS/2 registers

APB address offset Register

0x00 PS/2 Data register

0x04 PS/2 Status register

0x08 PS/2 Control register
0x0C PS/2 Timer reload register

14.5.1 PS/2 Data Register

31 8 7 0
RESERVED DATA

Figure 20. PS/2 data register

[7:0]: Receiver holding FIFO (read access) and Transmitter holding FIFO (write access). If the receiver FIFO is not empty,
read accesses retrieve the next byte from the FIFO. Bytes written to this field are stored in the transmitter holding
FIFO if it is not full.

AEROFLEX GAISLER 82 GRIP
14.5.2 PS/2 Status Register

31 2726 22 543210
| RONT | TCNT | RESERVED | TR RF|KI |FE|PE|DR

Figure 21. PS/2 status register

Data ready (DR) - indicates that new data is available in the receiver holding register (read only).
Parity error (PE) - indicates that a parity error was detected.

Framing error (FE) - indicates that a framing error was detected.

Keyboard inhibit (KI) - indicates that the keyboard is inhibited.

Receiver buffer full (RF) - indicates that the output buffer (FIFO) is full (read only).

5: Transmitter buffer full (TF) - indicates that the input buffer (FIFO) is full (read only).

[26:22]: Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO (read only).
[31:27]: Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO (read only).

AwbdkROo

14.5.3 PS/2 Control Register

31 3210
| RESERVED |71 [Ri | TE[RE

Figure 22. PS/2 control register

Receiver enable (RE) - if set, enables the receiver.

Transmitter enable (TE) - if set, enables the transmitter.

Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received
Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted

14.5.4 PS/2 Timer Reload Register

31 17 16 0
‘ RESERVED TIMER RELOAD REG

Figure 23. PS/2 timer register

[16:0]: PS/2 timer reload register

14.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 83 GRIP
14.7 Configuration options
Table 83 shows the configuration options of the core (VHDL generics).
Table 83.Configuration options
Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
fKHz Frequency of APB clock in KHz. This value divided byl - 1310710 50000
10 is the reset value of the timer reload register.
fixed Used fixed clock divider to generate PS/2 clock. 0-1 0
oepol Output enable polarity 0-1 0
14.8 Signal descriptions
Table84 shows the interface signals of the core (VHDL ports).
Table 84.Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
PS2| PS2_CLK_I Input PS/2 clock input -
PS2_DATA_I Input PS/2 data input -
PS20 PS2_CLK_O Output PS/2 clock output -
PS2_CLK_OE Output PS/2 clock output enable Low
PS2_DATA_O Output PS/2 data output -
PS2_DATA_OE Output PS/2 data output enable Low
* see GRLIB IP Library User’s Manual
14.9 Library dependencies

Table 85 shows libraries used when instantiating the core (VHDL libraries).

Table 85Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signals, component PS/2 signal and component declaration

14.10 Instantiation
This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

AEROFLEX GAISLER 84 GRIP

use grlib.amba.all;
use grlib.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity apbps2_ex is
port (
rstn : in std_ulogic;
clk : in std_ulogic;

-- PS/2 signals

ps2clk :inout std_ulogic;
ps2data : inout std_ulogic
)i

end;
architecture rtl of apbuart_ex is
-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
-- PS/2 signals
signal kbdi : ps2_in_type;
signal kbdo : ps2_out_type;
begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirqg => 4)
port map(rstn, clkm, apbi, apbo(5), kbdi, kbdo);

kbdclk_pad : iopad generic map (tech => padtech)
port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk_oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
port map (ps2data, kbdo.ps2_data_o, kbdo.ps2_data_oe, kbdi.ps2_data_i);

end;

AEROFLEX GAISLER 85 GRIP
14.11 Keboard scan codes
Table 86.Scan code set 2, 104-key keyboard
KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK
A 1C FO,1C 9 46 FO0,46 [54 FO,54
B 32 F0,32 "0E FO,0E INSERT EO,70 EO,FO0,7(
C 21 F0,21 - 4E FO,4E HOME EO,6C EO,F0,6C
D 23 F0,23 = 55 FO,55 PG UP EO,7D EO,FO,7D
E 24 F0,24 \ 5D FO0,5D DELETE EO,71 EO,FO0,71
F 2B F0,2B BKSP 66 FO0,66 END E0,69 EO,F0,64
G 34 F0,34 SPACE 29 F0,29 PG DN EO,7A EO,FO,7A
H 33 F0,33 TAB 0D FO,0D U EO,75 EO,F0,75
ARROW
| 43 F0,43 CAPS 58 F0,58 L ARROW EO,6B EO,F0,6B
J 3B F0,3B L SHFT 12 FO,12 D EO,72 EO,FO0,72
ARROW
K 42 F0,42 L CTRL 14 FO,14 R ARROW EO0,74 EO,FO0,74
L 4B F0,4B L GUI EO,1F EO,FO,1F NUM 77 FO,77
M 3A FO,3A L ALT 11 FO0,11 KP/ EO,4A EO,FO0,4A
N 31 F0,31 R SHFT 59 F0,59 KP * 7C FO,7C
0] 44 FO0,44 R CTRL EO,14 EO,F0,14 KP - 7B FO0,7B
P 4D F0,4D R GUI EOQ,27 EO,FO0,27 KP + 79 FO0,79
Q 15 FO0,15 R ALT EO,11 EO,FO0,11 KP EN EO,5A EO,FO,5A
R 2D F0,2D APPS EO,2F EO,FO,2F KP . 71 FO,71
S 1B FO0,1B ENTER 5A FO,5A KP 0 70 FO0,70
T 2C F0,2C ESC 76 FO0,76 KP 1 69 F0,69
U 3C FO0,3C F1 5 F0,05 KP 2 72 FO0,72
\% 2A FO,2A F2 6 F0,06 KP 3 TA FO,7A
W 1D FO0,1D F3 F0,04 KP 4 6B F0,6B
X 22 F0,22 F4 0oC FO0,0C KP 5 73 FO0,73
Y 35 F0,35 F5 3 F0,03 KP 6 74 FO,74
VA 1A FO,1A F6 oB F0,0B KP 7 6C F0,6C
0 45 F0,45 F7 83 F0,83 KP 8 75 FO0,75
1 16 F0,16 F8 0A FO,0A KP 9 7D FO,7D
2 1E FO,1E F9 FO0,01] 5B F0,5B
3 26 FO0,26 F10 9 F0,09 ; 4C F0,4C
4 25 F0,25 F11 78 FO0,78 52 F0,52
5 2E FO,2E F12 7 F0,07 , 41 F0,41
6 36 F0,36 PRNT EO,12, EO,FO, 49 F0,49
SCRN EO,7C 7C,EO,
F0,12
3D F0,3D SCROLL | 7E FO,7E / 4A FO,4A
3E FO,3E PAUSE E1,14,77, -NONE-
E1,F0,14,
FO,77

AEROFLEX GAISLER 86 GRIP

Table 87 Windows multimedia scan codes

KEY MAKE BREAK

Next Track EO, 4D EO, FO, 4D
Previous Track | EO, 15 EO, FO, 15
Stop EO, 3B EO, FO, 3B

Play/Pause EO, 34 EO, FO, 34
Mute EO, 23 EO, FO, 23

Volume Up EO, 32 EO, FO, 32

Volume Down EO, 21 EO, FO, 21
Media Select EO, 50 EO, FO, 5Q
E-Mail EOQ, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer EO, 40 EO, FO, 40
WWW Search EO, 10 EO, FO, 10
WWW Home EO, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward | EO, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh | EO, 20 EO, FO, 20

WWW Favor- | EO, 18 EO, FO, 18
ites

Table 88 ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK
Power EO, 37 EO, FO, 37
Sleep EO, 3F EO, FO, 3F|

Wake EO, 5E EO, FO, 5E

AEROFLEX GAISLER

87 GRIP

14.12 Keyboard commands

Table 89.Transmit commands:

an

ledge-

Command Description

OxED Set status LED’s - keyboard will reply with ACK (OxFA). The host follows this command with
argument byte*

OxEE Echo command - expects an echo response

OxFO Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x(
which determines the scan code set to use. 0x00 returns the current set.

OxF2 Read ID - the keyboard responds by sending a two byte device ID of OXAB 0x83

OxF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte wiich
determines the typematic rate.

OxF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an
acknowledgement.

OxF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknow
ment.

OxF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

OXFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte

OxFF Reset - resets the keyboard

* bit O controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 90Receive commands:

Command Description

OxFA Acknowledge

OxAA Power on self test passed (BAT completed)

OxEE Echo respond

OxFE Resend - upon receipt of the resend command the host should retransmit the last byte
0x00 Error or buffer overflow

OxFF Error of buffer overflow

Table 91.The typematic rate/delay argument byte

MSB

LSB

| 0 | DELAY

DELAY |RATE RATE RATE RATE RATE

AEROFLEX GAISLER 88
Table 92 Typematic repeat rates
Bits O0- | Rate Bits O- | Rate Bits 0- | Rate Bits 0- | Rate
4 (cps) 4 (cps) 4 (cps) 4 (cps)
00h 30 08h 15 10h 7.5 18h 3.7
01h 26.7 09h 13.3 11h 6.7 19h 3.3
02h 24 OAh 12 12h 6 1Ah 3
03h 21.8 0Bh 10.9 13h 55 1Bh 2.7
04h 20.7 0Ch 10 14h 5 1Ch 2.5
05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3
06h 17.1 OEh 8.6 16h 4.3 1Eh 2.1
07h 16 OFh 8 17h 4 1Fh 2

Table 93 Typematic delays

Bits 5-6 | Delay (seconds)
00b 0.25

01b 0.5

10b 0.75

11b 1

GRIP

AEROFLEX GAISLER 89 GRIP

15

15.1

APBUART - AMBA APB UART Serial Interface

Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-
bit clock divider. Two FIFOs are used for data transfer between the APB bus and UART fifds&re

VHDL generic > 1. Two holding registers are used data transfer between the APB bus and UART,
whenfifosizeVHDL generic = 1. Hardware flow-control is supported through the RTSN/CTSN hand-
shake signals, whetow VHDL generic is set. Parity is supported, wipamity VHDL generic is set.

<4—FKJ CTSN
Serial port
Baud-rate 8*bitclk Controller —»] RTSN
generator
RXD K}—P{ Receiver shift register Transmitter shift register —»KJ TXD
Receiver FIFO or Transmitter FIFO or
holding register holding register

e 1

Figure 24. Block diagram

15.2 Operation

15.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO/holding register by writing to the data register. This FIFO is configurable
to different sizes via th&ifosizeVHDL generic. When the size is 1, only a single holding register is
used but in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO/holding register to the transmitter shift register and converted to
a serial stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed
by eight data bits, an optional parity bit, and one stop bit (figure 25). The least significant bit of the
data is sent first.

AEROFLEX GAISLER 90 GRIP

Data frame, no parity; TStart‘ DO ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Stop‘

Data frame with parity: TStart‘ Do ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Parity‘Stop

Figure 25. UART data frames

Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register. Transmission resumes and the TS is cleared when a new character is
loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the status register. If the
transmitter is disabled, it will immediately stop any active transmissions including the character cur-
rently being shifted out from the transmitter shift register. The transmitter holding register may not be
loaded when the transmitter is disabled or when the FIFO (or holding register) is full. If this is done,
data might be overwritten and one or more frames are lost.

The discussion above applies to any FIFO configurations including the special case with a holding
register (VHDL generidifosize= 1). If FIFOs are used (VHDL generfifosize> 1) some additional

status and control bits are available. The TF status bit (not to be confused with the TF control bit) is
set if the transmitter FIFO is currently full and the TH bit is set as long as the FIf&3sshan half-

full (less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of data
entries in the FIFO.

When flow control is enabled, the CTSN input must be low in order for the character to be transmit-

ted. If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is
connected to a receivers RTSN, overrun can effectively be prevented.

15.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO.

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set. The data frame is not stored in the FIFO if an error is
detected. Also, the new error status bits are or:ed with the old values before they are stored into the
status register. Thus, they are not cleared until written to with zeros from the AMBA APB bus. If both

the receiver FIFO and shift registers are full when a new start bit is detected, then the character held in

AEROFLEX GAISLER 91 GRIP

15.3

15.4

15.5

15.6

the receiver shift register will be lost and the overrun bit will be set in the UART status register. A
break received (BR) is indicated when a BREAK has been received, which is a framing error with all
data received being zero.

If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and
the receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When the VHDL generidifosize> 1, which means that holding registers are not considered here,
some additional status and control bits are available. The RF status bit (not to be confused with the RF
control bit) is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is
half-full (at least half of the entries in the FIFO contain data frames). The RF control bit enables
receiver FIFO interrupts when set. A RCNT field is also available showing the current number of data
frames in the FIFO.

Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate, the number of
scaler bits can be increased with VHDL genesiits The scaler is clocked by the system clock and
generates a UART tick each time it underflows. It is reloaded with the value of the UART scaler
reload register after each underflow. The resulting UART tick frequency should be 8 times the desired
baud-rate. One appropriate formula to calculate the scaler value for a desired baud rate, using integer
division where the remainder is discarded, is:

scaler value = (system_clock_frequency) / (baud_rate * 8.+ 7)
To calculate the exact required scaler value use:
scaler value = (system_clock_frequency) / (baud_rate * 8) - 1

If the EC bit is set, the ticks will be generated with the same frequency as the external clock input
instead of at the scaler underflow rate. In this case, the frequency of external clock must be less than
half the frequency of the system clock.

Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

FIFO debug mode

FIFO debug mode is entered by setting the debug mode bit in the control register. In this mode it is
possible to read the transmitter FIFO and write the receiver FIFO through the FIFO debug register.
The transmitter output is held inactive when in debug mode. A write to the receiver FIFO generates an
interrupt if receiver interrupts are enabled.

Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL gdfifesize= 1) and

when FIFOs are used (VHDL geneffifosize> 1). When holding registers are used, the UART will
generate an interrupt under the following conditions: when the transmitter is enabled, the transmitter
interrupt is enabled and the transmitter holding register moves from full to empty; when the receiver is
enabled, the receiver interrupt is enabled and the receiver holding register moves from empty to full;
when the receiver is enabled, the receiver interrupt is enabled and a character with either parity, fram-
ing or overrun error is received.

AEROFLEX GAISLER 92 GRIP

15.7

For FIFOs, two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames).

To reduce interrupt occurrence a delayed receiver interrupt is available. It is enabled using the delayed
interrupt enable (DI) bit. When enabled a timer is started each time a character is received and an
interrupt is only generated if another character has not been received within 4 character + 4 bit times.
If receiver FIFO interrupts are enabled a pending character interrupt will be cleared when the FIFO

interrupt is active since the character causing the pending irq state is already in the FIFO and is
noticed by the driver through the FIFO interrupt.

There is also a separate interrupt for break characters. When enabled an interrupt will always be gen-
erated immediately when a break character is received even when delayed receiver interrupts are
enabled. When break interrupts are disabled no interrupt will be generated for break characters when
delayed interrupts are enabled.

When delayed interrupts are disabled the behavior is the same for the break interrupt bit except that an
interrupt will be generated for break characters if receiver interrupt enable is set even if break inter-
rupt is disabled.

An interrupt can also be enabled for the transmitter shift register. When enabled the core will generate
an interrupt each time the shift register goes from a non-empty to an empty state.

Registers
The core is controlled through registers mapped into APB address space.

Table 94 UART registers

APB address offset Register

0x0 UART Data register

0x4 UART Status register

0x8 UART Control register

0xC UART Scaler register

0x10 UART FIFO debug register

AEROFLEX GAISLER 93 GRIP

15.7.1 UART Data Register

Table 95. UART data register

31 8 7 0
RESERVED DATA
7.0 Receiver holding register or FIFO (read access)
7. 0 Transmitter holding register or FIFO (write access)

15.7.2 UART Status Register

Table 96. UART status register

31 26 25 20 19 1 10 9 8 7 6 5 4 3 2 1 0
RCNT TCNT ‘ RESERVED ‘ RF ‘ TF ‘ RH ‘ TH ‘ FE ‘ PE ‘ ov‘ BR ‘ TE ‘ TS ‘ DR‘
31: 26 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO. Reset: 0
25: 20 Transmitter FIFO count (TCNT) - shows the number of data frames in the transmitter FIFO. Reset: 0
10 Receiver FIFO full (RF) - indicates that the Receiver FIFO is full. Reset: 0

Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full. Reset: 0

Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data. Reset: 0
Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full. Reset: 0

Framing error (FE) - indicates that a framing error was detected. Reset: 0

Parity error (PE) - indicates that a parity error was detected. Reset: 0

Overrun (OV) - indicates that one or more character have been lost due to overrun. Reset: 0
Break received (BR) - indicates that a BREAK has been received. Reset: 0

Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty. Reset: 1

Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Reset: 1
Data ready (DR) - indicates that new data is available in the receiver holding register. Reset: 0

O P N W b O O N 0 ©

AEROFLEX GAISLER 94 GRIP

15.7.3 UART Control Register

Table 97. UART control register

31 30 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[FA] RESERVED st | pi] Bl [pB[RF|TF[EC|LB[FL[PE|PS| TI [RI [TE|RE]
31 FIFOs available (FA) - Set to 1 when receiver and transmitter FIFOs are available. When 0, only
holding register are available. Read only.
30: 15 RESERVED
14 Transmitter shift register empty interrupt enable (SI) - When set, an interrupt will be generated when
the transmitter shift register becomes empty. See section 15.6 for more details.
13 Delayed interrupt enable (DI) - When set, delayed receiver interrupts will be enabled and an inter-

rupt will only be generated for received characters after a delay of 4 character times + 4 bits if no
new character has been received during that interval. This is only applicable if receiver interrupt
enable is set. See section 15.6 for more details. Not Reset.

12 Break interrupt enable (Bl) - When set, an interrupt will be generated each time a break character is
received. See section 16.6 for more details. Not Reset.

11 FIFO debug mode enable (DB) - when set, it is possible to read and write the FIFO debug register.
Not Reset.

10 Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled. Not
Reset.

9 Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
Not Reset.

8 External Clock (EC) - if set, the UART scaler will be clocked by UARTI.LEXTCLK. Reset: 0

7 Loop back (LB) - if set, loop back mode will be enabled. Not Reset.

6 Flow control (FL) - if set, enables flow control using CTS/RTS (when implemented). Reset: 0

5 Parity enable (PE) - if set, enables parity generation and checking (when implemented). Not Reset.

4 Parity select (PS) - selects parity polarity (O = even parity, 1 = odd parity) (when implemented). Not
Reset.

3 Transmitter interrupt enable (TI) - if set, interrupts are generated when characters are transmitted
(see section 15.6 for details). Not Reset.

2 Receiver interrupt enable (RI) - if set, interrupts are generated when characters are received (see sec-
tion 15.6 for details). Not Reset.

1 Transmitter enable (TE) - if set, enables the transmitter. Reset: 0

Receiver enable (RE) - if set, enables the receiver. Reset: 0
15.7.4 UART Scaler Register

Table 98. UART scaler reload register
31 shits shits-1 0

‘ RESERVED ‘ SCALER RELOAD VALUE

shits-1:0 Scaler reload value
15.7.5 UART FIFO Debug Register

Table 99. UART FIFO debug register
31 8 7 0
RESERVED DATA

7.0 Transmitter holding register or FIFO (read access)
7.0 Receiver holding register or FIFO (write access)

AEROFLEX GAISLER

95

15.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0X00C. For a description

of vendor and device identifiers see GRLIB IP Library User's Manual.

GRIP

15.9 Configuration options
Table 100 shows the configuration options of the core (VHDL generics).
Table 100Configuration options
Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
console Prints output from the UART on console during VHDIO - 1 0
simulation and speeds up simulation by always returning
‘1’ for Data Ready bit of UART Status register. Does not
affect synthesis.
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
parity Enables parity 0-1 1
flow Enables flow control 0-1 1
fifosize Selects the size of the Receiver and Transmitter FIFOs 1,2, 4,8, 16, 32 1
abits Selects the number of APB address bits used to de¢@le8 8
the register addresses
shits Selects the number of bits in the scaler 12-32 12
15.10 Signal descriptions
Table101shows the interface signals of the core (VHDL ports).
Table 101Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
UARTI RXD Input UART receiver data -
CTSN Input UART clear-to-send Low
EXTCLK Input Use as alternative UART clock -
UARTO RTSN Output UART request-to-send Low
TXD Output UART transmit data -
SCALER Output UART scaler value -
TXEN Output QOutput enable for transmitter High
FLOW Output Unused -
RXEN Output Receiver enable High

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER

15.11 Library dependencies

15.12

96

Table 102 shows libraries that should be used when instantiating the core.

Table 102.ibrary dependencies

GRIP

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signals, component Signal and component declaration
Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.uart.all;

entity apbuart_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;

-- UART signals
rxd :in std_ulogic;
txd : out std_ulogic
)i

end;

architecture rtl of apbuart_ex is

-- APB signals

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- UART signals

signal uarti : uart_in_type;
signal uarto : uart_out_type;

begin

-- AMBA Components are instantiated here

-- APB UART
uart0 : apbuart

generic map (pindex => 1, paddr => 1, pirq => 2,
console => 1, fifosize => 1)
port map (rstn, clk, apbi, apbo(1), uarti, uarto);

-- UART input data
uarti.rxd <= rxd;

-- APB UART inputs not used in this configuration

uarti.ctsn <="0’; uarti.extclk <="0";

-- connect APB UART output to entity output signal

txd <= uarto.txd;

end;

AEROFLEX GAISLER 97 GRIP

16

16.1

16.2

APBVGA - VGA controller with APB interface

Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer,
and a ROM for character pixel information. The video controller is controlled through an APB inter-
face.

A block diagram for the data path is shown in figure 26.

Character ROM

}

—»KJ HSYNC
—»K] VSYNC
: Video
Video memory Generator —»K] gl(_DAl\:I\IPI{SYNC
—»] RED[7:0]

GREEN([7:0]
T BLUE[7:0]

APB

Figure 26. APBVGA block diagram

Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by

AEROFLEX GAISLER 98 GRIP

only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

16.3 Registers
The APB VGA is controlled through three registers mapped into APB address space.

Table 103APB VGA registers

APB address offset Register

0x0 VGA Data register (write-only, reads will return 0x00000000).

0x4 VGA Background color (write-only, reads will return 0x00000000).
0x8 VGA Foreground color (write-only, reads will return 0x00000000).

16.3.1 VGA Data Register

31 19 8 7 0
RESERVED ADDRESS DATA

Figure 27. VGA data register

[19:8]: Video memory address (write access)
[7:0]: Video memory data (write access)

16.3.2 VGA Background Color

31 24 23 16 15 8 7 0
RESERVED ‘ RED GREEN BLUE

Figure 28. VGA Background color

[23:16]: Video background color red.
[15:8]: Video background color green.
[7:0]: Video background color blue.

16.3.3 VGA Foreground Color

31 24 23 16 15 87 0
RESERVED ‘ RED GREEN BLUE

Figure 29. VGA Foreground color

[23:16]: Video foreground color red.
[15:8]: Video foreground color green.
[7:0]: Video foreground color blue.

16.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER

99

16.5 Configuration options

Table 104 shows the configuration options of the core (VHDL generics).

16.6

Table 104Configuration options

GRIP

Generic Function Allowed range Default
memtech Technology to implement on-chip RAM 0-NTECH 2
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
Signal descriptions
Table105shows the interface signals of the core (VHDL ports).
Table 105Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input | Clock -
VGACLK N/A Input | VGA Clock -
APBI * Input | APB slave input signals -
APBO * Output | APB slave output signals -
VGAO HSYNC Output | Horizontal synchronization High
VSYNC Vertical synchronization High
COMP_SYNC Composite synchronization Low
BLANK Blanking Low
VIDEO_OUT_RJ[7:0] Video out, color red -
VIDEO_OUT_GJ7:0] Video out, color green -
VIDEO_OUT_B[7:0] Video out, color blue -
BITDEPTH[1:0] Constant High -

* see GRLIB IP Library User's Manual

16.7 Library dependencies

16.8

Table 106 shows libraries used when instantiating the core (VHDL libraries).

Table 106.ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component VGA signal and component declaration
Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

AEROFLEX GAISLER 100 GRIP

library gaisler;
use gaisler.misc.all;

architecture rtl of apbuart_ex is

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal vgao : apbvga_out_type;

begin
-- AMBA Components are instantiated here

-- APB VGA
vgao : apbvga
generic map (memtech => 2, pindex => 6, paddr => 6)
port map (rstn, clk, vgaclk, apbi, apbo(6), vgao);
end;

AEROFLEX GAISLER 101 GRIP

17 B1553BC - AMBA plugé&play interface for Actel Core1l553BBC

17.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC). The interface connects to the
MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the
Actel Core1553BBC core.

The interface provides a complete, MIL-STD-1553B Bus Controller (BC). The interface reads mes-
sage descriptor blocks from the memory and generates messages that are transmitted on and transmit-
ted on the 1553B bus. Data received is written to the memory.

The interface consists of five main blocks: the 1553B encoder, the 1553B decoder, a protocol control-
ler block, a CPU interface, and a backend interface.

A single 1553B encoder takes each word to be transmitted and serializes it using Manchester encod-
ing. The encoder includes independent logic to prevent the BC from transmitting for greater than the
allowed period and to provide loopback fail logic. The loopback logic monitors the received data and
verifies that the interface has correctly received every word that is transmitted. The encoder output is
gated with the bus enable signals to select which buses the encoder should be transmitting. Since the
BC knows which bus is in use at any time, only a single decoder is required.

The decoder takes the serial Manchester received data from the bus and extracts the received data
words The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to
sample the incoming serial data. The data is then deserialized and the 16-bit word decoded. The
decoder detects whether a command, status or data word has been received and checks that no
Manchester encoding or parity errors occurred in the word.

The protocol controller block handles all the message sequencing and error recovery. This is a com-
plex state machine that reads the 1553B message frames from memory and transmits them on the
1553B bus. The AMBA interface allows a system processor to access the control registers. It also
allows the processor to directly access the memory connected to the backend interface, this simplifies
the system design.

The B1553BC core provides an AMBA interface with GRLIB plug&play for the Actel Core1553BBC
core (MIL-STD-1553B Bus Controller). B1553BC implements two AMBA interfaces: one AHB
master interface for the memory interface, and one APB slave interface for the CPU interface and
control registers.

The Actel Corel553BBC core, entity named BC1553B, is configured to use the shared memory inter-
face, and only internal register access is allowed through the APB slave interface. Data is read and
stored via DMA using the AHB master interface.

BisssBC
! GR1553BC !
| r— - - — — — — — — — — — 1 |
| |
BT Actel Core1553BBC hirQ
1553 signals X | X
: | CPU IF MEM IF | :
| |
o + v 4 v !
| | |APB slave |Fm= ?e%?gtglrs AHB master IF | !
| L — & J - — — — _ = T — 4 |
.4 AMBA APB
AMBA AHB

Figure 30. Block diagram

AEROFLEX GAISLER 102 GRIP

17.2 AHB interface

The Corel553BBC operates on a 65536 x 16 bit memory buffer, and therefore a 128 kilobyte aligned
memory area should be allocated. The memory is accessed via the AMBA AHB bus. The
Corel1553BBC uses only 16 address bits, and the top 15 address bits of the 32-bit AHB address can be
programmed in the AHB page address register. The 16-bit address provided by the Core1553BBC is
left-shifted one bit, and forms the AHB address together with the AHB page address register. Note
that all pointers given to the Core1553BBC core need to be right-shifted one bit because of this. All
AHB accesses are done as half word single transfers.

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven with
‘0.

17.3 Operation

To transmit data on the 1553 bus, an instruction list and 1553 messages should be set up in the mem-
ory by the processor. After the bus interface has been activated, it will start to process the instruction
list and read/write data words from/to the specified memory locations. Interrupts are generated when
interrupt instructions are executed, on errors or when the interface has completed the list.

17.4 Synthesis

The B1553BC core is a wrapper providing GRLIB compatible signals and plug&play information
around the GR1553B core, which in turn provides an AMBA interface around the Microsemi/Actel
Corel553BBC core.

17.5 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Corel553BBC are mapped on the eight lowest APB addresses. These addresses are 32-bit word
aligned although only the lowest 16 bits are used. Refer tétitel Core1553BBC MIL-STD-1553B

Bus Controllerdata sheet for detailed information.

Table 107B1553BC registers

APB address offset Register

0x00 Control/Status

0x04 Setup

0x08 List pointer

0x0C Message pointer

0x10 Clock value

0x14 Asynchronous list pointer
0x18 Stack pointer

0x1C Interrupt register

0x20 GR1553 status/control
0x24 AHB page address register

Table 108.GR1553 status register (read)
31 3 2 1 0
RESERVED ‘ extflag ‘memfail‘ busy ‘

AEROFLEX GAISLER 103 GRIP

Table 108.GR1553 status register (read)

31:3 RESERVED
External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.
1 Memory failure. Shows the value of the memfail output from Core1553BBC.

Busy. Shows the value of the busy output from Core1553BBC.

Table 109.GR1553 status register (write)
31 1 0
RESERVED \ extflag \

31:2 RESERVED
0 External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.

Table 110.GR1553 status register (write)

31 17 16 0
ahbaddr \ RESERVED
31: 17 Holds the 15 top most bits of the AHB address of the allocated memory area
16: 0 RESERVED

17.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x070. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

17.7 Configuration options
Table 111 shows the configuration options of the core (VHDL generics).

Table 111Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Interrupt number 0 - NAHBIRQ -1 0

17.8 Configuration options for underlying GR1553BC core
Table 111 shows the configuration options of the core (VHDL generics).

Table 112Configuration options

Generic Function Allowed range Default
endian Data endianness of the AHB bus (Big = 0, Little = 1 0-1 0

AEROFLEX GAISLER

17.9 Signal descriptions

104

Table113shows the interface signals of the core (VHDL ports).

Table 113Signal descriptions

GRIP

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -

B1553lI - Input 1553 bus input signals -
busainp Positive data input from the A receiver High
busainn Negative data input from the A receiver Low
busbinp Positive data to the B receiver High
busbinn Negative data to the B receiver Low

B15530 - Output 1553 bus output signals -
busainen Enable for the A receiver High
busaoutin Inhibit for the A transmitter High
busaoutp Positive data to the A transmitter High
busaoutn Negative data to the A transmitter Low
busbinen Enable for the B receiver High
busboutin Inhibit for the B transmitter High
busboutp Positive output to the B transmitter High
busboutn Negative output to the B transmitter Low

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER 105 GRIP

17.10 Signal descriptions for underlying GR1553BC core
Table113shows the interface signals of the core (VHDL ports).

Table 114Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High
BUSAINN Input Negative data input from the A receiver Low
BUSBINP N/A Input Positive data to the B receiver High
BUSBINN Input Negative data to the B receiver Low
1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High
BUSAOUTIN Output Inhibit for the A transmitter High
BUSAOQUTP N/A Output Positive data to the A transmitter High
BUSAOUTN Output Negative data to the A transmitter Low
BUSBINEN N/A Output Enable for the B receiver High
BUSBOUTIN Output Inhibit for the B transmitter High
BUSBOUTP N/A Output Positive output to the B transmitter High
BUSBOUTN Output Negative output to the B transmitter Low
Interrupt

INTOUT N/A | output | Interrupt High
AHB signals

HGRANT N/A Input Bus grant High
HREADY N/A Input Transfer done High
HRESP N/A Input Response type -
HRDATA N/A Input Read data bus -
HBUSREQ N/A Output Bus request High
HLOCK N/A Output Lock request High
HTRANS N/A Output Transfer type -
HADDR N/A Output Address bus (byte addresses) -
HWRITE N/A Output Write High
HSIZE N/A Output Transfer size -
HBURST N/A Output Burst type -
HPROT N/A Output Protection control -
HWDATA N/A Output Write data bus -

APB signals

PSEL N/A Input Slave select High
PENABLE N/A Input Strobe High
PADDR N/A Input Address bus (byte addresses) -
PWRITE N/A Input Write High
PWDATA N/A Input Write data bus -
PRDATA N/A Output Read data bus -

AEROFLEX GAISLER 106

17.11

Library dependencies

Table 115 shows libraries used when instantiating the core (VHDL libraries).

Table 119 ibrary dependencies

GRIP

Library Package Imported unit(s) Description
GRLIB AMBA Signals Signal definitions
GAISLER B1553 Signals, component Signal and component declaration

The B1553BC depends on GRLIB, GAISLER, GR1553 and Corel1553BBC.

17.12 Library dependencies for underlying GR1553BC core

17.13

17.14

Table 115 shows libraries used when instantiating the core (VHDL libraries).

Table 116.ibrary dependencies

Library Package Imported unit(s)

Description

IEEE Std_Logic_1164 Al

Type declarations

The GR1553BC depends on GR1553 and Corel1553BBC.

Component declaration

The core has the following component declaration.

component b1553bc is

generic (
hindex : integer := 0;
pindex : integer :=0;
paddr :integer :=0;
pmask :integer := 16#fff#;
pirg :integer:=0
)

port (
rstn :in std_ulogic;
clk :in std_ulogic;
b1553i :in b1553_in_type;
b15530 : out b1553 out_type;
apbi :in apb_slv_in_type;
apbo : out apb_slv_out_type;
ahbi :in ahb_mst_in_type;
ahbo :outahb_mst_out_type
)i

end component;

Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

library gaisler;

use gaisler.b1553.all;

signal bin : b1553_in_type;
signal bout : b1553_out_type;

bc1553_0 : b1553bc
generic map (hindex => 2, pindex => 12, paddr => 12, pirq => 2)
port map (rstn, clkm, bin, bout, apbi, apbo(12), ahbmi, ahbmo(2));

AEROFLEX GAISLER 107 GRIP
18 B1553BRM - AMBA plug&play interface for Actel Core1553BRM

18.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC), Remote Terminal (RT) or
Monitor Terminal (MT). The interface connects to the MIL-STD-1553B bus through external trans-
ceivers and transformers. The interface is based on the Actel Core1553BRM core.

The interface consists of six main blocks: 1553 encoder, 1553B decoders, a protocol controller block,
AMBA bus interface, command word legality interface, and a backend interface.

The interface can be configured to provide all three functions BC, RT and MT or any combination of
the three. All variations use all six blocks except for the command legalization interface, which is only
required on RT functions that implement RT legalization function externally.

A single 1553 encoder takes each word to be transmitted and serializes it using Manchester encoding.
The encoder also includes independent logic to prevent the interface from transmitting for greater
than the allowed period as well as loopback fail logic. The loopback logic monitors the received data
and verifies that the interface has correctly received every word that it transmits. The output of the
encoder is gated with the bus enable signals to select which buses the interface should be transmitting
on. Two decoders take the serial Manchester received data from each bus and extract the received data
words.

The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to sample
the incoming serial data. The data is then de-serialized and the 16-bit word decoded. The decoder
detects whether a command, status, or data word has been received, and checks that no Manchester
encoding or parity errors occurred in the word.

The protocol controller block handles all the message sequencing and error recovery for all three
operating modes, Bus Controller, Remote Terminal, and Bus Monitor. This is complex state machine
that processes messages based on the message tables setup in memory, or reacts to incoming com-
mand words. The protocol controller implementation varies depending on which functions are imple-
mented. The AMBA interface allows a system processor to access the control registers. It also allows
the processor to directly access the memory connected to the backend interface, this simplifies the
system design.

The interface comprises 33 16-bit registers. Of the 33 registers, 17 are used for control function and
16 for RT command legalization.

The B1553BRM core provides an AMBA interface for the Actel Core1l553BRM core (MIL-STD-
1553B Bus Controller/Remote Terminal/Bus Monitor). The B1553BRM core implements two AMBA
interfaces: one AHB master interface for the memory interface, and one APB slave interface for the
CPU interface and control registers.

The Actel Corel553BRM core, entity named BRM, is configured to use the shared memory interface,
and only internal register access is allowed through the APB slave interface. Data is read and stored
via DMA using the AHB master interface.

AEROFLEX GAISLER 108 GRIP

18.2

18.3

A

BI15S3BRM

| GRIS53BRM !

| | | !
4_|_' - Lo ! |

1553 signals \ ' Actel Corel553BRM ' . Corel553BRM signals

—|_:_» <_‘—l \

: | CPU IF MEM IF : :

oA S T

! Control
! | APB slave |F reogri]srtgrs AHB master IR ! E
\) |
|

-

AMBA APB

AMBA AHB

Figure 31. Block diagram

AHB interface

The amount of memory that the Mil-Std-1553B interface can address is 128WR2*HDL generic,
i.e. abit => 128) kbytes. The base address of this memory area must be aligned to a boundary of its
own size and written into the AHB page address register.

The 16 bit address provided by the Core1553BRM core is shifted left one bit, and forms the AHB
address together with the AHB page address register. Note that all pointers given to the
Corel553BRM core needs to be right shifted one bit because of this.

The amount of memory needed for the Core1553BRM core is operation and implementation specific.
Any configuration between 1 to 128 kilobytes is possible although a typical system needs at least 4
kbyte of memory. The allocated memory area needs to be aligned to a boundary of its own size and
the number of bits needed to address this area must be specificed ahiligh&iDL generic.

The address bus of the Core1553BRM is 16 bits wide but the amount of bits actually used depends on
the setup of the data structures. The AHB page address register should be programmed with the 32-
abits top bits of the 32-bit AHB addresapit being a VHDL generic. The address provided by the
Corel553BRM core is shifted left one bit, and forms the AHB address together with the AHB page
address register. Note that all pointers given to the Core1553BRM core needs to be right shifted one
bit because of this.

When the Corel553BRM core has been granted access to the bus it expects to be able to do a series of
uninterrupted accesses. To handle this requirement the AHB master locks the bus during these trans-
fers. In the worst case, the Corel553BRM can do up to 7 writes in one such access and each write
takes 2 plus the number of waitstate cycles with 4 idle cycles between each write strobe. This means
care has to be taken if using two simultaneous active Core1553BRM cores on the same AHB bus.All
AHB accesses are done as half word single transfers.

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with "0011" i.e a not cache-
able, not bufferable, privileged data access. During all AHB accesses the AMBA AHB lock signal
HLOCK is driven with "1" and "0' otherwise.

Operation

The mode of operation can be selected with the mselin VHDL generic or later changed by writing to
the “operation and status” register of the Core1553BRM core. For information about how the core
functions during the different modes of operation seeAbtel Core1553BRM MIL-STD-1553 BC,

RT, and MTdata sheet.

AEROFLEX GAISLER 109 GRIP

18.4 Synthesis

The B1553BRM core is a wrapper providing GRLIB compatible signals and plugé&play information
around the GR1553BRM core, which in turn provides an AMBA interface around the Microsemi/
Actel Corel553BRM core.

18.5 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Corel553BRM are mapped on the 33 lowest APB addresses. These addresses are 32-bit word aligned
although only the lowest 16 bits are used. Refer toAbtel Core1553BRM MIL-STD-1553 BC, RT,

and MTdata sheet for detailed information.

Table 117B1553BRM registers

APB address offset Register

0x00 - 0x84 Corel553BRM registers
0x100 B1553BRM status/control
0x104 B1553BRM interrupt settings
0x108 AHB page address register

B1553BRM status/control register

31 12 13 12 5 4 3 2 1 0
RESERVED ‘ busrst ‘ reserved ‘ rtaderr‘ memfail‘ busy‘ active‘ ssysfn‘

Figure 32. B1553BRM status/control register

13 Bus reset. If set a bus reset mode code has been received. Generates an irq when set.
12:5 Reserved

Address error. Shows the value of the rtaderr output from Core1553BRM.

Memory failure. Shows the value of the memfail output from Core1553BRM.

Busy. Shows the value of the busy output from Core1553BRM.

Active. Show the value of the active output from Core1553BRM.

Ssyfn. Connects directly to the ssyfn input of the Core1553BRM core. Resets to 1.

oeRrNwWA

B1553BRM interrupt register

31 2 1 0
RESERVED | intackm‘ intackh‘ intlevel \

Figure 33. B1553RM interrupt register

2: Message interrupt acknowledge. Controls the intackm input signal of the Core1553BRM core.
1 Hardware interrupt acknowledge. Controls the intackh input signal of the Core1553BRM core.
0: Interrupt level. Controls the intlevel input signal of the Core1553BRM core.

AHB page address register

31 abits 0
‘ ahbaddr RESERVED

Figure 34. AHB page address register

[31:17]: Holds the top most bits of the AHB address of the allocated memory area.

AEROFLEX GAISLER 110 GRIP

18.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x072. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

18.7 Configuration options
Table 118 shows the configuration options of the core (VHDL generics).

Table 118Configuration options

Generic Function Allowed range Default
hindex AHB master index 0-NAHBMST-1 0
pindex APB slave index 0-NAPBSLV-1 0

paddr ADDR field of the APB BAR 0-16#FFF# 0
pmask MASK field of the APB BAR 0-16#FFO# 16#FFO#
pirq Index of the interrupt line 0-NAHBIRQ-1 0
endian Data endianness of the AHB bus (Big = 0, Little = 1 0-1 0
ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#
abits Number of bits needed to address the memory area 12-17 17
rtaddr RT address 0-31 0
rtaddrp RT address parity bit. Set to achieve odd parity. 0-1 1
lockn Lock rtaddrin, rtaddrp, mselin and abstdin 0-1 0
mselin Mode select 0-3

abstdin Bus standard A/B 0-1

bcenable Enable bus controller 0-1

rtenable Enable remote terminal 0-1

mtenable Enable bus monitor 0-1 1
legregs Enable legalization registers 0-1 1
enhanced Enable enhanced register 0-1 1
initfreq Initial operation frequency 12,16,20,24 20
betiming Backend timing 0-1 1

The VHDL generics hindex, pindex, paddr, pmask and pirg belong to the B1553BRM entity.
The VHDL generics endian, ahbaddr and abits belong to the GR1553BRM entity.

The VHDL generics rtaddr, rtaddrp, lockn, mselin and abstdin belong to the Core1553BRM core, and
drive the corresponding signal or generic.

The VHDL generics bcenable, rtenable, mtenable, legregs, enhanced, initfreq and betiming belong to
the RTL version of the Core1553BRM core, and are otherwise ignored.

AEROFLEX GAISLER

18.8 Signal descriptions

111

Table119shows the interface signals of the core (VHDL ports).

Table 119Signal descriptions

GRIP

Signal name Field Type Function Active
RSTN N/A Input Reset Low
RSTOUTN N/A Output Reset from BRM core Low
CLK N/A Input System clock (AHB) -
TCLK N/A Input External time base -
B1553lI - Input 1553 bus input signals -
busainp Positive data input from the A receiver High
busainn Negative data input from the A receiver Low
busbinp Positive data to the B receiver High
busbinn Negative data to the B receiver Low
B15530 - Output 1553 bus output signals -
busainen Enable for the A receiver High
busaoutin Inhibit for the A transmitter High
busaoutp Positive data to the A transmitter High
busaoutn Negative data to the A transmitter Low
busbinen Enable for the B receiver High
busboutin Inhibit for the B transmitter High
busboutp Positive output to the B transmitter High
busboutn Negative output to the B transmitter Low
BRMI - Input BRM input signals -
cmdok Command word validation alright High
BRMO - Output BRM output signals -
msgstart Message process started High
cmdsync Start of command word on bus High
syncnow Synchronize received High
busreset Reset command received High
opmode Operating mode -
cmdval Active command -
cmdokout Command word validated High
cmdstb Active command value changed High
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER 112 GRIP
18.9 Signal descriptions of the underlying GR1553BRM core

Table119shows the interface signals of the core (VHDL ports).

Table 120Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
RSTOUTN N/A Output Reset Low
CLK N/A Input Clock -

TCLK N/A Input Transmit clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High
BUSAINN N/A Input Negative data input from the A receiver Low
BUSBINP N/A Input Positive data to the B receiver High
BUSBINN N/A Input Negative data to the B receiver Low
1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High
BUSAOUTIN N/A Output Inhibit for the A transmitter High
BUSAOQUTP N/A Output Positive data to the A transmitter High
BUSAOUTN N/A Output Negative data to the A transmitter Low
BUSBINEN N/A Output Enable for the B receiver High
BUSBOUTIN N/A Output Inhibit for the B transmitter High
BUSBOUTP N/A Output Positive output to the B transmitter High
BUSBOUTN N/A Output Negative output to the B transmitter Low
BRM input signals

CMDOK N/A | Input | Command word validation alright High
BRM output signals

MSGSTART N/A Output Message process started High
CMDSYNC N/A Output Start of command word on bus High
SYNCNOW N/A Output Synchronize received High
BUSRESET N/A Output Reset command received High
OPMODE N/A Output Operating mode -
CMDVAL N/A Output Active command -
CMDOKOUT N/A Output Command word validated High
CMDSTB N/A Output Active command value changed High
Interrupts

INTOUTH N/A Output Hardware interrupt request High
INTOUTM N/A Output Message interrupt request High
AHB signals

HGRANT N/A Input Bus grant High
HREADY N/A Input Transfer done High
HRESP N/A Input Response type -
HRDATA N/A Input Read data bus -
HBUSREQ N/A Output Bus request High
HLOCK N/A Output Lock request High
HTRANS N/A Output Transfer type -
HADDR N/A Output Address bus (byte addresses) -

AEROFLEX GAISLER 113 GRIP

Table 120Signal descriptions

Signal name Field Type Function Active
HWRITE N/A Output Write High
HSIZE N/A OQutput Transfer size -
HBURST N/A Output Burst type -
HPROT N/A Output Protection control -
HWDATA N/A Output Write data bus -
APB signals

PSEL N/A Input Slave select High
PENABLE N/A Input Strobe High
PADDR N/A Input Address bus (byte addresses) -
PWRITE N/A Input Write High
PWDATA N/A Input Write data bus -
PRDATA N/A Output Read data bus -

18.10 Library dependencies

Table 121 shows libraries used when instantiating the core (VHDL libraries).

Table 121l ibrary dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals Signal definitions
GAISLER B1553 Signals, component Signal and component declaration

The B1553BRM depends on VHDL libraries GRLIB, GAISLER, GR1553 and Core1553BRM.

18.11 Library dependencies of the underlying GR1553BRM core

Table 121 shows libraries used when instantiating the core (VHDL libraries).

Table 122 ibrary dependencies

Library Package Imported unit(s) Description
IEEE Std_Logic_1164 All Type declarations

The GR1553BRM depends on VHDL libraries GR1553 and Core1553BRM.

18.12 Component declaration

The core has the following component declaration.

component b1553brm is

generic (
hindex :integer := 0;
pindex :integer := 0;
paddr :integer := 0;
pmask s integer = 16#ffO#;
pirg : integer := 0;
ahbaddr :integer range 0 to 16#FFFFF# := O;
abits : integer range 12 to 17 := 16;
rtaddr : integer range 0 to 31 := 0;
rtaddrp :integerrangeOto 1l :=1;
lockn rintegerrange Oto 1 :=1;
mselin :integerrange 0to 3 :=1;
abstdin :integerrange Oto 1 :=0;

bcenable :integerrangeOto1 :=1;

AEROFLEX GAISLER

rtenable :integerrange Oto 1l :=1;
mtenable :integerrange Oto 1l =1,

legregs :integerrange Oto 4 :=1;
enhanced :integerrange Otol :=1;
initfreq : integer range 12 to 24:= 20;
betiming :integerrangeOto1 :=1
)

port (
rstn :in std_ulogic;
rstoutn :out std_ulogic;
clk 1in std_ulogic;
tclk :in std_ulogic;
brmi :in brm1553_in_type;

brmo :out brm1553_out_type;
b1553i :in bl1553_in_type;
b15530 :out bl1553_out_type;
apbi :in apb_slv_in_type;
apbo :out apb_slv_out_type;
ahbi :in ahb_mst_in_type;
ahbo :out ahb_mst_out_type
)

end component;

18.13 Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

library gaisler;

use gaisler.b1553.all;

signal bin : b1553_in_type;
signal bout : b1553 out_type;
signal brmi : brm1553_in_type;
signal brmo : brm1553_out_type;

bc1553_0: b1553brm

generic map (hindex => 2, pindex => 12, paddr => 16#10#, pirq => 2,

abits => 17, mselin => 0)

port map (rstn, open, clkm, gnd(0), brmi, brmo, bin, bout, apbi, apbo(12), ahbmi,

ahbmo(2));

114

GRIP

AEROFLEX GAISLER 115 GRIP

19

B1553RT - AMBA plugé&play interface for Actel Core1l553BRT

19.1 Overview

The interface provides a complete Mil-Std-1553B Remote Terminal (RT). The interface connects to
the MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the
Actel Corel553BRT core.

The interface provides a complete, dual-redundant MIL-STD-1553B remote terminal (RT) apart from
the transceivers required to interface to the bus. At a high level, the interface simply provides a set of
memory mapped sub-addresses that ‘receive data written to’ or ‘transmit data read from.” The inter-
face requires 2,048 words of memory, which can be shared with a local processor. The interface sup-
ports all 1553B mode codes and allows the user to designate as illegal any mode code or any
particular sub-address for both transmit and receive operations. The command legalization can be
done internally or via an external command legalization interface.

The interface consists of six main blocks: 1553B encoders, 1553B decoders, backend interface, com-
mand decoder, RT controller blocks and a command legalization block.

A single 1553B encoder is used for the interface. This takes each word to be transmitted and serializes
it, after which the signal is Manchester encoded. The encoder also includes both logic to prevent the
RT from transmitting for greater than the allowed period and loopback fail logic. The loopback logic
monitors the received data and verifies that the interface has correctly received every word that it
transmits. The output of the encoder is gated with the bus enable signals to select which buses the RT
should use to transmit.

The interface includes two 1553B decoders. The decoder takes the serial Manchester data received
from the bus and extracts the received data words. The decoder contains a digital phased lock loop
(PLL) that generates a recovery clock used to sample the incoming serial data. The data is then dese-
rialized and the 16-bit word decoded. The decoder detects whether a command or data word is

received, and also performs Manchester encoding and parity error checking.

The command decoder and RT controller blocks decode the incoming command words, verifying the
legality. Then the protocol state machine responds to the command, transmitting or receiving data or
processing a mode code.

The B1553RT core provides an AMBA interface with GRLIB plug&play for the Actel Corel553BRT
(MIL-STD-1553B Remote Terminal). B1553RT implements two AMBA interfaces: one AHB master
interface for the memory interface, and one APB slave interface for the control registers.

The Actel Corel553BRT core, entity named RT1553B, is configured to use the shared memory inter-
face. Data is read and stored via DMA using the AHB master interface.

BISS3RT
| GR1553RT |
\ r—- - - — — — — — — — — — = 1 X

\ Ly .

1553 signals : Actel Corel553BRT 1 RT S|gna|s
— D E—
: | MEM IF | :
o S T
Control

: | APB slave |Hm registers AHB master IR | :
\ . S | \

A4 AMBA APB

AMBA AHB

Figure 35. B1553RT block diagram

AEROFLEX GAISLER 116 GRIP

19.2

19.3

Synthesis

The B1553RT core is a wrapper providing GRLIB compatible signals and plug&play information
around the GR1553B core, which in turn provides an AMBA interface around the Microsemi/Actel
Corel553BRT core.

Operation

19.3.1 Memory map

The Corel553BRT core operates on a 2048*16 bit memory buffer, and therefore a 4 kilobyte memory
area should be allocated. The memory is accessed via the AMBA AHB bus. The Corel553BRT uses
only 11 address bits, and the top 20 address bits of the 32-bit AHB address can be programmed in the
AHB page address register. The 11-bit address provided by the Corel553BRT core is left-shifted one
bit, and forms the AHB address together with the AHB page address register. All AHB accesses are
done as half word single transfers.

The used memory area has the following address map. Note that all 1553 data is 16 bit wide and will
occupy two bytes. Every sub-address needs memory to hold up to 32 16 bit words.

Table 123Vlemory map for 1553 data

Address Content

0x000-0x03F RX transfer status/command words

0x040-0x07F Receive sub-address 1 ...

0x780-0x7BF Receive sub-address 30

0x7CO0-0x7FF TX transfer status/command words

0x800-0x83F Not used, except 0x800-0x801 for vector word if extmdata=1
0x840-0x87F Transfer sub-address 1 ...

0xF80-0xFBF Transfer sub-address 30

OxFCO-OxFFF Not used, except 0xFC0-OxFC1 for vector word if extmdata=1

19.3.2 Data transfers

At the start of a bus transfer the core writes the 1553B command word (if the wrtcmd bit is set in the
control register) to the address subaddress*2 for receive commands and 0x7CO + subaddress*2 for
transmit commands. After a bus transfer has completed a transfer status word is written to the same
location as the command word (if wrttsw bit is set in the control register). The command word of the
last transfer can always be read out through the interrupt vector and command value register.

AEROFLEX GAISLER

The transfer status word written to memory has the following layout:

117

Table 124Transfer Status Word layout

GRIP

Bit Name Description

15 USED Always set to 1 at the end of bus transfer

14 OKAY Set to 1 if no errors were detected

13 BUSN Set to O if transfer was on bus A, to 1 if bus B

12 BROADCAST | Transfer was a broadcast command

11 LPBKERRB The loopback logic detected error on bus B

10 LPBKERRA The loopback logic detected error on bus A

9 ILLCMD lllegal command

8 MEMIFERR DMA access error did not omplete in time

7 MANERR Manchester coding error detected

6 PARERR Parity error detected

5 WCNTERR Wrong number of words was received

4:0 COUNT For sub address 1-30: number of words received/transmitted, 0 means 32
For sub address 0 and 31: received/transmitted mode code

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven with
‘0.

19.3.3 Mode commands

All mode codes defined by 1553B are legal except dynamic bus control (0), selected transmitter shut-
down (20) and override selected transmitter shutdown (21).

Like data transfers, mode commands will write a command word before the transfer if the wrtcmd bit

is set and a transmit status word after if the wrttsw bit is set. The transmit vector word and sync with
data word will also store/fetch the data word from memory if the extmdata control bit is set. The loca-
tions are tabulated below. The default mapping for sync with data word with subaddress 0 places the
data word and TSW at the same address 0, therefore a re-mapping has been implemented if wrttsw is
set.

AEROFLEX GAISLER 118 GRIP
Table 1259Mode command memory map
Data word location
Mode codes Subaddress CMD / TSW Location (if extmdata=1)
1 synchronize 0 0x7CO (no data)
2 _trgr)smlt status 31 OX7FE (no data)
3 initiate self-test
4 transmitter shutdown
5 override tx shutdown
6 inhibit TF
7 override inhibit TF
8 reset
16 tx vector word 0 0x7CO0 0x800
31 OX7FE OxFCO
17 synchronize with data 0 0x000 0x000 if wrttsw=0
0x7CO0 if wrttsw=1
31 0x03E 0x7CO
18 tx last command 0 0x7CO0 (internal)
19 tx BIT word 31 OX7FE (internal)

19.4

The transfer BIT word mode code transfers a word as specified in the table below:

Table 126Built In Test word

Bit | Name Description

15 | BUSINUSE Set to O if transfer was on bus A, to 1 if bus B

14 | LPBKERRB The loopback logic detected error on bus B. Cleared by CLRERR.
13 | LPBKERRA The loopback logic detected error on bus A. Cleared by CLRERR.
12 | SHUTDOWNB Indicates that bus B has been shutdown

11 | SHUTDOWNA Indicates that bus A has been shutdown

10 | TFLAGINH Terminal flag inhibit setting

9 | WCNTERR Word count error has occured. Cleared by CLRERR.

8 MANERR Manchester coding error detected. Cleared by CLRERR.

7 PARERR Parity error detected. Cleared by CLRERR.

6 RTRTTO RT to RT transfer timeout. Cleared by CLRERR.

5 MEMFAIL DMA transfer not completed in time. Cleared by CLRERR.

4:0 | VERSION Corel553RT version

Registers

The core is programmed through registers mapped into APB address space.

Table 127B1553RT registers

APB Address offset Register

0x00 Status

0x04 Control

0x08 Vector word

0x0C Interrupt vector and command value
0x10 AHB page address register

0x14 Interrupt pending/mask register

AEROFLEX GAISLER 119 GRIP

Status register (read only)

31 28 27 4 3 2 1 0
‘ revision ‘ RESERVED ‘ extleg ‘ rtaderr‘ memfail‘ busy ‘

Figure 36. Status register

31:28 Core revision, read-only field.
0001: Added brdis,disabl,extleg fields. Remapped sync data word if extmdata and wrttsw are set.
0000: First revision. Reset mode command resets all control registers.

274 Reserved

Reads ‘1’ if configured with external legalization interface, ‘0’ if all supported accesses are legal

RT address error. Incorrect RT address parity bit.

Memory failure. DMA transfer did not complete in time. Cleared using CLRERR bit in control register.

Busy. Indicates that the RT is busy with a transfer.

Control register

31 23 22 21 20 19 18 17 16 15 14 13 12 8 76 5 4 3 2 1 0
RESERVED ‘brdis‘disabl‘rese#sa30loo*bcaste+intenbb+extmdat+wrtcmt+wrttsv%rtaddrﬁ) rtaddr ‘clkspd‘ clrerr‘ intac% tf ‘ ssf‘busy‘sreq‘

Figure 37. Control register

31:23 Reserved

22: If ‘1’ the disable bit (bit 21) will be set to ‘1’ automatically when a reset mode command is recieved.

21: Set to ‘1’ to disable 1553 transceiver (both receiver and transmitter). Reset to ‘1'.

20: Writing ‘1’ will reset the Core1553RT and forces the B1553RT DMA to idle state. Self clearing.

19: Setto ‘1’ to enable internal loopback of subaddress 30. Transmits from sa 30 reads from the receive buffer for sa 30.

18: Set to ‘1’ to enable broadcasts messages. If ‘0’ address 31 is treated as normal RT address.

17: ‘1’ enables interrupts for bad messages. If ‘0’ only good messages generates interrupts.

16: If ‘1' mode code data is written to / read from memory. If ‘0’ the vword register is used for transmit vector word
mode code and the data for synchronize with data is discarded.

15: If ‘1’ the command word is written to memory at the start of a bus transfer.

14: If ‘1’ the transfer status word is written to memory at the end of a bus transfer.

13: RT address parity bit. Odd parity over rtaddr and rtaddrp must be achieved.

12:8 RT address.
7:6 Clock speed. Should be set to indicate the clock frequency of the core. 0-12, 1 - 16, 2 - 20, 3 - 24 MHz

5: Set to ‘1’ and then to ‘0’ to clear internal errors.

4: Clear the interrupt. Should be set to ‘1’ to give a interrupt pulse on each message.

3: Controls the terminal flag bit in the 1553B status word. This can be masked by the "inhibit
terminal flag bit" mode code.

2: Controls the subsystem flag bit in the 1553B status word.

1 Controls the busy bit in the 1553B status word.

0: Controls the service request bit in the 1553B status word.

Vector word register

31 16 15 0
‘ RESERVED vword

Figure 38. Vector word register

[15:0] Used for transmit vector word mode code if extmdata bit is ‘0’ in control register.

AEROFLEX GAISLER 120 GRIP
Interrupt vector and command value register

31 18 7 6 0
‘ RESERVED ‘ cmdval intvect

Figure 39. Interrupt vector register

[18:7] For each message the CMDVAL output of Core1553BRT is latched into this register.
18 - broadcast
17 - 1 for transmit, O for receive
16:12 - subaddress
11:7 - word count / mode code

[6:0] Shows the value of the interrupt vector output of the Core1553BRT.

AHB page address register

31 12 0
‘ ahbaddr RESERVED

Figure 40. Address register

[31:12]: Holds the 20 top most bits of the AHB address of the allocated memory area. Resets to the value specified with the
ahbaddr VHDL generic.

Interrupt pending/mask register

31 18 17 16 2 1 0
‘ RESERVED ‘ MASK2 ‘MASKI ‘MASKO‘ RESERVED | AHBERR MEMFAIL‘ RT ‘

Figure 41. Address register

[31:19]: Reserved.

18: MASK2 - Interrupt mask for AHBERR interrupt. Interrupt enabled if 1.
17: MASKT1 - Interrupt mask for MEMFAIL interrupt. Interrupt enabled if 1.
18: MASKO - Interrupt mask for RT interrupt. Interrupt enabled if 1.

[15:3]: Reserved.

2: AHBERR - 1 if an AHB error has occured

1: MEMFAIL - 1 if an Core1553RT DMA has not occured in time.

0: RT - 1 if the Corel553RT has received/transmitted a message.

19.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x071. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER

121

19.6 Configuration options

Table 128 shows the configuration options of the core (VHDL generics).

Table 128Configuration options

GRIP

Generic Function Allowed range Default
endian Endianness of the AHB bus (Big = 0) 0-1 0
ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#
clkspd Clock speed 0-3 1
rtaddr RT address 0-31 0
rtaddrp RT address parity bit. Set to achieve odd parity. 0-1 1
wrtcmd Write command word to memory - 1
wrttsw Write status word to memory - 1
extmdata Read/write mode code data from/to memory -

intenbbr Generate interrupts for bad messages -

bcasten Broadcast enable 0-1 1
sa30loop Use sub-address 30 as loopback 0-1 0

All VHDL generics except endian are reset values for the corresponding bits in the wrapper control

register.

AEROFLEX GAISLER

19.7 Signal descriptions

122

Table129shows the interface signals of the core (VHDL ports).

Table 129Signal descriptions

GRIP

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -

B1553lI - Input 1553 bus input signals -
busainp Positive data input from the A receiver High
busainn Negative data input from the A receiver Low
busbinp Positive data to the B receiver High
busbinn Negative data to the B receiver Low

B15530 - Output 1553 bus output signals -
busainen Enable for the A receiver High
busaoutin Inhibit for the A transmitter High
busaoutp Positive data to the A transmitter High
busaoutn Negative data to the A transmitter Low
busbinen Enable for the B receiver High
busboutin Inhibit for the B transmitter High
busboutp Positive output to the B transmitter High
busboutn Negative output to the B transmitter Low

RTI - Input RT input signals -
cmdok Command word validation alright High
useextok Enable external command word validation High

RTO - Output RT output signals -
msgstart Message process started High
cmdsync Start of command word on bus High
syncnow Synchronize received High
busreset Reset command received High
cmdval Active command -
cmdokout Command word validated High
cmdstb Active command value changed High
addrlat Address latch enable High
intlat Interrupt latch enable High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER 123 GRIP

19.8 Signal descriptions for underlying GR1553RT core
Table129shows the interface signals of the core (VHDL ports).

Table 130Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -

1553 bus input signals

BUSAINP N/A Input Positive data input from the A receiver High
BUSAINN N/A Input Negative data input from the A receiver Low
BUSBINP N/A Input Positive data to the B receiver High
BUSBINN N/A Input Negative data to the B receiver Low
1553 bus output signals

BUSAINEN N/A Output Enable for the A receiver High
BUSAOUTIN N/A Output Inhibit for the A transmitter High
BUSAOQUTP N/A Output Positive data to the A transmitter High
BUSAOUTN N/A Output Negative data to the A transmitter Low
BUSBINEN N/A Output Enable for the B receiver High
BUSBOUTIN N/A Output Inhibit for the B transmitter High
BUSBOUTP N/A Output Positive output to the B transmitter High
BUSBOUTN N/A Output Negative output to the B transmitter Low
RT input signals

CMDOK N/A Input Command word validation alright High
USEEXTOK N/A Input Enable external command word validation High
RT output signals

MSGSTART N/A Output Message process started High
CMDSYNC N/A Output Start of command word on bus High

AEROFLEX GAISLER 124 GRIP

Table 130Signal descriptions

Signal name Field Type Function Active
SYNCNOW N/A Output Synchronize received High
BUSRESET N/A Output Reset command received High
CMDVAL N/A Output Active command -
CMDOKOUT N/A Output Command word validated High
CMDSTB N/A Output Active command value changed High
ADDRLAT N/A Output Address latch enable High
INTLAT N/A Output Interrupt latch enable High
Interrupt

INTOUT N/A | output | Interrupt High
AHB signals

HGRANT N/A Input Bus grant High
HREADY N/A Input Transfer done High
HRESP N/A Input Response type -
HRDATA N/A Input Read data bus -
HBUSREQ N/A Output Bus request High
HLOCK N/A Output Lock request High
HTRANS N/A Output Transfer type -
HADDR N/A Output Address bus (byte addresses) -
HWRITE N/A Output Write High
HSIZE N/A OQutput Transfer size -
HBURST N/A Output Burst type -
HPROT N/A Output Protection control -
HWDATA N/A Output Write data bus -

APB signals

PSEL N/A Input Slave select High
PENABLE N/A Input Strobe High
PADDR N/A Input Address bus (byte addresses) -
PWRITE N/A Input Write High
PWDATA N/A Input Write data bus -
PRDATA N/A Output Read data bus -

19.9

Library dependencies

Table 131 shows libraries that should be used when instantiating the core (VHDL libraries).

Table 131Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals Signal definitions
GAISLER B1553 Signals, component Signal and component declaration

The B1553RT depends on GRLIB, GAISLER, GR1553 and Core1553BRT.

AEROFLEX GAISLER

125

19.10 Library dependencies for underlying GR1553RT core

GRIP

Table 131 shows libraries that should be used when instantiating the core (VHDL libraries).

Table 132 ibrary dependencies

Library

Package

Imported unit(s)

Description

IEEE

Std_Logic_1164

All

Type declarations

The GR1553RT depends on GR1553 and Core1553BRT.

19.11 Component declaration

19.12

The core has the following component declaration.

component b1553rt is
generic (

hindex :integer:=0;
pindex :integer :=0;
paddr :integer:=0;
pmask :integer := 16#fff#;
pirg :integer :=0;
ahbaddr :integer range O to 16#FFFFF# := 0;
clkspd :integerrange Oto 3:=1;
rtaddr :integer range 0 to 31 :=0;
rtaddrp :integer range Oto 1 :=1,;
wrtcmd :integer range Oto 1 := 1,
wrttsw :integer range O to 1 :=1;
extmdata : integer range 0 to 1 := 0;
intenbbr : integer range 0 to 1 :=0;
bcasten :integerrangeOto1:=1;
sa30loop : integer range O to 1 := 0);

port (
rstn :in std_ulogic;
clk ;in std_ulogic;

b1553i :in bl1553_in_type;
b15530 :out bl1553_out_type;
rti ;in rt1553_in_type;

rto sout rt1553 out_type;
apbi :in apb_slv_in_type;
apbo :out apb_slv_out_type;
ahbi :in ahb_mst_in_type;
ahbo :out ahb_mst_out_type);

end component;

Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.b1553.all;

signal bin : b1553_in_type;
signal bout : b1553_out_type;
signal rti ; rt1553_in_type;
signal rto : rt1553_out_type;

rt : b1553rt

generic map (hindex => 3, pindex => 13, paddr => 13, pmask => 16#fff#,
pirg => 3, rtaddr => 1, rtaddrp => 0, sa30loop => 1)
port map (rstn, clkm, bin, bout, rti, rto, apbi, apbo(13), ahbmi, ahbmo(3));

rti.useextok <='0’;

AEROFLEX GAISLER 126 GRIP

20

20.1

20.2

20.3

CAN_OC - GRLIB wrapper for OpenCores CAN Interface core

Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB I/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through free generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies.

This CAN interface implements the CAN 20.A and 2.0B protocols. It is based on the Philips SJA1000
and has a compatible register map with a few exceptions.

CAN_OC Wrapper

CANTXO CAN Core Syncram_2p

CAN_RXI |4>
|
| v 1
|

AHB slave interface

Figure 42. Block diagram

Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.

AEROFLEX GAISLER 127 GRIP
20.4 BasicCAN mode
20.4.1 BasicCAN register map
Table 133asicCAN address allocation
Address Operating mode Reset mode
Read Write Read Write
0 Control Control Control Control
1 (OxFF) Command (OxFF) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 (OXFF) - Acceptance code Acceptance code
5 (OXFF) - Acceptance mask Acceptance mask
6 (OXFF) - Bus timing 0 Bus timing 0
7 (OxFF) - Bus timing 1 Bus timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 TXidl TXid1l (OxFF) -
11 TXid2, rtr, dlc TXid2, rtr, dlc (OXFF) -
12 TX data byte 1 TX data byte 1 (OXFF) -
13 TX data byte 2 TX data byte 2 (OXFF) -
14 TX data byte 3 TX data byte 3 (OXFF) -
15 TX data byte 4 TX data byte 4 (OXFF) -
16 TX data byte 5 TX data byte 5 (OXFF) -
17 TX data byte 6 TX data byte 6 (OXFF) -
18 TX data byte 7 TX data byte 7 (OXFF) -
19 TX data byte 8 TX data byte 8 (OXFF) -
20 RXid1 - RXid1 -
21 RXid2, rtr, dic - RXid2, rtr, dic -
22 RX data byte 1 - RX data byte 1 -
23 RX data byte 2 - RX data byte 2 -
24 RX data byte 3 - RX data byte 3 -
25 RX data byte 4 - RX data byte 4 -
26 RX data byte 5 - RX data byte 5 -
27 RX data byte 6 - RX data byte 6 -
28 RX data byte 7 - RX data byte 7 -
29 RX data byte 8 - RX data byte 8 -
30 (0x00) - (0x00) -
31 Clock divider Clock divider Clock divider Clock divider

AEROFLEX GAISLER

20.4.2 Control register

128 GRIP

The control register contains interrupt enable bits as well as the reset request bit.

Table 134Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR.5 - reserved

CR.4 Overrun Interrupt Enable 1 - enabled, O - disabled

CR.3 Error Interrupt Enable 1 - enabled, O - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled

CR.1 Receive Interrupt Enable 1 - enabled, O - disabled

CR.O Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset modp. Writ-
ing O returns to operating mode.

20.4.3 Command register
Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 133it interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 - not used (go to sleep in SJA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.O Transmission request Starts the transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

AEROFLEX GAISLER 129 GRIP

20.4.4 Status register

The status register is read only and reflects the current status of the core.

Table 13@Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU yarning
limit (96).

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first when
the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is O.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

20.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register.

Table 137Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved

IR.6 - reserved

IR.5 - reserved

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.
IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)
IR.0 Receive interrupt This bit is set while there are more messages in the fifo.

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is O.

AEROFLEX GAISLER 130 GRIP

20.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

Table 138Transmit buffer layout

Addr |Name Bits
7 6 5 4 3 2 1 0
10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3
11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0
12 TX data 1 TX byte 1
13 TX data 2 TX byte 2
14 TX data 3 TX byte 3
15 TX data 4 TX byte 4
16 TX data 5 TX byte 5
17 TX data 6 TX byte 6
18 TX data 7 TX byte 7
19 TX data 8 TX byte 8

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

20.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer.

20.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

AEROFLEX GAISLER 131 GRIP
20.5 PeliCAN mode
20.5.1 PeliCAN register map
Table 13%eliCAN address allocation
Operating mode Reset mode
Read Write Read Write
0 Mode Mode Mode Mode
1 (0x00) Command (0x00) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 Interrupt enable Interrupt enable Interrupt enable Interrupt enabje
5 reserved (0x00) - reserved (0x00) -
6 Bus timing 0 - Bus timing 0 Bus timing 0
7 Bus timing 1 - Bus timing 1 Bus timing 1
8 | (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 | reserved (0x00) - reserved (0x00) -
11 | Arbitration lost capture - Arbitration lost capture -
12 | Error code capture - Error code capture -
13 | Error warning limit - Error warning limit Error warning lim|t
14 | RX error counter - RX error counter RX error counter
15 | TX error counter - TX error counter TX error counte
16 | RXFI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0
17 | RXID1 RXID 1 TXID 1 TXID 1 Acceptance code 1 Acceptance code 1
18 | RXID 2 RXID 2 TXID 2 TXID 2 Acceptance code 2 Acceptance code 2
19 | RXdatal RXID 3 TX data 1 TXID 3 Acceptance code 3 Acceptance cgde 3
20 | RX data 2 RXID 4 TX data 2 TXID 4 Acceptance mask 0 Acceptance mask 0
21 | RX data 3 RX data 1 TX data 3 TX data 1 Acceptance mask [L Acceptance mask 1
22 | RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask R Acceptance mask 2
23 | RX data5 RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3
24 | RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -
25 | RX data7 RX data 5 TX data 7 TX data 5 reserved (0x00) -
26 | RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -
27 | FIFO RX data 7 - TX data 7 reserved (0x00) -
28 | FIFO RX data 8 - TX data 8 reserved (0x00) -
29 | RX message counter - RX msg counter -
30 | (0x00) - (0x00) -
31 | Clock divider Clock divider Clock divider Clock divider

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below.

AEROFLEX GAISLER 132 GRIP

20.5.2 Mode register

Table 140Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJA1000)

MOD.3 Acceptance filter mode 1 - single filter mode, O - dual filter mode

MOD.2 Self test mode If set the controller is in self test mode

MOD.1 Listen only mode If set the controller is in listen only mode

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing O returns to operating mode

Writing to MOD.1-3 can only be done when reset mode has been entered previously.

In Listen only mode the core will not send any acknowledgements. Note that unlike the SJA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

20.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 141Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 Self reception request Transmits and simultaneously receives a message
CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.O0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

AEROFLEX GAISLER 133 GRIP

20.5.4 Status register

The status register is read only and reflects the current status of the core.

Table 142Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error \varning
limit.

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

20.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

Table 143Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.5 Error passive interrupt Set when the core goes between error active and error passive
IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while the fifo is not empty.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

AEROFLEX GAISLER 134 GRIP

20.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

Table 144Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description

IR.7 Bus error interrupt 1 - enabled, O - disabled

IR.6 Arbitration lost interrupt 1 - enabled, O - disabled

IR.5 Error passive interrupt 1 - enabled, 0 - disabled

IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data overrun interrupt 1 - enabled, 0 - disabled

IR.2 Error warning interrupt 1 - enabled, O - disabled.

IR.1 Transmit interrupt 1 - enabled, 0 - disabled

IR.0 Receive interrupt 1 - enabled, O - disabled

20.5.7 Arbitration lost capture register

Table 14mit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description
ALC.7-5 - reserved
ALC.4-0 Bit number Bit where arbitration is lost

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

20.5.8 Error code capture register

Table 14@Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0O - transmission error
ECC.4-0 Segment Where in the frame the error occurred

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 147Error code interpretation

ECC.7-6 Description
0 Bit error

1 Form error
2 Stuff error
3 Other

AEROFLEX GAISLER 135 GRIP

Bit 4 downto 0 of the ECC register is interpreted as below

Table 148Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame
0x02 ID.28 - ID.21
0x06 ID.20 - ID.18
0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 - ID.13
OxOF ID.12 - ID.5

OxO0E ID.4-1D.0

0x0C Bit RTR

0x0D Reserved bit 1
0x09 Reserved bit 0
0x0B Data length code
Ox0A Data field

0x08 CRC sequence
0x18 CRC delimiter
0x19 Acknowledge slot
0x1B Acknowledge delimiter
O0x1A End of frame
0x12 Intermission
0x11 Active error flag
0x16 Passive error flag
0x13 Tolerate dominant bits
0x17 Error delimiter
0x1C Overload flag

20.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

20.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event resets
this counter to O.

20.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

AEROFLEX GAISLER 136 GRIP

20.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

Table 149.
| Write (SFF) Write(EFF)
16 | TX frame information TX frame information
17 | TXID1 TXID1
18 | TXID 2 TXID 2
19 | TX data 1 TXID 3
20 | TX data 2 TXID 4
21 | TX data 3 TX data 1
22 | TX data 4 TX data 2
23 | TX data 5 TX data 3
24 | TX data 6 TX data 4
25 | TXdata7 TX data 5
26 | TX data 8 TX data 6
27 | - TX data 7
28 | - TX data 8

TX frame information (this field has the same layout for both SFF and EFF frames)

Table 150TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0
Bit 7 - FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard frame. 1 = EFF, 0 = SFF.
Bit6 - RTR should be set to 1 for an remote transmission request frame.

Bit 5:4 - are don't care.
Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value greater than 8 is used 8 bytes
will be transmitted.

TX identifier 1 (this field is the same for both SFF and EFF frames)

Table 151TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Bit 7:0 - The top eight bits of the identifier.

TX identifier 2, SFF frame

Table 152TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.20 ID.19 ID.18 - - - - -

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4:0 - Don't care.

AEROFLEX GAISLER 137 GRIP
TX identifier 2, EFF frame
Table 153TX identifier 2 address 18
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.20 1D.19 1D.18 ID.17 ID.16 ID.15 ID.14 ID.13
Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.
TX identifier 3, EFF frame
Table 154TX identifier 3 address 19
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.12 ID.11 1D.10 ID.9 ID.8 1D.7 ID.6 ID.5
Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.
TX identifier 4, EFF frame
Table 155T X identifier 4 address 20
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 1D.3 1D.2 ID.1 ID.0 - - -

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2:0 - Don't care

Data field

For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is
transmitted starting from the MSB at the lowest address.

AEROFLEX GAISLER 138 GRIP
20.5.13 Receive buffer
Table 156.
Read (SFF) Read (EFF)
16 | RX frame information RX frame information
17 | RXID 1 RXID 1
18 | RXID 2 RXID 2
19 | RXdatal RXID 3
20 | RX data 2 RXID 4
21 | RXdata3 RX data 1
22 | RX data 4 RX data 2
23 | RXdata5s RX data 3
24 | RX data 6 RX data 4
25 | RXdata7 RX data 5
26 | RX data 8 RX data 6
27 | RX FI of next message in fifo RX data 7
28 | RX ID1 of next message in fifo RX data 8
RX frame information (this field has the same layout for both SFF and EFF frames)
Table 157RX frame information address 16
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0
Bit 7 - Frame format of received message. 1 = EFF, 0 = SFF.
Bit6- 1if RTR frame.
Bit 5:4 - Always O.
Bit 3:0 - DLC specifies the Data Length Code.
RX identifier 1(this field is the same for both SFF and EFF frames)
Table 158RX identifier 1 address 17
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.28 1D.27 1D.26 1D.25 ID.24 ID.23 ID.22 ID.21
Bit 7:0 - The top eight bits of the identifier.
RX identifier 2, SFF frame
Table 159RX identifier 2 address 18
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.20 1D.19 1D.18 RTR 0 0 0 0

Bit 7:5 - Bottom three bits of an SFF identifier.

Bit 4 -

Bit 3:0 -

1if RTR frame.
Always 0.

AEROFLEX GAISLER 139 GRIP
RX identifier 2, EFF frame
Table 160RX identifier 2 address 18
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.20 1D.19 1D.18 ID.17 ID.16 ID.15 ID.14 ID.13
Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.
RX identifier 3, EFF frame
Table 161RX identifier 3 address 19
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.12 ID.11 1D.10 ID.9 ID.8 1D.7 ID.6 ID.5
Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.
RX identifier 4, EFF frame
Table 162RX identifier 4 address 20
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 1D.3 1D.2 ID.1 ID.0 RTR 0 0

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier

Bit 2-

1if RTR frame

Bit 1:0 - Don't care

Data field
For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28.

20.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is

filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.

There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3

in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller filters

are used and if either of these signals a match the message is accepted. Each filter consists of two parts
the acceptance code and the acceptance mask. The code registers are used for specifying the pattern to
match and the mask registers specify don’t care bits. In total eight registers are used for the acceptance

filter as shown in the table below. Note that they are only read/writable in reset mode.

AEROFLEX GAISLER 140 GRIP

Table 163Acceptance filter registers

Address Description

16 Acceptance code 0 (ACRO)
17 Acceptance code 1 (ACR1)
18 Acceptance code 2 (ACR2)
19 Acceptance code 3 (ACR3)
20 Acceptance mask 0 (AMRO)
21 Acceptance mask 1 (AMR1)
22 Acceptance mask 2 (AMR2)
23 Acceptance mask 3 (AMR3)

Single filter mode, standard frame

When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACRO0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.

ACRL1.3-0 are unused.

ACR2 & ACRS3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don't care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACR0-3 are compared against
the incoming message in the following way:

ACRO0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit

ACRS3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don't care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACRO0-3 are compared against the
incoming message in the following way:

Filter 1

ACRO0.7-0 & ACRL1.7-5 are compared to ID.28-18

ACR1.4 is compared to the RTR bit.

ACR1.3-0 are compared against upper nibble of data byte 1

ACR3.3-0 are compared against lower nibble of data byte 1
Filter 2

ACR2.7-0 & ACR3.7-5 are compared to ID.28-18

ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn't matter. A
set bit in the mask register means don't care.
Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACRO0-3 are compared against the
incoming message in the following way:

AEROFLEX GAISLER 141 GRIP

20.6

Filter 1
ACRO0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn't matter. A
set bit in the mask register means don't care.

20.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

Common registers

There are three common registers with the same addresses and the same functionality in both Basi-
CAN and PeliCAN mode. These are the clock divider register and bus timing register O and 1.

20.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

Table 164Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN
CDR.6 - unused (cbp bit of SJA1000)
CDR.5 - unused (rxinten bit of SJA1000)
CDR.4 - reserved

CDR.3 Clock off Disable the clkout output
CDR.2-0 Clock divisor Frequency selector

20.6.2 Bustiming 0

Table 16Bit interpretation of bus timing 0 register (BTRO) (address 6)

Bit Name Description
BTRO.7-6 | SJW Synchronization jump width
BTRO0.5-0 | BRP Baud rate prescaler

The CAN core system clock is calculated as:

tsel = 2o (BRP+1)
where t, is the system clock.

The sync jump width defines how many clock cycleg)i@a bit period may be adjusted with by one
re-synchronization.

AEROFLEX GAISLER 142 GRIP

20.7

20.8

20.6.3 Bustiming 1

Table 166Bit interpretation of bus timing 1 register (BTR1) (address 7)

Bit Name Description

BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point
BTR1.6-4 | TSEG2 Time segment 2

BTR1.3-0 | TSEG1 Time segment 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

tiseg1™ tscl * (TSEG1+1)
tiseg2™ tscl * (TSEG2+1)
thit = tiseg1t ksegot el

The additional {; term comes from the initial sync segment. Sampling is done between TSEG1 and
TSEG?2 in the bit period.

Design considerations

This section lists known differences between this CAN controller and SJA1000 on which is it based:
« All bits related to sleep mode are unavailable

e Output control and test registers do not exist (reads 0x00)

* Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented

e Overrun irg and status not set until fifo is read out

BasicCAN specific differences:
* The receive irq bit is not reset on read, works like in PeliCAN mode
* Bit CR.6 always reads 0 and is not a flip flop with no effect as in SJA1000

PeliCAN specific differences:

* Writing 256 to tx error counter gives immediate bus-off when still in reset mode
* Read Buffer Start Address register does not exist

e Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)
« The core transmits active error frames in Listen only mode

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 143 GRIP
20.9 Configuration options
Table 167 shows the configuration options of the core (VHDL generics).
Table 167Configuration options
Generic Function Allowed range Default
slvndx AHB slave bus index 0 - NAHBSLV-1 0
ioaddr The AHB I/O area base address. Compared with bit 188 16#FFF# 16#FFF#
of the 32-bit AHB address.
iomask The 1/O area address mask. Sets the size of the I/O|dyed 6#FFF# 16#FFO#
and the start address together with ioaddr.
irq Interrupt number 0 - NAHBIRQ-1 0
memtech Technology to implement on-chip RAM 0 0- NTECH
20.10 Signal descriptions
Table 168 shows the interface signals of the core (VHDL ports).
Table 168Signal descriptions
Signal name Field Type Function Active
CLK Input AHB clock
RESETN Input Reset Low
AHBSI * Input AMBA AHB slave inputs -
AHBSO * Input AMBA AHB slave outputs
CAN_RXI Input CAN receiver input High
CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

20.11 Library dependencies

Table 169 shows libraries that should be used when instantiating the core.

20.12

Table 169.ibrary dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER CAN Component Component declaration

Component declaration

library grlib;
use grlib.amba.all;
use gaisler.can.all;

component can_oc

generic (

slvndx :integer :=0;

ioaddr :integer := 16#000#;
iomask :integer := 16#FF0#;

irq :integer :=0;
memtech : integer := 0);
port (

resetn :in std_logic;
clk :in std_logic;

AEROFLEX GAISLER 144 GRIP

ahbsi :in ahb_slv_in_type;
ahbso : outahb_slv_out_type;
can_rxi : in std_logic;
can_txo : out std_logic

).

end component;

AEROFLEX GAISLER 145 GRIP
21 CLKGEN - Clock generation

21.1 Overview

The CLKGEN clock generator implements internal clock generation and buffering.

21.2 Technology specific clock generators

21.2.1 Overview

The core is a wrapper that instantiates technology specific primitives depending on the value of the
techVHDL generic. Each supported technology has its own subsection below. Table 170 lists the sub-
section applicable for each technology setting. The table is arranged after the technology’s numerical
value in GRLIB. The subsections are ordered in alphabetical order after technology vendor.

Table 1700verview of technology specific clock generator sections

Technology Numerical value | Comment Section
inferred 0 Default when no technology specific generator is availablge. 21.2.2
virtex 1 21.2.12
virtex2 2 21.2.13
memvirage 3 No technology specific clock generator available. 21.2.2
axcel 4 21.2.3
proasic 5 21.2.3
atc18s 6 No technology specific clock generator available. 21.2.2
altera 7 21.2.7

umc 8 No technology specific clock generator available. 21.2.2
rhumc 9 21.2.10
apa3 10 21.25
spartan3 11 21.2.11
ihp25 12 No technology specific clock generator available. 21.2.2
rhlib18t 13 21.2.9
virtex4 14 21.2.13
lattice 15 No technology specific clock generator available. 21.22
ut25 16 No technology specific clock generator available. 21.2.2
spartan3e 17 21.2.11
peregrine 18 No technology specific clock generator available. 21.2.2
memartisan 19 No technology specific clock generator available. 21.2.2
virtex5 20 21.2.14
customl 21 No technology specific clock generator available. 21.2.2
ihp25rh 22 No technology specific clock generator available. 21.2.2
stratix1 23 21.2.7
stratix2 24 21.2.7
eclipse 25 No technology specific clock generator available. 21.2.2
stratix3 26 21.2.8
cyclone3 27 21.2.6
memvirage90 | 28 No technology specific clock generator available. 21.2.2
tsmc90 29 No technology specific clock generator available. 21.2.2
easic90 30 21.2.15
atcl18rha 31 No technology specific clock generator available. 21.2.2

AEROFLEX GAISLER 146 GRIP

Table 1700verview of technology specific clock generator sections

Technology Numerical value | Comment Section
smic013 32 No technology specific clock generator available. 21.2.2
tm65gpl 33 No technology specific clock generator available. 21.2.2
axdsp 34 21.2.3
spartan6 35 21.2.11
virtex6 36 21.2.14
actfus 37 21.2.17
stratix4 38 21.2.18
st65Ip 39 No technology specific clock generator available. 21.2.2
st65gp 40 No technology specific clock generator available. 21.2.2
easic45 41 21.2.16

21.2.2 Generic technology

This implementation is used when the clock generator does not support instantiation of technology
specific primitives or when the inferred technology has been selected.

This implementation connects the input clock, CLKIN or PCICLKIN depending op¢ienandpci-
sysclkVHDL generic, to the SDCLK, CLK1XU, and CLK outputs. The CLKN output is driven by the
inverted input clock. The PCICLK output is directly driven by PCICLKIN. Both clock lock signals
are always driven to ‘1’ and the CLK2X output is always driven to ‘0’

In simulation, CLK, CLKN and CLK1XU transitions are skewed 1 ns relative to the SDRAM clock
output.

21.2.3 ProASIC

Generics used in this technology: pcisysclk
Instantiated technology primitives: None
Signals not driven in this technology: clk4x, clklxu, clk2xu, clkb, clkc

This technology selection does not instantiate any technology specific primitives. The core’s clock
output, CLK, is driven by the CLKIN or PCICLKIN input depending on the value of VHDL generics
pcienandpcisysclk

The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

21.2.4 Actel Axcelerator

Generics used in this technology: pcisysclk, clk_mul, clk_div, pcien, freq
Instantiated technology primitives: PLL
Signals not driven in this technology: clk4x, clklxu, clk2xu, clkb, clkc

This technology selection has two modes. The first one is used if VHDL gemtkianulandclk_div

are equal and does not instantiate any technology specific primitives. The core’s clock output, CLK, is
driven by the CLKIN or PCICLKIN input depending on the value of VHDL genepc&nandpcisy-

sclk

The second mode is used if VHDL generadk_mulandclk_divare different and instantiates a PLL.
The core’s clock output CLK is either driven by the pciclkin input or the main output from the PLL
depending on the values of VHDL genermsenandpcisysclk When the PLL drives the CLK output

AEROFLEX GAISLER 147 GRIP

the resulting frequency is the frequency of CLKIN multiplied by the VHDL genetic muland
divided by the VHDL genericlk_div Clock buffers are not instantiated within the clock generator
and has to be done externally.

For both modes the following applies:

The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

21.2.5 Actel ProASIC3

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv
Instantiated technology primitives: PLLINT, PLL
Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clklxu, clk2xu

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the reg-
ular FPGA routing fabric. Figure 43 shows the instantiated primitives, the PLL EXTFB input is not
shown and the EXTFB port on the instantiated component is always tied to ground. The figure shows
which of the core’s output ports that are driven by the PLL. The PCICLOCK will directly connected
to PCICLKIN if VHDL genericpcienis non-zero, while CGO.PCILOCK is always driven high. The
VHDL genericspcienand pcisysclkare used to select the reference clock. The values driven on the
PLL inputs are listed in tables 171 and 172.

PLLINT PLL

Selected cIock—|A Y CLKA GLAl— CLK

POWERDOWN LOCK— CGO.CLKLOCK
GLB— CLKB

OADIV[4:0] YB—

OAMUX[Z:(g GLCG— CLKC

DLYGLA[4:0] YCl—

OBDIV;?:O_]O

See tables for val

L]
5 8

<

C

=

VCOSEL[2:0]
Figure 43. Actel ProASIC3 clock generation

AEROFLEX GAISLER

148

Table 171Constant input signals on Actel ProASIC3 PLL

GRIP

Signal name Value Comment

OADIV[4:0] VHDL genericclk_odiv- 1 Output divider

OAMUX][2:0] 0b100 Post-PLL MUXA

DLYGLA[4:0] 0 Delay on Global A

OBDIV[4:0] VHDL genericclkb_odiv- 1 when Output divider
clkb_odiv> 0, otherwise 0

OBMUX][2:0] 0 when VHDL genericlkb_odiv= 0, Post-PLL MUXB
otherwise 0b100

DLYYB[4:0] 0 Delay on YB

DLYGLBJ4:0] 0 Delay on Global B

OCDIV[4:0] VHDL genericclkc_odiv- 1 when Output divider
clkc_odiv> 0, otherwise 0

OCMUX][2:0] 0 when VHDL genericlkc_odiv= 0, Post-PLL MUXC
otherwise 0b100

DLYYC[4:0] 0 Delay on YC

DLYGLC[4:0] 0 Delay on Global C

FINDIV[6:0] VHDL genericclk_div- 1 Input divider

FBDIV[6:0] VHDL genericclk_mul- 1 Feedback divider

FBDLY[4:0] 0 Feedback delay

FBSEL[1:0] 0b01 2-bit PLL feedback MUX

XDLYSEL 0 1-bit PLL feedback MUX

VCOSELJ[2:0] See table 172 below VCO gear control. Selects one of four

frequency ranges.

The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

freq Cclkmul

VCOFREQUENCY= CIkdiv /1000

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 172 lists the signal value depending on the value of VCOF-

REQUENCY.
Table 172/COSEL[2:0] on Actel ProASIC3 PLL
Value of VCOFREQUENCY Value driven on VCOSEL[2:0]
<44 0b000
<88 0b010
<175 0b100
>= 175 0b110

AEROFLEX GAISLER 149 GRIP

21.2.6 Altera Cyclone llI

clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen
ALTPLL
clk4x, clk1xu, clk2xu, clkb, clkc

Generics used in this technology:
Instantiated technology primitives:
Signals not driven in this technology:

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 44. The
ALTPLL attributes are listed in table 173. As can be seen in this table the attributes

OPERATION_MODE and COMPENSATE_CLOCK depend on the VHDL gerseliamen

Table 173Altera Cyclone Il ALTPLL attributes

Attribute name*

Value with sdramen= 1

Value with sdramen= 0

INTENDED_DEVICE_FAMILY “Cyclone III” “Cyclone IlI”
OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”
COMPENSATE_CLOCK “CLK1” “clock0”

INCLKO_INPUT_FREQUENCY

1000000000 / (VHDL genefieq)

1000000000 / (VHDL generiteq)

WIDTH_CLOCK

5

5

CLKO_MULTIPLY_BY

VHDL genericclk_mul

VHDL genericclk_mul

CLKO_DIVIDE_BY

VHDL genericclk_div

VHDL genericclk_div

CLK1_MULTIPLY_BY

VHDL genericclk_mul

VHDL genericclk_mul

CLK1_DIVIDE_BY

VHDL genericclk_div

VHDL genericclk_div

CLK2_MULTIPLY_BY

VHDL genericclk_mul * 2

VHDL genericclk_mul * 2

CLK2_DIVIDE_BY

VHDL genericclk_div

VHDL genericclk_div

*Any attributes not listed are assumed to have their default value

5 INCLK[1]

GN See text

ALTPLL

CLKENA[5:0]

CLK[5:0]

See text

INCLK]1:0]

Selected cIocM

Figure 44. Altera Cyclone 11l ALTPLL

LOCKED

CGO.CLKLOCK

The value driven on the ALTPLL clock enable signal is dependent on the VHDL gemtibenand
sdramentable 174 lists the effect of these generics.

Table 174effect of VHDL genericzlk2xenandsdrameron ALTPLL clock enable input

Value of sdramen

Value of clk2xen

Value of CLKENA[5:0]

0 0 0b000001
0 1 0b000101
1 0 0b000011
1 1 0b000111

AEROFLEX GAISLER 150 GRIP

Table 175 lists the connections of the core’s input and outputs to the ALTPLL ports.

Table 175Connections between core ports and ALTPLL ports

Core signal Core direction | ALTPLL signal

CLKIN/PCICLKIN* |Input INCLK[O]

CLK Output CLK[O]

CLKN Output CLK][O] (CLK]O0] through an inverter)
CLK2X Output CLK[2]

SDCLK Output CLK[1]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL genericgpcienandpcisysclk If pcienis 0 orpcisysclkis 0 the input clock to the ALT-

PLL will be CLKIN. If pcienis non-zero angcisysclkis 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL genepicienis non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

21.2.7 Altera Stratix 1/2

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen
Instantiated technology primitives: ALTPLL

Signals not driven in this technology: clk4x, clklxu, clk2xu, clkb, clkc

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 45. The
ALTPLL attributes are listed in table 176. As can be seen in this table the OPERATION_MODE
attribute depends on the VHDL genesdramen

Table 176Altera Stratix 1/2 ALTPLL attributes

Attribute name* Value with sdramen= 1 Value with sdramen= 0
OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL"
INCLKO_INPUT_FREQUENCY 1000000000 / (VHDL genefieq) 1000000000 / (VHDL generiteq)
WIDTH_CLOCK 6 6

CLKO_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul
CLKO_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div
CLK1_MULTIPLY_BY VHDL genericclk_mul* 2 VHDL genericclk_mul* 2
CLK1_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div
EXTCLKO_MULTIPLY_BY VHDL genericclk_mul VHDL genericclk_mul
EXTCLKO_DIVIDE_BY VHDL genericclk_div VHDL genericclk_div

*Any attributes not listed are assumed to have their default value

INCLK[1] CLKENA[5:0 ALTPLL
GND ——— See text [I %See text
INCLK][1:0] WK[SO]— CGO.CLKLOCK
EXTCLKENAJ[3:0 :
Selected cloch VKO see texs K2 See text

Figure 45. Altera Stratix 1/2 ALTPLL

AEROFLEX GAISLER 151 GRIP

The values driven on the ALTPLL clock enable signals are dependent on the VHDL gelk@nen
table 177 lists the effect ofk2xen

Table 177Effect of VHDL genericclk2xenon ALTPLL clock enable inputs

Signal Value with clk2xen= 0 Value with clk2xen £ 0
CLKENA[5:0] 0b000001 0b000011
EXTCLKENA[3:0] 0b0001 0b0011

Table 178 lists the connections of the core’s input and outputs to the ALTPLL ports.

Table 178Connections between core ports and ALTPLL ports

Core signal Core direction | ALTPLL signal

CLKIN/PCICLKIN* | Input INCLK]O]

CLK Output CLK[0]

CLKN Output CLK[OJ (CLK[O] through an inverter)
CLK2X Output CLK[1]

SDCLK Output EXTCLK]O]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL genericpcienandpcisysclkIf pcienis 0 orpcisysclkis O the input clock to the ALT-

PLL will be CLKIN. If pcienis non-zero angcisysclkis 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL genepicienis non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

21.2.8 Altera Stratix 3

This technology is not fully supported at this time.

21.2.9 RHLIB18t

Generics used in this technology: clk_mul, clk_div
Instantiated technology primitives: Ifdll_top
Signals not driven in this technology: -

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

21.2.10 RHUMC

Generics used in this technology: None
Instantiated technology primitives: pll_ip
Signals not driven in this technology: -

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

AEROFLEX GAISLER

152

21.2.11 Xilinx Spartan 3/3e/6

Generics used in this technology:
Instantiated technology primitives:

GRIP

clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x, clkb, clkc

The main clock is generated with a DCM which is instantiated with the attributes listed in table 179.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generipgienand pcisysclk The main DCM'’s con-
nections is shown in figure 46.

Table 179Spartan 3/e DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL generidk_div
CLKFX_MULTIPLY Determined by core’s VHDL generidk_mul
CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “2X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS"
DFS_FREQUENCY_MODE “Low”

DLL_FREQUENCY_MODE “Low”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X"C080”

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

DCM
. CLKIN BUFG
Selected input clock—————] CLKO ™~ CLK1XU
CLKFB |CLK90 L
| CLK180 BUFG
CGIPLIRST — T | CLK270 'l\/ CLK2XU
CLK2X
BUFG
DSSER [CLK2X180 ok i
PSINCDEC %::EEZ
PSEN
PSCLK] | CLKFX180
LOCKED dilolock
| STATUSI[7:0]
| PSDONE

Figure 46. Spartan 3/e generation of main clock

If the VHDL genericclk2xenis non-zero the DCM shown in figure 47 is instantiated. The attributes of
this DCM are the same as in table 179, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE

attributes are both set to 2 and the CLK_FEEDBACK attribute is set to “1X". The dllOlock signal is
connected to the LOCKED output of the main clock DCM. When this signal is low all the bits in the

AEROFLEX GAISLER 153 GRIP

shift register connected to the CLK2X DCM'’s RST input are set to ‘1’. When the dllOlock signal is
asserted it will take four main clock cycles until the RST input is deasserted. Depending on the value
of theclkselVHDL generic the core’s CLK2X output is either driven by a BUFG or a BUFGMUX.
Figure 48 shows the two alternatives and how the CGI.CLKSEL(0) input is used to selected between
the CLKO and CLK2X output of the CLK2X DCM.

DCM BUFG
CLK —CLKIN | CLKO clk_ o "R ol p
dilolock CLKFB [CLK90 L~ -
| s [CLK180
gh‘é__ SHIFTREG %ti;;o
DSSEN clk_n
= [CLK2X180
PSINCDE(%'['ég;/
PSEN CL
PSCLK| £LKFX180
LOCKED dil2xlock
|STATUS[7:0]
PSDONE

Figure 47. Spartan 3/e generation of CLK2X clock when VHDL geneli@xenis non-zero

CLK2X driver when VHDL generic

CLK2X driver when VHDL generic

|
clksel =0 | clksel /=0
: BUFGMUX
B{G | clk_o 10
clk_n CLK2X I ¢/ CLK2X
L : clk_n 1S
|

CGI.CLKSEL(0)

Figure 48. Spartan 3/e selection of CLK2X clock when VHDL geneti@xenis non-zero

The value of thelk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. The core’s CLKN output is driven by the selected signal through an inverter. Figure 49

illustrates the connections.

CLK/CLKN drivers when VHDL generic

CLK/CLKN drivers when VHDL generic

|
clk2xen =0 I clk2xen /=0

|
|

clk_i CLK I clk_p CLK
|

clk i CLKN : K p CLKN
|

Figure 49. Spartan 3/e clock generator outputs CLK and CLKN

If the VHDL genericclk2xenis zero the dllOlock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 50.

AEROFLEX GAISLER 154 GRIP

BUFG

™S
—1 > CLK2X
Figure 50. Spartan 3/e generation of CLK2X clock when VHDL geneli@xenis zero

clk_x

If the SDRAM clock is enabled, via thedramenVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 51 is instantiated. This DCM has the same
attributes as the CLK2X DCM. The input to the SDRAM DCM input clock is determined via the
clk2xenVHDL generic. If the VHDL generic is set to 0 the input is the main CLK, if the generic is set
to 1 the input is the clk_p out of the CLK2X DCM shown in figure 48. If the2xenVHDL generic is

set to 2 the clock input to the SDRAM DCM depends ondhesel VHDL generic. The input in this

last case is the CLK2X output shown in figure 50.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

DCM
Selected SDRAM input cloelﬂ CLKO SDCLK
CGI.PLLREF— CLKFB | CLK90
[CLK180
RST] [CLK270
dllolock or dli2xlock DSSEN | CLK2X
oLk = |CLK2X180
GND—— SHIFTREG [pgineDEG o
PSEN R0
PSCLK| | CLKFX180
LOCKED o cLkLock
| STATUS[7:0]
 PSDONE

Figure 51. Spartan 3/e generation of SDRAM clock

If the SDRAM clock is disabledsdramenvHDL generic set to 0) or the core has been configured not
to use clock feedbacknclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of thdk2xenVHDL generic. If theclk2xenVHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 48, in other words it also
depends on thelksel VHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’'s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM's LOCKED output.

If PCI clock generation is enabled via theienVHDL generic the core instantiates either a BUFG or

a BUFGDLL as depicted in figure 52 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

AEROFLEX GAISLER 155 GRIP

PCIDLL VHDL generic set to O PCIDLL VHDL generic set to 1

BUFGDLL

PCICLKIN — —l>—— PCICLK

PCICLKIN —|>— PCICLK

I
|
|
[
BUFG [
[
[
[
[
I

Figure 52. Spartan 3/e PCI clock generation

21.2.12 Xilinx Virtex

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk
Instantiated technology primitives: BUFG, BUFGDLL, CLKDLL
Signals not driven in this technology: clk4x, clklxu, clk2xu, clkb, clkc

The main clock is generated with the help of a CLKDLL. Figure 53 below shows how the CLKDLL
primitive is connected. The input clock source is either the core’s CLKIN input or the PCICLKIN
input. This is selected with the VHDL generipsienandpcisysclk The figure shows three potential
drivers of the BUFG driving the output clock CLK, the driver is selected via the VHDL generics
clk_mulandclk_div If clk_mul/clk_divis equal to 2 the CLK2X output is selected¢ik_div/clk_mul
equals 2 the CLKDV output is selected, otherwise the CLKO output drives the BUFG. The inverted
main clock output, CLKN, is the BUFG output connected via an inverter.

The figure shows a dashed line connecting the CLKDLL's LOCKED output to the core output
CGO.CLKLOCK. The driver of the CGO.CLKLOCK output depends on the instantiation of a
CLKDLL for the SDRAM clock. See description of the SDRAM clock below.

CLKDLL BUFG
Selected input clockﬂ CLKO
CLKFB CLK9O |

CLK180 !
CLk270 | BUFG
CLK2X 1= 7 ==~~~ CLK
T~ vy, 1 ource selecte!
%%E\éli — 4 via VHDL generics

[RST] =YY

CGIL.PLLRST —— CGO.CLKLOCK

Figure 53. Virtex generation of main clock

If the SDRAM clock is enabled, via thedramenVHDL generic, and the clock generator is config-
ured to use clock feedback, VHDL genenoclkfbset to 0, a CLKDLL is instantiated as depicted in
figure 54. Note how the CLKDLL's RST input is connected via a shift register clocked by the main
clock. The shift register is loaded with all ‘1’ when the LOCKED signal of the main clock CLKDLL
is low. When the LOCKED signal from the main clock CLKDLL is asserted the SDRAM CLKDLL's
RST input will be deasserted after four main clock cycles.

For all other configurations the SDRAM clock is driven by the main clock and the CGO.CLKLOCK
signal is driven by the main clock CLKDLL's LOCKED output. The SDRAM CLKDLL must be
present if the core’'s CLK2X output shall be driven.

AEROFLEX GAISLER 156 GRIP

CLKDLL
CLKIN
CLK — =" | ICLKO gpcik
CGLPLLRE CLKFB CLK90
. S— =
[CLK180
[CLK270
CLK2X
Main CLKDLL LOCK CLKDV CcLk2x
RST LOCKED
g:\]}é — SHIFTREG =2V REY CGO.CLKLOCK

Figure 54. Virtex generation of SDRAM clock with feedback clock enabled

If PCI clock generation is enabled via theienVHDL generic the core instantiates either a BUFG or

a BUFGDLL as depicted in figure 55 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

PCIDLL VHDL generic set to O PCIDLL VHDL generic set to 1

BUFGDLL

BUFG

|
|
|
|
|
PCICLKIN —{>>— PCICLK | PCICLKIN —| —{ > PcicLk
|
|
|

Figure 55. Virtex PCI clock generation

21.2.13 Xilinx Virtex 2/4

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel
Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL
Signals not driven in this technology: clk4x, clkb, clkc

The main clock is generated with a DCM which is instantiated with the attributes listed in table 180.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generipgienandpcisysclk The main DCM’s con-
nections is shown in figure 56.

AEROFLEX GAISLER

Table 180Virtex 2/4 DCM attributes

157

GRIP

Attribute name*

Value

CLKDV_DIVIDE

2.0

CLKFX_DIVIDE

Determined by core’s VHDL generidk_div

CLKFX_MULTIPLY

Determined by core’s VHDL generidk_mul

CLKIN_DIVIDE_BY_2 false
CLKIN_PERIOD 10.0
CLKOUT_PHASE_SHIFT “NONE”
CLK_FEEDBACK “1X”

DESKEW_ADJUST

“SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE

“L OW”

DLL_FREQUENCY_MODE “LOW”
DSS_MODE “NONE”
DUTY_CYCLE_CORRECTION true
FACTORY_JF X"C080”
PHASE_SHIFT 0
STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

DCM
- CLKIN BUFG
Selected input clock———=""" 1 CLKO D~ CLK1XU
CLKFB | CLK90 L
CLK180 clk x
TS e RST] = _
CGI.PLLRST —— |CLK270 CLK2XU
CLK2X
DSSEN BUFG
= [CLK2X180 o
PSINCDEQ %::EE)\(’ |
PSEN BUFG
PSC%> CLKFX180 P~ CLKN
LOCKED dilolock
STATUSI[7:0]
'PSDONE

Figure 56. Virtex 2/4 generation of main clock

If the VHDL genericclk2xenis non-zero the DCM shown in figure 57 is instantiated. The attributes of
this DCM are the same as in table 180, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dllOlock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1. When the dllOlock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value otlike=lVHDL generic the core’s CLK2X out-

put is either driven by a BUFG or a BUFGMUX. Figure 58 shows the two alternatives and how the

CGI.CLKSEL(0) input is used to selected between the CLKO and CLK2X output of the CLK2X
DCM.

AEROFLEX GAISLER 158 GRIP

DCM BUFG
CLK — CLKIN | CLKO clk_ o "R ok p
dilolock CLKFB CLK90 - B
| . [CLK180
gk‘KD__ SHIFTREG %tg;o
DSSEN clk_n
= [CLK2X180
PsiNCDEC ciov
PSEN CL
PSCLK| £LKFX180
LOCKED dii2xlock
|STATUS[7:0]
 PSDONE

Figure 57. Virtex 2/4 generation of CLK2X clock when VHDL genedi&2xenis non-zero

The value of thelk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 56.

CLK2X driver when VHDL generic CLK2X driver when VHDL generic

|
clksel =0 | clksel /=0
: BUFGMUX
B{G | clk_o 10
clk_n CLK2X I ¢/ CLK2X
L : clk_n 1S
|

: CGI.CLKSEL(0)
Figure 58. Virtex 2/4 selection of CLK2X clock when VHDL genegtk2xenis non-zero

If the VHDL genericclk2xenis zero the dllOlock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 59.

BUFG

clk_x Jl/x CLK2X

Figure 59. Virtex 2/4 generation of CLK2X clock when VHDL genedi&2xenis zero

If the SDRAM clock is enabled, via thedramenVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 60. The input to the SDRAM DCM input clock
is determined via thelk2xenVHDL generic. If the VHDL generic is set to 0 the input is the main
CLK, if the generic is set to 1 the input is the clk_p out of the CLK2X DCM shown in figure 57. If the
clk2xenVHDL generic is set to 2 the clock input to the SDRAM DCM depends orctkeel VHDL
generic. The input in this last case is the CLK2X output shown in figure 58.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is

AEROFLEX GAISLER 159 GRIP

utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

DCM
Selected SDRAM input clogk—CEKIN CLKO speik
CGI.PLLREF CLKFB CLK90
[CLK180
RST] [CLK270
dli0lock or dll2xlock CLK2X
DSSEN —
LK = [CLK2X180
GND—— SHIFTREG PSINCDE(Q %tl}ill::);(/
PSEN CL
PSCLK | CLKFX180
LOCKED 6o .cLkLoCK
 STATUS[7:0]
 PSDONE

Figure 60. Virtex 2/4 generation of SDRAM clock

If the SDRAM clock is disabledsdramenvHDL generic set to 0) or the core has been configured not
to use clock feedbacknclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of thik2xenVHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 58, in other words it also
depends on thelksel VHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’'s CGO.CLKLOCK output is connected to the
CLK2X DCM'’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’'s LOCKED output.

If PCI clock generation is enabled via theienVHDL generic the core instantiates either a BUFG or

a BUFGDLL as depicted in figure 61 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic setto 1

BUFGDLL

PCICLKIN — —|>—— PCICLK

PCICLKIN —|>— PCICLK

I
[
[
[
BUFG |
[
[
[
[
I

Figure 61. Virtex 2/4 PCI clock generation

21.2.14 Xilinx Virtex 5/6

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel
Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL
Signals not driven in this technology: clk4x, clkb, clkc

The main clock is generated with a DCM which is instantiated with the attributes listed in table 181.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-

AEROFLEX GAISLER

160

GRIP

CLKIN input. This is selected with the VHDL generipgienandpcisysclk The main DCM’s con-
nections is shown in figure 62.

Table 181Virtex 5 DCM attributes

Attribute name* Value
CLKDV_DIVIDE 2.0
CLKFX_DIVIDE Determined by core’s VHDL generidk_div

CLKFX_MULTIPLY

Determined by core’s VHDL generidk_mul

CLKIN_DIVIDE_BY_2 false
CLKIN_PERIOD 10.0
CLKOUT_PHASE_SHIFT “NONE”
CLK_FEEDBACK “1X”

DESKEW_ADJUST

“SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE

“LOW”

DLL_FREQUENCY_MODE “LOW”
DSS_MODE “NONE”"
DUTY_CYCLE_CORRECTION true
FACTORY_JF X"C080”
PHASE_SHIFT 0
STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

DCM
: CLKIN BUFG
Selected input clock——=""" 1 CLKO D CLK1XU
CLKFB | CLK90 L
[CLK180
CGIPLLRST — T [CLK270 CLK2XU
DSSEN CLK2X BUEG

[CLK2X180 ok i
PSINCDE(%tﬁ;\(/
PSEN BUFG

PSCLK, CLKFX180 [~ CLKN
LOCKED dilolock
STATUS[7:0]
'PSDONE

Figure 62. Virtex 5 generation of main clock

If the VHDL genericclk2xenis non-zero the DCM shown in figure 63 is instantiated. The attributes of
this DCM are the same as in table 181, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dllOlock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1. When the dllOlock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value otlike=lVHDL generic the core’s CLK2X out-

put is either driven by a BUFG or a BUFGMUX. Figure 64 shows the two alternatives and how the

CGI.CLKSEL(0) input is used to selected between the CLKO and CLK2X output of the CLK2X
DCM.

AEROFLEX GAISLER 161 GRIP
DCM BUFG
CLK —CLKIN | CLKO clk o °RC° ol p
dilolock CLKFB CLK90 -
| . [CLK180
gk‘KD__ SHIFTREG %tg;o
DSSEN clk_n
= [CLK2X180
PsiNCDEC ciov
PSEN Cl
PSCLK| £LKFX180
LOCKED dii2xlock
STATUS[7:0]
 PSDONE

Figure 63. Virtex 5 generation of CLK2X clock when VHDL genedtk2xenis non-zero

The value of thelk2xenVHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in

figure 62.

CLK2X driver when VHDL generic
clksel =0

BUFG

™ CLK2X

CLK2X driver when VHDL generic

clksel /=0
BUFGMUX
clk_o 10
¢/ CLK2X
clk_n 118

CGI.CLKSEL(0)

Figure 64. Virtex 5 selection of CLK2X clock when VHDL generitk2xenis non-zero

If the VHDL genericclk2xenis zero the dllOlock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven directly by

the main clock DCM’s CLK2X output.

If the SDRAM clock is enabled, via thedramenvVHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 65. This DCM has the same attributes as the
main clock DCM described in table 181, with the exceptions that CLKFX_MULTIPLY and
CLKFX_DIVIDE are both setto 2 and DESKEW_ADJUST is set to “SOURCE_SYNCHRONOUS”.

The input to the SDRAM DCM input clock is determined via tbl&2xenVHDL generic. If the
VHDL generic is set to 0 the input is the main CLK, if the generic is set to 1 the input is the clk_p out
of the CLK2X DCM shown in figure 57. If thelk2xenVHDL generic is set to 2 the clock input to the
SDRAM DCM depends on thelkselVHDL generic. The input in this last case is the CLK2X output

shown in figure 64.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

AEROFLEX GAISLER 162 GRIP

DCM

BUFG
Selected SDRAM input cIoMN— CLKO SDCLK
CGI.PLLREF CLKFB] | CLK90
|CLK180
RST [CLK270
dllOlock or dli2xlock CLK2X
DSSEN =
_p — | CLK2X180
GND— SHIFTREG PSINCDECQ %EEE;(/
PSEN =
PSCLK| | CLKFX180
LOCKED CGO.CLKLOCK
| STATUS[7:0]
| PSDONE

Figure 65. Virtex 5 generation of SDRAM clock

If the SDRAM clock is disabledsdramenvHDL generic set to 0) or the core has been configured not
to use clock feedbacknclockfbVHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of thik2xenVHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 64, in other words it also
depends on thelksel VHDL generic. If theclk2xenVHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When thesdramenVHDL generic is set to 0 the core’'s CGO.CLKLOCK output is connected to the
CLK2X DCM's LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’'s LOCKED output.

If PCI clock generation is enabled via theienVHDL generic the core instantiates either a BUFG or

a BUFGDLL as depicted in figure 66 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic setto 1

BUFGDLL

PCICLKIN — —|>—— PCICLK

PCICLKIN —|>— PCICLK

I
[
[
[
BUFG |
[
[
[
[
I

Figure 66. Virtex 5 PCI clock generation

21.2.15 eASIC90 (Nextreme)

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien
Instantiated technology primitives: eclkgen
Signals not driven in this technology: sdclk, pciclk, clk1lxu, clk2xu, clkb, clkc

Please contact Aeroflex Gaisler for information concerning the use of this clock generator.

AEROFLEX GAISLER 163 GRIP

21.2.16 eASIC45 (Nextreme2)

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien, sdramen, clk2xen
Instantiated technology primitives: eclkgen
Signals not driven in this technology: clk1xu, clk2xu, clkb, clkc

An example instantiating eASIC’s clock generator wrapper that generates clk, clkn and clk2x is pro-
vided. Note that the example does not instantiate buffers on the clock outputs. Please contact Aeroflex
Gaisler for information concerning the use of this clock generator.

21.2.17 Actel Fusion

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv
Instantiated technology primitives: PLLINT, PLL
Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clklxu, clk2xu

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the reg-
ular FPGA routing fabric. Figure 67 shows the instantiated primitives, the PLL EXTFB input is not
shown and the EXTFB port on the instantiated component is always tied to ground. The OADIVRST
port on the PLL is driven by CGI.PLLRST. The figure shows which of the core’s output ports that are
driven by the PLL. The PCICLOCK will directly connected to PCICLKIN if VHDL genepicenis
non-zero, while CGO.PCILOCK is always driven high. The VHDL genepicenandpcisysclkare

used to select the reference clock. The values driven on the PLL inputs are listed in tables 182 and
183.

PLLINT PLL
Selected clock—|A Y CLKA GLA—CLK
POWERDOWN LOCK— CGO.CLKLOCK

OADIVHALF GLB— CLKB

OADIV[4:0] YB—

OAMUX]. :_(g] GLCG— CLKC
4

2

DLYGLA[4 YCl—
QBDIVIZ0]
OBMUX|[2:0]
DLYYB[4:0]

DLYGLB[4:0]
9epIvi0]
ONIUX]2:0]
DLYYC[4:0]

DLYGLC[4:0]

See tables for val

VCOSEL[2:0]
Figure 67. Actel Fusion clock generation

Table 182Constant input signals on Actel Fusion PLL

Signal name Value Comment
OADIVHALF 0 Division by half
OADIV[4:0] VHDL genericclk_odiv- 1 Output divider
OAMUX]2:0] 0b100 Post-PLL MUXA
DLYGLA[4:0] 0 Delay on Global A
OBDIV[4:0] VHDL genericclkb_odiv- 1 when Output divider
clkb_odiv> 0, otherwise 0
OBMUX[2:0] 0 when VHDL genericlkb_odiv= 0, Post-PLL MUXB
otherwise 0b100

AEROFLEX GAISLER

164

Table 182Constant input signals on Actel Fusion PLL

GRIP

Signal name Value Comment
DLYYBJ[4:0] 0 Delay on YB
DLYGLBJ4:0] 0 Delay on Global B
OCDIV[4:0] VHDL genericclkc_odiv- 1 when Output divider
clkc_odiv> 0, otherwise 0
OCMUX][2:0] 0 when VHDL genericlkc_odiv= 0, Post-PLL MUXC
otherwise 0b100
DLYYC[4:0] 0 Delay on YC
DLYGLC[4:0] 0 Delay on Global C
FINDIV[6:0] VHDL genericclk_div- 1 Input divider
FBDIV[6:0] VHDL genericclk_mul- 1 Feedback divider
FBDLY[4:0] 0 Feedback delay
FBSEL[1:0] 0b01 2-bit PLL feedback MUX
XDLYSEL 0 1-bit PLL feedback MUX
VCOSEL[2:0] See table 172 below VCO gear control. Selects one of four
frequency ranges.

The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

freqOclkmul

VCOFREQUENCY= CIkdiv /1000

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 172 lists the signal value depending on the value of VCOF-

REQUENCY.

Table 183vCOSEL[2:0] on Actel Fusion PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]
<44 0b000
<88 0b010
<175 O0b100
>= 175 Ob110

21.2.18 Altera Stratix 4

This technology is not fully supported at this time.

AEROFLEX GAISLER 165 GRIP
21.3 Configuration options
Table 184 shows the configuration options of the core (VHDL generics).
Table 184Configuration options
Generic name Function Allowed range Default
tech Target technology 0 - NTECH inferred
clk_mul Clock multiplier, used in clock scaling. Not all techbglo- 1
gies support clock scaling.
clk_div Clock divisor, used in clock scaling. Not all technologies 1
support clock scaling.
sdramen When this generic is set to 1 the core will generate p 0
clock on the SDCLK. Not supported by all technologies.
See technology specific description.
noclkfb When this generic is set to 0 the core will use the 1
CGI.PLLREF input as feedback clock for some technol-
ogies. See technology specific description.
pcien When this generic is set to 1 the PCI clock is activated. 0
Otherwise the PCICLKIN input is typically unused. See
technology specific descriptions.
pcidll When this generic is set to 1, a DLL will be instantiated 0
for the PCI input clock for some technologies. See the
technology specific descriptions.
pcisysclk When this generic is set to 1 the clock generator will use 0
the pciclkin input as the main clock reference. This also
requires generic pcien to be set to 1.
freq Clock frequency in kHz 25000
clk2xen Enables 2x clock output. Not available in all technolgies 0
and may have additional options. See technology specific
description.
clksel Enable clock select. Not available in all technologies. 0
clk_odiv ProASIC3/Fusion output divider for GLA. Only used jri - 32 1
ProASIC3/Fusion technology.
clkb_odiv ProASIC3/Fusion output divider for GLB. Only used |i® - 32 0
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLB.
clkc_odiv ProASIC3/Fusion output divider for GLC. Only used|i® - 32 0
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLC.

AEROFLEX GAISLER 166 GRIP

21.4 Signal descriptions
Table 185 shows the interface signals of the core (VHDL ports).

Table 185Signal descriptions

Signal name Field Type Function Active
CLKIN N/A Input Reference clock input -
PCICLKIN N/A Input PCI clock input
CLK N/A Output Main clock -
CLKN N/A Output Inverted main clock -
CLK2X N/A Output 2x clock -
SDCLK N/A Output SDRAM clock -
PCICLK N/A Output PCI clock -
CGl PLLREF Input Optional reference for PLL -
PLLRST Input Optional reset for PLL
PLLCTRL Input Optional control for PLL
CLKSEL Input Optional clock select
CGO CLKLOCK Output Lock signal for main clock
PCILOCK Output Lock signal for PCI clock
CLK4X N/A Output 4x clock
CLK1XU N/A Output Unscaled 1x clock
CLK2XU N/A Output Unscaled 2x clock
CLKB N/A Output GLB output from ProASIC3/Fusion PLL -
CLKC N/A Output GLC output from ProASIC3/Fusion PLL
21.5 Library dependencies
Table 186 shows the libraries used when instantiating the core (VHDL libraries).
Table 186.ibrary dependencies
Library Package Imported unit(s) Description
TECHMAP GENCOMP Component, signals Core signal definitions
TECHMAP ALLCLKGEN Component Technology specific CLKGEN components
21.6 Instantiation

This example shows how the core can be instantiated together with the GRLIB reset generator.

library ieee;

use ieee.std_logic_1164.all;
library techmap;

use techmap.gencomp.all;
library gaisler;

use gaisler.misc.all;

entity clkgen_ex is
port (
resetn :in std_ulogic;
clk :in std_ulogic; -- 50 MHz main clock
pliref :in std_ulogic
)i

end;

architecture example of clkgen_ex is

AEROFLEX GAISLER 167 GRIP

signal Iclk, clkm, rstn, rstraw, sdclkl, clk50: std_ulogic;
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

begin
cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;

pliref_pad : clkpad generic map (tech => padtech) port map (pliref, cgi.pliref);
clk_pad : clkpad generic map (tech => padtech) port map (clk, Iclk);
clkgenO : clkgen -- clock generator
generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,
CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)

port map (Iclk, Iclk, clkm, open, open, sdclkl, open, cgi, cgo, open, clk50);

sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24)
port map (sdclk, sdclkl);

resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst);

rstO : rstgen -- reset generator
port map (rst, clkm, cgo.clklock, rstn, rstraw);

end;

AEROFLEX GAISLER 168 GRIP

22

22.1

22.2

DDRSPA - 16-, 32- and 64-bit DDR266 Controller

Overview

DDRSPA is a DDR266 SDRAM controller with AMBA AHB back-end. The controller can interface
two 16-, 32- or 64-bit DDR266 memory banks to a 32-bit AHB bus. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR SDRAM access. The
DDR controller is programmed by writing to a configuration register mapped located in AHB 1/0
address space. Internally, DDRSPA consists of a ABH/DDR controller and a technology specific
DDR PHY. Currently supported technologies for the PHY includes Xilinx Virtex2/Virtex4 and Altera
Stratix-1l. The modular design of DDRSPA allows to add support for other target technologies in a
simple manner.

r— = = = = = — = — = — — T
AHE | DDRSPA |
| |
| DDR CLOCK | I
DDR266 .
Memory
CLK |
| CLK |4 CLK CLKN ' CLikn
| SDCSN[L:0] CSN csN | csN
| Gemmmmlp| AHB SLAVE SDRASN RAS DDR RAS RAS
| SDCASN CcAS CAS | cAs
SDWEN WE PHY e ' WE
| SDDQM[15:0] DQM DQM | DQM
| SDCKE CKE CKE I CKE
ADDR[13:0 | ADDR[13:0
ADDRESSJ[16:2] BL[l:O} BA[lIO[]]
| D[127:0] | DQ[63:0] [¢—} DQ[63:0] |
I |
Lo g

Figure 68. DDRSPA Memory controller conected to AMBA bus and DDR SDRAM

Operation

22.2.1 General

Double data-rate SDRAM (DDR RAM) access is supported to two banks of 16-, 32- or 64-bit
DDR266 compatible memory devices. The controller supports 64M, 128M, 256M, 512M and 1G
devices with 9- 12 column-address bits, up to 14 row-address bits, and 4 internal banks. The size of
each of each chip select can be programmed in binary steps between 8 Mbyte and 1024 Mbyte. The
DDR data width is set by thedrbits VHDL generic, and will affect the width of DM, DQS and DQ
signals. The DDR data width does not change the behavior of the AHB interface, except for data
latency. When the VHDL generimobileis set to a value not equal to 0, the controller supports mobile
DDR SDRAM (LPDDR).

22.2.2 Read cycles

An AHB read access to the controller will cause a corresponding access to the external DDR RAM.
The read cycle is started by performing an ACTIVATE command to the desired bank and row, fol-
lowed by a READ command. CAS latency of 2 (CL=2) or 3 (CL=3) can be used. Byte, half-word (16-
bit) and word (32-bit) AHB accesses are supported. Incremental AHB burst access are supported for
32-bit words only. The read cycle(s) are always terminated with a PRE-CHARGE command, no
banks are left open between two accesses. DDR read cycles are always performed in (aligned) 8-word
bursts, which are stored in a FIFO. After an initial latency, the data is then read out on the AHB bus
with zero waitstates.

AEROFLEX GAISLER 169 GRIP

22.2.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. An AHB write burst will store up to 8 words in a FIFO, before writing the data
to the DDR memory. As in the read case, only word bursts are supported

22.2.4 Initialization

If the pwronVHDL generic is 1, then the DDR controller will automatically perform the DDR initial-
ization sequence as described in the JEDEC DDR266 standard: PRE-CHARGE, LOAD-EXTMODE-
REG, LOAD-MODE-REG, PRE-CHARGE, 2xREFRESH and LOAD-MODE-REG,; or as described

in the JEDEC LPDDR standard when mobile DDR is enabled: PRE-CHARGE, 2xREFRESH,
LOAD-MODE-REG and LOAD-EXTMODE-REG. The VHDL generic®l andMbytecan be used

to also set the correct address decoding after reset. In this case, no further software initialization is
needed. The DDR initialization can be performed at a later stage by setting bit 15 in the DDR control
register.

22.2.5 Configurable DDR SDRAM timing parameters

To provide optimum access cycles for different DDR devices (and at different frequencies), three tim-
ing parameters can be programmed through the memory configuration register (SDCFG): TRCD,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 187.

Table 187DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Precharge to activatez() TRP + 2

Auto-refresh command periogkfio) TRFC + 3

Activate to read/write fcp) TRCD + 2

Activate to Activate (o) TRCD + 8

Activate to Prechargeghs) TRCD + 6

If the TCD, TRP and TRFC are programmed such that the DDR200/266 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

Table 188DDR SDRAM example programming

DDR SDRAM settings trep tre trp trrC tras
100 MHz: CL=2, TRP=0, TRFC=4, TRCD=0 20 80 20 70 60
133 MHz: CL=2, TRP=1, TRFC=6, TRCD=1 22.5 75 22.5 67.5 525

When the DDRSPA controller uses CAS latency (CL) of two cycles a DDR SDRAM speed grade of -
75Z or better is needed to meet 133 MHz timing.

When mobile DDR support is enabled, two additional timing parameters can be programmed though
the Power-Saving configuration register.

Table 189Mobile DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Power-down mode to first valid commanggt TXP +1
Exit Self Refresh mode to first valid commangks) TXSR +1

CKE minimum pulse width d«g) TCKE +1

AEROFLEX GAISLER 170 GRIP

22.2.6 Extended timing fields

The DDRSPA controller can be configured with extended timing fields to provide support for
DDR333 and DDR400. These fields can be detected by checking the XTF bit in the SDCFG register.

When the extended timing fields are enabled, extra upper bits are added to increase the range of the
TRP, TRFC, TXSR and TXP fields. A new TWR field allow increasing the write recovery time. A
new TRAS field to directly control the Active to Precharge period has been added.

Table 190DDR SDRAM extended timing parameters

SDRAM timing parameter Minimum timing (clocks)
Activate to Activate () TRAS+TRCD + 2
Activate to Prechargeghs) TRAS + 6

Write recovery time () TWR+2

Table 191IDDR SDRAM extended timing example programming

DDR SDRAM settings trep |tre [IRP | tRFc |tRAS | Twr
166 MHz: CL=2, TRP=1, TRFC=9, TRCD=1, TRAS=1, TWR=1 18 60 18 72 42 18
200 MHz: CL=3, TRP=1, TRFC=11, TRCD=1, TRAS=2, TWR=1 15 55 1b 7 4Q 15

22.2.7 Refresh

The DDRSPA controller contains a refresh function that periodically issues an AUTO-REFRESH

command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh period is
calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in SDCTRL register.

22.2.8 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile DDR func-
tionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving config-
uration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode and mobile DDR is disabled, the controller introduce a delay of 200
clock cycles and a AUTO REFRESH command before any other memory access is allowed. When
mobile DDR is enabled the delay before the AUTO REFRESH command is defined by tXSR in the
Power-Saving configuration register. The minimum duration of this mode is defined by tRFC. This
mode is only available when the VHDL genemnobileis >= 1.

22.2.9 Clock Stop

In the clock stop mode, the external clock to the SDRAM is stop at a low level (DDR_CLK is low and
DDR_CLKB is high). This reduce the power consumption of the SDRAM while retaining the data. To
enable the clock stop mode, set the PMODE bits in the Power-Saving configuration register to “100”
(Clock Stop). The controller will enter clock stop mode after every memory access (when the control-
ler has been idle for 16 clock cycles), until the PMODE bits are cleared. The REFRESH command

AEROFLEX GAISLER 171 GRIP

will still be issued by the controller in this mode. This mode is only available when the VHDL generic
mobileis >= 1 and mobile DDR functionality is enabled.

22.2.10 Power-Down

When entering the power-down mode all input and output buffers, including DDR_CLK and
DDR_CLKB and excluding DDR_CKE, are deactivated. This is a more efficient power saving mode
then clock stop mode, with a grater reduction of the SDRAM'’s power consumption. All data in the
SDRAM is retained during this operation. To enable the power-down mode, set the PMODE bits in
the Power-Saving configuration register to “001” (Power-Down). The controller will enter power-
down mode after every memory access (when the controller has been idle for 16 clock cycles), until
the PMODE bits is cleared. The REFRESH command will still be issued by the controller in this
mode. When exiting this mode a delay of one or two (when tXP in the Power-Saving configuration
register is ‘1) clock cycles are added before issue any command to the memory. This mode is only
available when the VHDL genenmuobileis >= 1.

22.2.11 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared followed by the mobile SDRAM initialization
sequence. The mobile SDRAM initialization sequence can be performed by setting bit 15 in the DDR
control register. This mode is only available when the VHDL generabileis >= 1 and mobile DDR
functionality is enabled.

22.2.12 Status Read Register

The status read register (SRR) is used to read the manufacturer ID, revision ID, refresh multiplier,
width type, and density of the SDRAM. To Read the SSR a LOAD MODE REGISTER command
with BAO = 1 and BA1 = 0 must be issued followed by a READ command with the address set to 0.
This command sequence is executed then the Status Read Register is read. This register is only avail-
able when the VHDL generienobile is >= 1 and mobile DDR functionality is enabled. Only
DDR_CSBJ0] is enabled during this operation.

22.2.13 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This
functionality is only available when the VHDL generiwobile>= 1 and mobile DDR functionality is
enabled.

22.2.14 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL genenwbileis >= 1 and mobile DDR functionality

is enabled.

AEROFLEX GAISLER 172 GRIP

22.2.15 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LEMR command is issued, the PLL Reset bit as programmed in SDCFG will be used, when mobile
DDR support is enabled the DS, TCSR and PASR as programmed in Power-Saving configuration reg-
ister will be used. If the LMR command is issued, the CAS latency as programmed in the Power-Sav-
ing configuration register will be used and remaining fields are fixed: 8 word sequential burst. The
command field will be cleared after a command has been executed.

22.2.16 Clocking

The DDR controller is designed to operate with two clock domains, one for the DDR memory clock
and one for the AHB clock. The two clock domains do not have to be the same or be phase-aligned.
The DDR input clock (CLK_DDR) can be multiplied and divided by the DDR PHY to form the final
DDR clock frequency. The final DDR clock is driven on one output (CLKDDRO), which should
always be connected to the CLKDDRI input. If the AHB clock and DDR clock area generated from
the same clock source, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.

The Xilinx version of the PHY generates the internal DDR read clock using an external clock feed-
back. The feed-back should have the same delay as DDR signals to and from the DDR memories. The
feed-back should be driven by DDR_CLK_FB_OUT, and returned on DDR_CLK_FB. Most Xilinx
FPGA boards with DDR provides clock feed-backs of this sort. The supported frequencies for the Xil-
inx PHY depends on the clock-to-output delay of the DDR output registers, and the internal delay
from the DDR input registers to the read data FIFO. Virtex2 and Virtex4 can typically run at 120
MHz, while Spartan3e can run at 100 MHz.

The read data clock in the Xilinx version of the PHY is generated using a DCM to offset internal
delay of the DDR clock feed back. If the automatic DCM phase adjustment does not work due to
unsuitable pin selection, extra delay can be added through the RSKEW VHDL generic. The VHDL
generic can be between -255 and 255, and is passed directly to the PHASE_SHIFT generic of the
DCM.

The Altera version of the PHY use the DQS signals and an internal PLL to generate the DDR read
clock. No external clock feed-back is needed and the DDR_CLK_FB_OUT/DDR_CLK_FB signals
are not used. The supported frequencies for the Altera PHY are 100, 110, 120 and 130 MHz. For
Altera Cyclonelll, the read data clock is generated by the PLL. The phase shift of the read data clock
is set be the VHDL generic RSKEW in ps (e.g. a value of 2500 equals 90’ phase for a 100MHz sys-
tem).

22.2.17 Pads

The DDRSPA core has technology-specific pads inside the core. The external DDR signals should
therefore be connected directly the top-level ports, without any logic in between.

AEROFLEX GAISLER 173 GRIP

22.2.18 Registers

The DDRSPA core implements two control registers. The registers are mapped into AHB 1/O address
space defined by the AHB BARL1 of the core.

Table 192DDR controller registers

Address offset - AHB 1/O - BAR1 Register
0x00 SDRAM control register
0x04 SDRAM configuration register (read-only)
0x08 SDRAM Power-Saving configuration register
0x0C Reserved
0x10 Status Read Register (Only available when mobile DDR support is
enabled)
0x14 PHY configuration register 0 (Only available when VHDL generic
confapi = 1, TCI RTL_PHY)
0x18 PHY configuration register 1 (Only available when VHDL gener|c
confapi = 1, TCI TRL_PHY)
Table 193.SDRAM control register (SDCTRL)
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0
Refresh|tRP tRFC tRCD SDRAM SDRAM SDRAM |PR| IN |CE SDRAM refresh load value
bank size col. size command
31 SDRAM refresh. If set, the SDRAM refresh will be enabled. This register bit is read only when
Power-Saving mode is other then none.
30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile DDR support is
enabled, this bit also represent the MSB in the tRFC timing.
29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile DDR sup-
port is enabled, this field is extended with the bit 30.
26 SDRAM tRCD delay. Sets tRCD to 2 + field value clocks.
25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000"= 8
Mbyte, “001"= 16 Mbyte, “010"= 32 Mbyte “111"= 1024 Mbyte.
22:21 SDRAM column size. “00"=512, “01"=1024, “10"=2048, “11"=4096
20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010"=PRE-
CHARGE, “100"=AUTO-REFRESH, “110"=LOAD-COMMAND-REGISTER, “111"=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.
17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.
16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared
when initialisation is completed. This register bit is read only when Power-Saving mode is other then
none.
15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’
for correct operation. This register bit is read only when Power-Saving mode is other then none.
14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =

((reload value) + 1) / DDRCLOCK

Table 194. SDRAM configuration register (SDCFG)

31 21 20 19 16 15 14 12 11 0
Reserved ‘ XTF ‘ CONFAPI ‘MD‘ Data width ‘ DDR Clock frequency
31:21 Reserved
20 Extended timing fields for DDR400 available
19: 16 Register API configuration.

0 = Standard register API.
1 =TCI TSMC90 PHY register API.

AEROFLEX GAISLER 174 GRIP

Table 194. SDRAM configuration register (SDCFG)

15 Mobile DDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)
14:12 DDR data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)
11: 0 Frequency of the (external) DDR clock (read-only)

Table 195SDRAM Power-Saving configuration register

31 30 29 28 27 26 25 24 23 20 19 18 16 15 12 11 10 9 8 7 5 4 3 2 0
‘ME‘ CL‘ TRAS ‘ XXS* | xXP ‘ tC ‘ tXSR ‘tXP‘PMODE‘ Reserved ‘ TWR ‘ XTRP ‘XTRFC ‘ DS ‘ TCSR ‘ PASR ‘
31 Mobile DDR functionality enabled. ‘1’ = Enabled (support for Mobile DDR SDRAM), ‘0’ = disa-
bled (support for standard DDR SDRAM)
30 CAS latency; ‘0'=>CL=2,1"=>CL=3
29: 28 SDRAM extended tRAS timing, tRAS will be equal to field-value + 6 system clocks. (Reserved
when extended timing fields are disabled)
27: 26 SDRAM extended tXSR field, extend tXSR with field-value * 16 clocks (Reserved when extended
timing fields are disabled)
25 SDRAM extended tXP field, extend tXP with 2*field-value clocks (Reserved when extended timing
fields are disabled)
24 SDRAM tCKE timing, tCKE will be equal to 1 or 2 clocks (0/1). (Read only when Mobile DDR
support is disabled).
23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
DDR support is disabled).
19 SDRAM tXP timing. tXP will be equal to 2 or 3 system clocks (0/1). (Read only when Mobile DDR
support is disabled).
18: 16 Power-Saving mode (Read only when Mobile DDR support is disabled).
“000": none

“001": Power-Down (PD)
“010": Self-Refresh (SR)
“100": Clock-Stop (CKS)
“101": Deep Power-Down (DPD)

15:12 Reserved

11 SDRAM extended tWR timing, tWR will be equal to field-value + 2 clocks (Reserved when
extended timing fields are disabled)

10 SDRAM extended tRP timing, extend tRP with field-value * 2 clocks

9. 8 SDRAM extended tRFC timing, extend tRFC with field-value * 8 clocks

7:5 Selectable output drive strength (Read only when Mobile DDR support is disabled).

“000”: Full
“001”: One-half

“010”": One-quarter
“011": Three-quarter

4:3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile DDR support is dis-
abled).
“00": 702C
“01": 452C
“10™ 152C
“11™: 852C
2:0 Partial Array Self Refresh (Read only when Mobile DDR support is disabled).
“000”": Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010": Quarter array (Bank 0)
“101": One-eighth array (Bank 0 with row MSB = 0)
“110": One-sixteenth array (Bank 0 with row MSB = 00)

Table 196. Status Read Register
31 16 15 0
SRR_16 \ SRR

AEROFLEX GAISLER 175 GRIP

Table 196. Status Read Register
31: 16 Status Read Register when 16-bit DDR memory is used (read only)

15:0 Status Read Register when 32/64-bit DDR memory is used (read only)

Table 197.PHY configuration register 0 (TCI RTL_PHY only)

31 30 29 28 27 22 21 16 15 8 7 0
‘ R1 ‘ RO ‘ P1 ‘ PO ‘ TSTCTRL1 ‘ TSTCTRLO ‘ MDAJ_DLL1 ‘ MDAJ_DLLO

31 Reset DLL 1 (active high)

30 Reset DLL 1 (active high)

29 Power Down DLL 1 (active high)

28 Power Down DLL 1 (active high)

27: 22 Test control DLL 1

tstclkin(1) is connected to SIGI_1 on DDL 1 when bit 26:25 is NOT equal to “00*.
tstclkin(0) is connected to SIGI_0 on DDL 1 when bit 23:22 is NOT equal to “00*“.

21: 16 Test control DLL 0
15:8 Master delay adjustment input DLL 1
7. 0 Master delay adjustment input DLL 0

Table 198.PHY configuration register 1 (TCI RTL_PHY only)

31 24 23 16 15 8 7 0
ADJ_RSYNC \ ADJ_90 \ ADJ_DQS1 \ ADJ_DQS0
31:24 Slave delay adjustment input for resync clock (Slave 1 DLL 1)
23:16 Slave delay adjustment input for 90’ clock (Slave 0 DLL 1)
15: 8 Slave delay adjustment input for DQS 1 (Slave 1 DLL 0)
7.0 Slave delay adjustment input for DQS 0 (Slave 0 DLL 0)

22.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x025. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 176 GRIP
22.4 Configuration options
Table 199 shows the configuration options of the core (VHDL generics)
Table 199Configuration options
Generic Function Allowed range Default
fabtech PHY technology selection virtex2, virtex4, virtex2
spartan3e, altera
memtech Technology selection for DDR FIFOs infered, virtex2, virtexhfered
spartan3e, altera
hindex AHB slave index 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BARO defining SDRAM area. 0 - 16#FFF# 16#000#
Default is 0XFO000000 - OXFFFFFFFF.
hmask MASK field of the AHB BARO defining SDRAM areg. 0 - 16#FFF# 16#F00#,
ioaddr ADDR field of the AHB BAR1 defining I/O address | O - 16#FFF# 16#000#
space where DDR control register is mapped.
iomask MASK field of the AHB BARL1 defining I/O address | O - 16#FFF# 16#FFF#
space
ddrbits Data bus width of external DDR memory 16, 32, 64 16
MHz DDR clock input frequency in MHz. 10 - 200 100
clkmul, clkdiv The DDR input clock is multiplied with the clkmul 2-32 2
generic and divided with clkdiv to create the final DDR
clock
rstdel Clock reset delay in micro-seconds. 1-1023 200
col Default number of column address bits 9-12 9
Mbyte Default memory chip select bank size in Mbyte 8 -1024 16
pwron Enable SDRAM at power-on initialization 0-1 0
oepol Polarity of bdrive and vbdrive signals. O=active low, [0 -1 0
1=active high
ahbfreq Frequency in MHz of the AHB clock domain 1-1023 50
rskew Additional read data clock skew -255 - 255. 0
Read data clock phase for Altera Cyclonelll 0-9999
mobile Enable Mobile DDR support 0-3 0
0: Mobile DDR support disabled
1: Mobile DDR support enabled but not default
2: Mobile DDR support enabled by default
3: Mobile DDR support only (nho regular DDR support)
confapi Set the PHY configuration register API:
0 = standard register API (conf0 and confl disabled)
1 =TCI RTL_PHY register API.
conf0 Reset value for PHY register 0, conf[31:0] 0 - 16#FFFFFFFF# 0
confl Reset value for PHY registerl, conf[63:32] 0 - 16#FFFFFFFF# 0
regoutput Enables registers on signal going from controllerto PHY 0-1 0
ddr400 Enables extended timing fields for DDR400 support 0-1 1
scantest Enable scan test support 0-1 0
phyiconf PHY implementation configuration. This generic set$ O - 16#FFFFFFFF# 0
technology specific implementation options for the DDR
PHY. Meaning of values depend on the setting of VHDL
genericfabtech
For fabtech:s virtex4, virtex5, virtex6: phyiconf selects
type of pads used for DDR clock pairs. 0 instantiate§ a
differiental pad and 1 instantiates two outpads.

AEROFLEX GAISLER 177 GRIP

22.5

Implementation

22.5.1 Technology mapping

The core has two technology mapping VHDL genericemtechand padtech The VHDL generic
memtectcontrols the technology used for memory cell implementation. The VHDL gepadtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

22.5.2 RAM usage

The FIFOs in the core are implemented with gymcram_2gwith separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends on the DDR data width, set byditidts VHDL generic.

Table 200RAM usage

RAM dimension | Number of RAMs Number of RAMs Number of RAMs
(depth x width) | (DDR data width 64) (DDR data width 32) (DDR data width 16)

4x128 1
4 x 32 4
5x 64
5x32 2
6 x 32 2

AEROFLEX GAISLER

22.6 Signal descriptions

178

Table 201 shows the interface signals of the core (VHDL ports).

Table 201Signal descriptions

GRIP

Signal name Type Function Active
RST_DDR Input Reset input for DDR clock domain Low
RST_AHB Input Reset input for AHB clock domain Low
CLK_DDR Input DDR input Clock -
CLK_AHB Input AHB clock -
LOCK Output DDR clock generator locked High
CLKDDRO Internal DDR clock output after clock multiplication
CLKDDRI Clock input for the internal DDR clock domain.
Must be connected to CLKDDRO.
AHBSI Input AHB slave input signals -
AHBSO Output AHB slave output signals -
DDR_CLK[2:0] Output DDR memory clocks (positive) High
DDR_CLKB[2:0] Output DDR memory clocks (negative) Low
DDR_CLK_FB _OUT Output Same a DDR_CLK, but used to drive an external-
clock feedback.
DDR_CLK_FB Input Clock input for the DDR clock feed-back -
DDR_CKE[1:0] Output DDR memory clock enable High
DDR_CSB[1:0] Output DDR memory chip select Low
DDR_WEB Output DDR memory write enable Low
DDR_RASB Output DDR memory row address strobe Low
DDR_CASB Output DDR memory column address strobe Low
DDR_DM[DDRBITS/8-1:0] Output DDR memory data mask Low
DDR_DQS[DDRBITS/8-1:0] Bidir DDR memory data strobe Low
DDR_ADI[13:0] Output DDR memory address bus Low
DDR_BA[1:0] Output DDR memory bank address Low
DDR_DQ[DDRBITS-1:0] BiDir DDR memory data bus -
1) see GRLIB IP Library User's Manual 2) Polarity selected with the oepol generic
22.7 Library dependencies
Table 202 shows libraries used when instantiating the core (VHDL libraries).
Table 202.ibrary dependencies
Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, componen
laration

dec-

AEROFLEX GAISLER 179

22.8 Component declaration

component ddrspa

generic (
fabtech : integer := 0;
memtech : integer := 0;
hindex : integer := 0;
haddr :integer :=0;
hmask : integer := 16#f00#;
ioaddr : integer := 16#000%#;
iomask : integer := 16#fff#;
MHz :integer := 100;
clkmul :integer :=2;
clkdiv : integer := 2;
col :integer:=9;
Mbyte :integer := 16;
rstdel :integer := 200;
pwron :integer :=0;
oepol :integer :=0;
ddrbits : integer := 16;
ahbfreq : integer := 50

);

port (
rst_ddr : in std_ulogic;
rst_ahb : in std_ulogic;
clk_ddr : in std_ulogic;
clk_ahb :in std_ulogic;
lock : out std_ulogic;-- DCM locked
clkddro : out std_ulogic;-- DCM locked
clkddri : in std_ulogic;
ahbsi :in ahb_slv_in_type;
ahbso :outahb_slv_out_type;
ddr_clk : out std_logic_vector(2 downto 0);
ddr_clkb: out std_logic_vector(2 downto 0);
ddr_clk_fb_out : out std_logic;
ddr_clk_fb :in std_logic;
ddr_cke :outstd_logic_vector(1 downto 0);
ddr_csb :outstd_logic_vector(1 downto 0);

);

ddr_web : out std_ulogic; -- ddr write enable
ddr_rasb : out std_ulogic; -- ddr ras

ddr_casb : out std_ulogic; -- ddr cas

ddr_dm :out std_logic_vector (ddrbits/8-1 downto 0); -- ddr dm

ddr_dgs :inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dgs
ddr_ad :outstd_logic_vector (13 downto 0); -- ddr address
ddr_ba :outstd_logic_vector (1 downto 0); -- ddr bank address
ddr_dq rinout std_logic_vector (ddrbits-1 downto 0) -- ddr data

end component;

GRIP

AEROFLEX GAISLER 180 GRIP

22.9 Instantiation

This examples shows how the core can be instantiated.

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - Ox7FFFFFFF. The SDRAM
registers are mapped into AHB 1/O space on address (AHB I/O base address + 0x100).

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

entity ddr_Interface is
port (ddr_clk : out std_logic_vector(2 downto 0);
ddr_clkb : out std_logic_vector(2 downto 0);
ddr_clk_fb :in std_logic;
ddr_clk_fb_out : out std_logic;
ddr_cke :outstd_logic_vector(1 downto 0);
ddr_csb : outstd_logic_vector(1 downto 0);

ddr_web : out std_ulogic; -- ddr write enable
ddr_rasb : out std_ulogic; -- ddr ras
ddr_casb : out std_ulogic; -- ddr cas

ddr_dm :out std_logic_vector (7 downto 0); -- ddr dm

ddr_dgs :inout std_logic_vector (7 downto 0); -- ddr dgs

ddr_ad :outstd_logic_vector (13 downto 0); -- ddr address
ddr_ba :outstd_logic_vector (1 downto 0); -- ddr bank address
ddr_dq :inout std_logic_vector (63 downto 0); -- ddr data

);

end;
architecture rtl of mctrl_ex is

-- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock : std_ulogic;

begin

-- DDR controller

ddrc : ddrspa generic map (fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,

pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64)

port map (

rstneg, rstn, Iclk, clkm, lock, clkml, clkml, ahbsi, ahbso(4),

ddr_clk, ddr_clkb, ddr_clk_fb_out, ddr_clk_fb,

ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,

ddr_dm, ddr_dgs, ddr_adl, ddr_ba, ddr_dq);

AEROFLEX GAISLER 181 GRIP

23

23.1

DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller

Overview

DDR2SPA is a DDR2 SDRAM controller with AMBA AHB back-end. The controller can interface
16-, 32- or 64-bit wide DDR2 memory with one or two chip selects. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR2 SDRAM access.
The DDR2 controller is programmed by writing to configuration registers mapped located in AHB |/
O address space.

Internally, DDR2SPA consists of a ABH/DDR2 controller and a technology specific DDR2 PHY.
Currently supported technologies for the PHY is Xilinx Virtex4 and Virtex5 and Altera Stratixlll. The
modular design of DDR2SPA allows to add support for other target technologies in a simple manner.
The DDR2SPA is used in the following GRLIB template desigasn3-xilinx-mlI5xx, leon3-altera-
ep3sl150

r— - - - - - - - - - - - - — — — il
ArB | DDR2SPA |
I
: DDR CLOCK | I
DDR2 .
emory
CLK !
| CLK |4 CLK CLKN ' Gtk
| SDCSN[1:0] CSN CSN | CSN
| | AHB SLAVE SDRASN RAS DDR2 RAS RAS
| SDCASN CAS CAS | CAS
SDWEN WE PHY She ! WE
| SDDQM[15:0] DQM DQM ! DQM
SDCKE CKE CKE ! CKE
| . ADDR[13:0] i ADDR]13:0]
ADDRESSJ[16:2] BA[1:0] BA[1:0]
| DATA[127:0] |« DQ[63:0] |4 I DQ[63:0]
CALI I DQS[7:0] [« DQS[7:0]
| » DQSN[7:0] |« I DQSN[7:0] —
Lo o

Figure 69. DDR2SPA Memory controller connected to AMBA bus and DDR2 SDRAM

23.2 Operation

23.2.1 General

Single DDR2 SDRAM chips are typically 4,8 or 16 data bits wide. By putting multiple identical chips
side by side, wider SDRAM memory banks can be built. Since the command signals are common for
all chips, the memories behave as one single wide memory chip.

This memory controller supports one or two (identical) such 16/32/64-bit wide DDR2 SDRAM mem-
ory banks. The size of the memory can be programmed in binary steps between 8 Mbyte and 1024
Mbyte, or between 32 Mbyte and 4096 Mbyte. The DDR data width is set by the DDRBITS generic,
and will affect the width of DM, DQS and DQ signals. The DDR data width does not change the
behavior of the AHB interface, except for data latency.

23.2.2 Data transfers

An AHB read or write access to the controller will cause a corresponding access cycle to the external
DDR2 RAM. The cycle is started by performing an ACTIVATE command to the desired bank and
row, followed by a sequence of READ or WRITE commands (the count depending on memory width
and burst length setting). After the sequence, a PRECHARGE command is performed to deactivate
the SDRAM bank.

AEROFLEX GAISLER 182 GRIP

All access types are supported, but only incremental bursts of 32 bit width and incremental bursts of
maximum width (if wider than 32) are handled efficiently. All other bursts are handled as single-
accesses. For maximum throughput, incremental bursts of full AHB width with both alignment and
length corresponding to the burstlen generic should be performed.

The maximum supported access size can be limited by using the ahbbits generic, which is set to the
full AHB bus size by default. Accesses larger than this size are not supported.

The memory controller's FIFO has room for two write bursts which improves throughput, since the
second write can be written into the FIFO while the first write is being written to the DDR memory.

In systems with high DDR clock frequencies, the controller may have to insert wait states for the min-
imum activate-to-precharge timgy{{s) to expire before performing the precharge command. If a new
AHB access to the same memory row is performed during this time, the controller will perform the
access in the same access cycle.

23.2.3 Initialization

If the pw on VHDL generic is 1, then the DDR2 controller will automatically on start-up perform the
DDR?2 initialization sequence as described in the JEDEC DDR2 standard. The VHDL geswrics
andMbyte can be used to also set the correct address decoding after reset. In this case, no further
software initialization is heeded except for enabling the auto-refresh function. If power-on initializa-
tion is not enabled, the DDR?2 initialization can be started at a later stage by setting bit 16 in the DDR2
control register DDR2CFGL1.

23.2.4 Big memory support

The total memory size for each chip select is set through the 3-bit wide SDRAM banks size field,
which can be set in binary steps between 8 Mbyte and 1024 Mbyte. To support setting even larger
memory sizes of 2048 and 4096 Mbyte, a fourth bit has been added to this configuration field.

Only 8 different sizes are supported by the controller, either the lower range of 8 MB - 1 GB, or the
higher range of 32 MB - 4 GB. Which range is determined by the bigmem generic, and can be read by
software through the DDR2CFG2 register.

23.2.5 Configurable DDR2 SDRAM timing parameters

To provide optimum access cycles for different DDR2 devices (and at different frequencies), six tim-
ing parameters can be programmed through the memory configuration registers: TRCD, TCL, TRTP,
TWR, TRP and TRFC. For faster memories (DDR2-533 and higher), the TRAS setting also needs to
be configured to satisfy timing. The value of these fields affects the DDR2RAM timing as described
in table 203. Note that if the CAS latency setting is changed after initialization, this change needs also
to be programmed into the memory chips by executing the Load Mode Register command.

Table 203DDR2 SDRAM programmable minimum timing parameters

DDR2 SDRAM timing parameter Minimum timing (clocks)
CAS latency, CL TCL+3

Activate to read/write commandsp) TRCD + 2

Read to prechargefp) TRTP + 2

Write recovery time ({r) TWR-2

Precharge to activatex) TRP +2

Activate to prechargeghs) TRAS +1

Auto-refresh command periogkfio) TRFC + 3

AEROFLEX GAISLER 183 GRIP

If TRCD, TCL, TRTP, TWR, TRP, TRFC and TRAS are programmed such that the DDR2 specifica-
tions are full filled, the remaining SDRAM timing parameters will also be met. The table below shows
typical settings for 130, 200 and 400 MHz operation and the resulting DDR2 SDRAM timing (in ns):

Table 20dDDR2 SDRAM example programming

DDR2 SDRAM settings CL |trep |tre | trP | trRFc | tRAS

130 MHz: TCL=0,TRCD=0,TRTP=0,TRP=0,TRAS=0,TRFC=7 3 15 76 15 76 61
200 MHz: TCL=0,TRCD=1,TRTP=0,TRP=1,TRAS=1,TRFC=13 3 15 6(15 80D 45
400 MHz: TCL=2,TRCD=4,TRTP=1,TRP=4,TRAS=10,TRFC=29 b 15 6(|) 15 8P 45

23.2.6 Refresh

The DDR2SPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the DDR2CFG1 register. Depending on SDRAM type,
the required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh
period is calculated as (reload value+l)/sysclk. The refresh function is enabled by bit 31 in
DDR2CFGL1 register.

23.2.7 DDR2 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG1: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LMR command is issued, the PLL Reset bit as programmed in DDR2CFG1, CAS Latency setting as
programmed in DDR2CFG4 and the WR setting from DDR2CFG3 will be used, remaining fields are
fixed: 4 word sequential burst. If the LEMR command is issued, the OCD bits will be used as pro-
grammed in the DDR2CFGL1 register, and all other bits are set to zero. The command field will be
cleared after a command has been executed.

23.2.8 Registered SDRAM

Registered memory modules (RDIMM:s) have one cycle extra latency on the control signals due to
the external register. They can be supported with this core by setting the REG bit in the DDR2CFG4
register.

This should not be confused with Fully-Buffered DDR2 memory, which uses a different protocol and
is not supported by this controller.

23.2.9 Clocking

The DDR2 controller operates in two separate clock domains, one domain synchronous to the DDR2
memory and one domain synchronous to the AHB bus. The two clock domains do not have to be the
same or be phase-aligned.

The clock for the DDR2 memory domain is generated from the controller's ddr_clk input via a tech-
nology-specific PLL component. The multiplication and division factor can be selected via the clk-
mul/clkdiv configuration options. The final DDR2 clock is driven on one output (CLKDDRO), which
should always be connected to the CLKDDRI input.

The ddr_rstinput asynchronously resets the PHY layer and the built-in PLL. The ahb_rst input should
be reset simultaneously and then kept in reset until the PLL has locked (indicated by the lock output).

If the AHB and DDR2 clocks are based on the same source clock and are kept phase-aligned by the
PLL, the clock domain transition is synchronous to the least common multiple of the two clock fre-

guencies. In this case, the nosync configuration option can be used to remove the synchronization and
handshaking between the two clock domains, which saves a few cycles of memory access latency. If

AEROFLEX GAISLER 184 GRIP

23.3

nosync is not set in this case, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.

The supported DDR2 frequencies depends on the clock-to-output delay of the DDR output registers,
and the internal delay from the DDR input registers to the read data FIFO. Virtex5 can typically run at
200 MHz.

When reading data, the data bus (DQ) signals should ideally be sampled 1/4 cycle after each data
strobe (DQS) edge. How this is achieved is technology-specific as described in the following sections.

23.2.10 Read data clock calibration on Xilinx Virtex

On Xilinx Virtex4/5 the data signal inputs are delayed via the I/O pad IDELAY feature to get the
required 1/4 cycle shift. The delay of each byte lane is tuned independently between 0-63 tap delays,
each tap giving 78 ps delay, and the initial value on startup is set via the generics ddelayb[7:0].

The delays can be tuned at runtime by using the DDR2CFG3 control register. There are two bits in the
control register for each byte. One bit determines if the delay should be increased or decreased and the
other bit is set to perform the update. Setting bit 31 in the DDR2CFG3 register resets the delays to the
initial value.

To increase the calibration range, the controller can add additional read latency cycles. The number of
additional read latency cycles is set by the RD bits in the DDR2CFG3 register.

23.2.11 Read data clock calibration on Altera Stratix

On Altera Stratixlll, the technology’s delay chain feature is used to delay bytes of input data in a sim-
ilar fashion as the Virtex case above. The delay of each byte lane is tuned between 0-15 tap delays,
each tap giving 50 ps delay, and the initial value on startup is 0.

The delays are tuned at runtime using the DDR2CFG3 register, and extra read cycles can be added
using DDR2CFG3, the same way as described for Virtex.

The data sampling clock can also be skewed on Stratix to increase the calibration range. This is done
writing the PLL_SKEW bits in the DDR2CFG3 register.

23.2.12 Read data clock calibration on Xilinx Spartan-3

On Spartan3, a clock loop is utilized for sampling of incoming data. The DDR_CLK_FB_OUT port
should therefore be connected to a signal path of equal length as the DDR_CLK + DDR_DQS signal
path. The other end of the signal path is to be connected to the DDR_CLK_FB port. The fed back
clock can then be skewed for alignment with incoming data using the rskew generic. The rskew
generic can be set between +/-255 resulting in a linear +/-360 degree change of the clock skew. Bits
29 and 30 in the DDR2CFG3 register can be used for altering the skew at runtime.

23.2.13 Pads

The DDR2SPA core has technology-specific pads inside the core. The external DDR2 signals should
therefore be connected directly the top-level ports, without any logic in between.

Fault-tolerant operation (preliminary)

23.3.1 Overview

The memory controller can be configured to support bit-error tolerant operation by setting the ft
generic (not supported in all versions of GRLIB). In this mode, the DDR data bus is widened and the
extra bits are used to store 16 or 32 checkbits corresponding to each 64 bit data word. The variant to
be used can be configured at run-time depending on the connected DDR2 data width and the desired
level of fault tolerance.

AEROFLEX GAISLER 185 GRIP

When writing, the controller generates the check bits and stores them along with the data. When read-
ing, the controller will transparently correct any correctable bit errors and provide the corrected data
on the AHB bus. However, the corrected bits are not written back to the memory so external scrubbing
is necessary to avoid uncorrectable errors accumulating over time.

An extra corrected error output signal is asserted when a correctable read error occurs, at the same
cycle as the corrected data is delivered. This can be connected to an interrupt input or to a memory

scrubber. In case of uncorrectable error, this is signaled by giving an AHB error response to the mas-

ter.

23.3.2 Memory setup

In order to support error-correction, the DDR2 data bus needs to be expanded. The different possible
physical configurations are tabulated below. For software, there is no noticeable difference between
these configurations.

If the hardware is built for the wider code, it is still possible to leave the upper half of the checkbit
data bus unconnected and use it for code B.

Table 205Configurations of FT DDR2 memory banks

Interleaving
Data bits (DDRBITS) | Checkbits (FTBITS) | modes supported
64 32 Aand B
64 16 B only
32 16 Aand B
32 8 B only
16 8 A only

23.3.3 Error-correction properties

The memory controller uses an interleaved error correcting code which works on nibble (4-bit) units
of data. The codec can be used in two interleaving modes, mode A and mode B.

In mode A, the basic code has 16 data bits, 8 check bits and can correct one nibble error. This code is
interleaved by 4 using the pattern in table 206 to create a code with 64 data bits and 32 check bits.

This code can tolerate one nibble error in each of the A,B,C,D groups shown below. This means that
we can correct 100% of single errors in two adjacent nibbles, or in any 8/16-bit wide data bus lane,
that would correspond to a physical DDR2 chip. The code can also correct 18/23=78% of all possible
random two-nibble errors.

This interleaving pattern was designed to also provide good protection in case of reduced (32/16-bit)
DDR bus width with the same data-checkbit relation, so software will see the exact same checkbits on
diagnostic reads.

In mode B, the basic code has 32 data bits, 8 check bits and can correct one nibble error. This code is
then interleaved by a factor of two to create a code with 64 data bits and 16 check bits.

Note that when configured for a 16-bit wide DDR data bus, code A must be used to get protection
from multi-column errors since each data bus nibbles holds four code word nibbles.

Table 206 Mode Ax4 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 2724 2320 19:116 15:12 11:8 74 3.0

Lel[of[afe]Jafe]c[op]e[a]of[c|]of[c]e]al]
127:120 119:112 111:104 103:96 95:88 87:80 79:72 71:64
| ch | Dep | Ach | Beb | ch | Dep | Ach | Bep |

AEROFLEX GAISLER 186 GRIP

Table 207 Mode Bx2 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19116 15:12 11:8 74 3.0
LAl e[afe]afe]af[e]e[a]e[a]e[a]se]al]
95:88 87:80 79:72 71.64
| Acb | Bcb | Acb | Bcb |

23.3.4 Data transfers

The read case behaves the same way as the non-FT counterpart, except a few cycles extra are needed
for error detection and correction. There is no extra time penalty in the case data is corrected com-
pared to the error-free case.

Only writes of 64 bit width or higher will translate directly into write cycles to the DDR memory.
Other types of write accesses will generate a read-modify-write cycle in order to correctly update the
check-bits. In the special case where an uncorrectable error is detected while performing the RMW
cycle, the write is aborted and the incorrect checkbits are left unchanged so they will be detected upon
the next read.

Only bursts of maximum AHB width is supported, other bursts will be treated as single accesses.
The write FIFO only has room for one write (single or burst).

23.3.5 DDRZ2 behavior

The behavior over the DDR?2 interface is largely unchanged, the same timing parameters and setup
applies as for the non-FT case. The checkbit data and data-mask signals follow the same timing as the
corresponding signals for regular data.

23.3.6 Configuration

Whether the memory controller is the FT or the non-FT version can be detected by looking at the FTV
bit in the DDR2CFG2 register.

Checkbits are always written out to memory when writing even if EDACEN is disabled. Which type
of code, A or B, that is used for both read and write is controlled by the CODE field in the
DDR2FTCFG register.

Code checking on read is disabled on reset and is enabled by setting the EDACEN bit in the
DDR2FTCFG register. Before enabling this, the code to be used should be set in the CODE field and
the memory contents should be (re-)initialized.

23.3.7 Diagnostic checkbit access

The checkbits and data can be accessed directly for testing and fault injection. This is done by writing
the address of into the DDR2FTDA register. The check-bits and data can then be read and written via
the DDR2FTDC and DDR2FTDD register. Note that for checkbits the DDR2FTDA address is 64-bit
aligned, while for data it is 32-bit aligned.

After the diagnostic data register has been read, the FT control register bits 31:19 can be read out to
see if there were any correctable or uncorrectable errors detected, and where the correctable errors
were located. For the 64 databit wide version, there is one bit per byte lane describing whether a cor-
rectable error occurred.

23.3.8 Code boundary

The code boundary feature allows you to gradually switch the memory from one interleaving mode to
the other and regenerate the checkbits without stopping normal operation. This can be used when
recovering from memory faults, as explained further below.

AEROFLEX GAISLER 187 GRIP

If the boundary address enable (BAEN) control bit is set, the core will look at the address of each
access, and use the interleaving mode selected in the CODE field for memory accesses above or equal
to the boundary address, and the opposite code for memory accesses below to the boundary address.

If the boundary address update (BAUPD) control bit is also set, the core will shift the boundary
upwards whenever the the address directly above the boundary is written to. Since the written data is
now below the boundary, it will be written using the opposite code. The write can be done with any
size supported by the controller.

23.3.9 Data muxing

When code B is used instead of code A, the upper half of the checkbits are unused. The controller
supports switching in this part of the data bus to replace another faulty part of the bus. To do this, one
sets the DATAMUX field to a value between 1-4 to replace a quarter of the data bus, or to 5 to replace
the active checkbit half.

23.3.10 Memory fault recovery

The above features are designed to, when combined and integrated correctly, make the system cabable
to deal with a permanent fault in an external memory chip.

A basic sequence of events is as follows:
1. The system is running correctly with EDAC enabled and the larger code A is used.

2. A memory chip gets a fault and delivers incorrect data. The DDR2 controller keeps delivering
error-free data but reports a correctable error on every read access.

3. Alogging device (such as the memory scrubber core) registers the high frequency of correctable
errors and signals an interrupt.

4. The CPU performs a probe using the DDR2 FT diagnostic registers to confirm that the error is
permanent and on which physical lane the error is.

5. After determining that a permanent fault has occurred, the CPU reconfigures the FTDDR2 con-
troller as follows (all configuration register fields changed with a single register write):

The data muxing control field is set so the top checkbit half replaces the failed part of the data
bus.

The code boundary register is set to the lowest memory address.
The boundary address enable and boundary address update enable bits are set.
The mask correctable error bit is set

6. The memory data and checkbits are now regenerated using locked read-write cycles to use the
smaller code and replace the broken data with the upper half of the checkbit bus. This can be done in
hardware using an IP core, such as the AHB memory scrubber, or by some other means depending on
system design.

7. After the whole memory has been regenerated, the CPU disables the code boundary, changes the
code selection field to code B, and unsets the mask correctable error bit.

After this sequence, the system is now again fully operational, but running with the smaller code and
replacement chip and can again recover from any single-nibble error. Note that during this sequence,
it is possible for the system to operate and other masters can both read and write to memory while the
regeneration is ongoing.

AEROFLEX GAISLER 188 GRIP

23.4 Registers

The DDR2SPA core implements between 5 and 12 control registers, depending on the FT generic and
target technology. The registers are mapped into AHB 1/O address space defined by the AHB BAR1
of the core. Only 32-bit single-accesses are supported to the registers.

Older revisions of the core only have registers DDRCFG1-4, which are aliased on the following
addresses. For that reason, check the REG5 bit in DDR2CFG2 before using these bits for backward
compatibility.

For backward compatibility, some of the bits in DDR2CFG5 are mirrored in other registers. Writing
to these bits will affect the contents of DDR2CFG5 and vice versa.

Table 208DDR2 controller registers

Address offset - AHB 1/O - BAR1 Register

0x00 DDR2 SDRAM control register (DDR2CFG1)

0x04 DDR2 SDRAM configuration register (DDR2CFG2)

0x08 DDR2 SDRAM control register (DDR2CFG3)

0x0C DDR2 SDRAM control register (DDR2CFG4)

0x10* DDR2 SDRAM control register (DDR2CFG5)

0x14* Reserved

0x18 DDR2 Technology specific register (DDR2TSR1)

0x1C* DDR2 Technology specific register (DDR2TSR2)

0x20 DDR2 FT Configuration Register (FT only) (DDR2FTCFG)
0x24 DDR2 FT Diagnostic Address register (FT only) (DDR2FTDA)
0x28 DDR2 FT Diagnostic Checkbit register (FT only) (DDR2FTDC)
0x2C DDR2 FT Diagnostic Data register (FT only) (DDR2FTDD)
0x30 DDR2 FT Code Boundary Register (FT only) (DDR2FTBND)

* Older DDR2SPA versions contain aliases of DDR2CFG1-4 at these addresses. Therefore, check bit 15 of DDR2CFG2
before using these registers.

AEROFLEX GAISLER

189 GRIP

Table 209.DDR2 SRAM control register 1 (DDR2CFG1)

31 30 29 28 27 26 25 23 22 21 20 18 17 16 15 14 0
Refresh| OCD | EMR bank |(TRCD)| SDRAM bank |SDRAMcol.| SDRAM |PR|IN |CE SDRAM refresh load value
size 3 size2:0 size command
31 SDRAM refresh. If set, the SDRAM refresh will be enabled.
30 OCD operation
29: 28 Selects Extended mode register (1,2,3)
27 SDRAM banks size bit 3. By enabling this bit the memory size can be set to “1000” = 2048 Mbyte
and “1001” = 4096 Mbyte. See the section on big-memory support.
26 Lowest bit of TRCD field in DDR2CFG4, for backward compatibility
25:23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000"= 8
Mbyte, “001"= 16 Mbyte, “010"= 32 Mbyte.... “111"= 1024 Mbyte.
22:21 SDRAM column size. “00"=512, “01"=1024, “10"=2048, “11"=4096
20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010"=PRE-
CHARGE, “100"=AUTO-REFRESH, “110"=LOAD-COMMAND-REGISTER, “111"=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.
17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.
16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared
when initialisation is completed.
15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’
for correct operation.
14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / DDRCLOCK
Table 210.DDR2 SDRAM configuration register 2 (DDR2CFG2) (read-only)
31 26 25 18 17 16 15 14 12 11 0
RESERVED \ PHY Tech \ BIG \ FTV \ REGS5 \ Data width \ DDR Clock frequency
31: 26 Reserved
25:18 PHY technology identifier (read-only), value 0 is for generic/unknown
17 Big memory support, if ‘1’ then memory can be set between 32 Mbyte and 4 Gbyte, if ‘0’ then mem-
ory size can be set between 8 Mbyte and 1 Gbyte (read-only).
16 Reads ‘1’ if the controller is fault-tolerant version and EDAC registers exist (read-only)
15 Reads ‘1’ if DDR2CFGS5 register exists (read-only)
14:12 SDRAM data width: “001” = 16 bits, “010” = 32 bhits, “011” = 64 bits (read-only)
11: 0 Frequency of the (external) DDR clock (read-only)
Table 211 DDR2 SDRAM configuration register 3 (DDR2CFG3)
31 30 29 28 27 23 22 18 17 16 15 8 7 0
‘ ‘ PLL ‘ (TRP) ‘ tWR ‘ (TRFC) ‘ RD ‘ inc/dec delay ‘ Update delay
31 Reset byte delay
30: 29 PLL_SKEW
Bit 29: Update clock phase
Bit 30: 1 = Inc / 0 = Dec clock phase
28 Lowest bit of DDR2CFG4 TRP field for backward compatibility
27:23 SDRAM write recovery time. tWR will be equal to field value - 2DDR clock cycles
22:18 Lower 5 bits of DDR2CFG4 TRFC field for backward compatibility.
17: 16 Number of added read delay cycles, default = 1
15: 8 Set to ‘1’ to increment byte delay, set to ‘0’ to decrement delay
7. 0 Set to ‘1’ to update byte delay

AEROFLEX GAISLER 190 GRIP

Table 212.DDR2 SDRAM configuration register 4 (DDR2CFG4)

31 28 27 24 23 22 21 20 14 13 12 11 10 9 8 7 0
inc/dec CB delay |Update CB delay‘ RDH \ REG \ RESERVED \ TRTP \ RES \ TCL \ B8‘ DQS gating offset
31:28 Set to ‘1’ to increment checkbits byte delay, set to ‘0’ to decrement delay
27:24 Set to ‘1’ to update checkbits byte delay
23:22 Read delay high bits, setting this field to N adds 4 x N read delay cycles
21 Registered memory (1 cycle extra latency on control signals)
20: 14 Reserved
13 SDRAM read-to-precharge timing, tRTP will be equal to field value + 2 DDR-clock cycles.
12:11 Reserved
10: 9 SDRAM CAS latency timing. CL will be equal to field value + 3 DDR-clock cycles.
Note: You must reprogram the memory’s MR register after changing this value
8 Enables address generation for DDR2 chips with eight banks
1=addressess generation for eight banks O=address generation for four banks
7. 0 Number of half clock cycles for which the DQS input signal will be active after a read command is
given. After this time the DQS signal will be gated off to prevent latching of faulty data. Only valid
if the dgsgating generic is enabled.
Table 213.DDR2 SDRAM configuration register 5 (DDR2CFG5)
31 30 28 27 26 25 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
[R| TRP [RES | TRFC | ODT [DS| RESERVED | TRCD |RESERVED| TRAS
31 Reserved
30: 28 SDRAM tRP timing. tRP will be equal to 2 + field value DDR-clock cycles
27: 26 Reserved
25:18 SDRAM tRFC timing. tRFC will be equal to 3 + field-value DDR-clock cycles.
17: 16 SDRAM-side on-die termination setting (O=disabled, 1-3=75/150/50 ohm)
Note: You must reprogram the EMR1 register after changing this value.
15 SDRAM-side output drive strength control (0=full strength, 1=half strength)
Note: You must reprogram the EMRL1 register after changing this value
14:11 Reserved
10: 8 SDRAM RAS-to-CAS delay (TRCD). tRCD will be equal to field value + 2 DDR-clock cycles
7.5 Reserved

4: 0 SDRAM RAS to precharge timing. TRAS will be equal to 2+ field value DDR-clock cycles

AEROFLEX GAISLER 191 GRIP

Table 214.DDR2 FT configuration register (DDR2FTCFG)

31 20 19 18 16 15 8 7 5 4 3 2 1 0
Diag data read error location DDERR|RE DATAMUX | CEM |BAUPD| BAEN | CODE | EDEN
SE
RV
ED
31: 20 Bit field describing location of corrected errors for last diagnostic data read (read-only)

One bit per byte lane in 64+32-bit configuration

19 Set high if last diagnostic data read contained an uncorrectable error (read-only)

18: 16 Data width, read-only field. 001=16+8, 010=32+16, 011=64+32 bits

15: 8 Reserved

7. 5 Data mux control, setting this nonzero switchess in the upper checkbit half with another data lane.

For 64-bit interface

000 = no switching

001 = Data bits 15:0, 010 = Data bits 31:16, 011: Data bits 47:32, 100: Data bits 63:48,
101 = Checkbits 79:64, 110,111 = Undefined

4 If set high, the correctable error signal is masked out.
3 Enable automatic boundary shifting on write
2 Enable the code boundary
1 Code selection, 0=Code A (64+32/32+16/16+8), 1=Code B (64+16/32+8)
0 EDAC Enable
Table 215.DDR2 FT Diagnostic Address (DDR2FTDA)
31 2 1 0
MEMORY ADDRESS |RESERVED|
31:3 Address to memory location for checkbit read/write, 64/32-bit aligned for checkbits/data
1. 0 Reserved (address bits always 0 due to alignment)
Table 216.DDR2 FT Diagnostic Checkbits (DDR2FTDC)
31 24 23 16 15 8 7 0
CHECKBITS D \ CHECKBITS C \ CHECKBITS B \ CHECKBITS A
31:24 Checkbits for part D of 64-bit data word (undefined for code B)
23:16 Checkbits for part C of 64-bit data word (undefined for code B)
15: 8 Checkbits for part B of 64-bit data word
7.0 Checkbits for part A of 64-it data word.
Table 217.DDR2 FT Diagnostic Data (DDR2FTDD)
31 0
DATA BITS
31:0 Uncorrected data bits for 32-bit address set in DDR2FTDA
Table 218.DDR2 FT Boundary Address Registre (DDR2FTBND)
31 3 2 0
CHECKBIT CODE BOUNDARY ADDRESS 0
31:3 Code boundary address, 64-bit aligned

2.0 Zero due to alignment

AEROFLEX GAISLER

192

23.5 \Vendor and device identifiers

The core has vendor identifier Ox01 (Aeroflex Gaisler) and device identifier OXO2E. The revision
decribed in this document is revision 1. For description of vendor and device identifiers see GRLIB IP

Library User's Manual.

23.6

Configuration options

Table 219 shows the configuration options of the core (VHDL generics)

Table 219Configuration options

GRIP

Generic Function Allowed range Default
fabtech PHY technology selection virtex4, virtex5, stratix3 virtex4
memtech Technology selection for DDR FIFOs inferred, virtex2, virtexaferred
spartan3e, altera
hindex AHB slave index 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BARO defining SDRAM area, 0 - 16#FFF# 16#000#
Default is 0xFO000000 - OxFFFFFFFF.
hmask MASK field of the AHB BARO defining SDRAM ared. 0 - 16#FFF# 16#F00#,
ioaddr ADDR field of the AHB BAR1 defining I/O address | O - 16#FFF# 16#000#
space where DDR control register is mapped.
iomask MASK field of the AHB BARL defining I/O address | 0 - 16#FFF# 16#FFF#
space
ddrbits Data bus width of external DDR memory 16, 32, 64 16
MHz DDR clock input frequency in MHz. 10 - 200 100
clkmul, clkdiv The DDR input clock is multiplied with the clkmul 2-32 2
generic and divided with clkdiv to create the final DDR
clock
rstdel Clock reset delay in micro-seconds. 1-1023 200
col Default number of column address bits 9-12 9
Mbyte Default memory chip select bank size in Mbyte 8 -1024 16
pwron Enable SDRAM at power-on initialization 0-1 0
oepol Polarity of bdrive and vbdrive signals. O=active low, [0 - 1 0
1=active high
ahbfreq Frequency in MHz of the AHB clock domain 1-1023 50
readdly Additional read latency cycles (used to increase calip@a3 1
tion range)
TRFC Reset value for the tRFC timing parameter in ns. 75-155 130
ddelayb0* Input data delay for bit[7:0] 0-63 0
ddelaybl1* Input data delay for bit[15:8] 0-63 0
ddelayb2* Input data delay for bit[23:16] 0-63 0
ddelayb3* Input data delay for bit[31:24] 0-63 0
ddelayb4* Input data delay for bit[39:32] 0-63 0
ddelayb5* Input data delay for bit[47:40] 0-63 0
ddelayb6* Input data delay for bit[55:48] 0-63 0
ddelayb7* Input data delay for bit[63:56] 0-63 0
cbdelayb0* Input data delay for checkbit[7:0] 0-63 0
cbdelaybl* Input data delay for checkbit[15:8] 0-63 0
chdelayb2* Input data delay for checkbit[23:16] 0-63 0
cbdelayb3* Input data delay for checkbit[31:24] 0-63 0

AEROFLEX GAISLER

23.7

193

Table 219Configuration options

GRIP

Generic Function Allowed range Default
numidelctrl* Number of IDELAYCTRL the core will instantiate - 4
norefclk* Set to 1 if no 200 MHz reference clock is connected t®-1 0
clkref200 input.
odten Enable odt: 0 = Disabled, 1 = 750hm, 2 =1500hm, BG=3 0
500hm
rskew** Set the phase relationship between the DDR controlled - 9999 0
clock and the input data sampling clock. Sets the phase
in ps.
octen** Enable on chip termination: 1 = enabled, 0 = disabled 0-1 0
dgsgating*** Enable gating of DQS signals when doing reads. 1 3 0-1 0
enable, 0 = disable
nosync Disable insertion of synchronization registers betwepfl - 1 0
AHB clock domain and DDR clock domain. This can be
done if the AHB clock’s rising edges always are in phase
with arising edge on the DDR clock. If this generic is set
to 1 the clkmul and clkdiv generics should be equal. Qth-
erwise the DDR controller may scale the incoming cldck
and loose the clocks’ edge alignment in the process.
eightbanks Enables address generation for DDR2 chips with eiglt- 1 0
banks. The DDR_BA is extended to 3 bits if set to 1.
dgsse Single-ended DQS. The value of this generic is writfeéh- 1 0
to bit 10 in the memory’s Extended Mode register. If this
bitis 1 DQS is used in a single-ended mode. Currently
this bit should only, and must be, set to 1 when the
Stratix2 DDR2 PHY is used. This is the only PHY that
supports single ended DQS without modification.
burstlen DDR access burst length in 32-bit words 8,16,32,..,256 8
ahbbits AHB bus width 32,64,128,256 AHBDW
ft Enable fault-tolerant version 0-1 0
ftbits Extra DDR data bits used for checkbits 0,8,16,32 0
bigmem Big memory support, changes the range of supported - 1 0
total memory bank sizes from 8MB-1GB to 32MB-4GB
raspipe Enables an extra pipeline stage in the address decadingl 0
to improve timing at the cost of one DDR-cycle latency
* only available in Virtex4/5 implementation.
** only available in Altera and Spartan3 implementations.
*** only available on Nextreme/eASIC implementations

Implementation

23.7.1 Technology mapping

The core has two technology mapping VHDL generiv&mtechand padtech The VHDL generic
memtecttontrols the technology used for memory cell implementation. The VHDL gepadtech

controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

23.7.2 RAM usage

The FIFOs in the core are implemented with Symcram_2gwith separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the

FIFO implementation depends om the DDR data width, set bydthbits VHDL generic, and the
AHB bus width in the system.

AEROFLEX GAISLER 194 GRIP

The RAM block usage is tabulated below for the default burst length of 8 words. If the burst length is
doubled, the depths for all the RAMs double as well but the count and width remain the same.

Table 22MBlock-RAM usage for default burst length

Write FIFO block-RAM usage Read-FIFO block-RAM usage
DDR | AHB Total RAM
width | width Count | Depth | Width Count Depth Width count
16 32 1 16 32 1 8 32 2
16 64 2 8 32 2 4 32 4
16 128 4 4 32 4 2 32 8
16 256 8 2 32 8 1 32 16
32 32 2 8 32 1 4 64
32 64 2 8 32 1 4 64
32 128 4 4 32 2 2 64
32 256 8 2 32 4 1 64 12
64 32 4 4 32 1 2 128
64 64 4 4 32 1 2 128 5
64 128 4 4 32 1 2 128
64 256 8 2 32 2 1 128 10

23.7.3 Xilinx Virtex-specific issues

The Xilinx tools require one IDELAYCTRL macro to be instantiated in every region where the IDE-
LAY feature is used. Since the DDR2 PHY uses the IDELAY on every data (DQ) pin, this affects the
DDR2 core. For this purpose, the core has a numidelctrl generic, controlling how many IDELAYC-
TRL's get instantiated in the PHY.

The tools allow for two ways to do this instantiation:

e Instantiate the same number of IDELAYCTRL as the number of clock regions containing DQ
pins and place the instances manually using UCF LOC constraints.

« Instantiate just one IDELAYCTRL, which the ISE tools will then replicate over all regions.

The second solution is the simplest, since you just need to set the numidelctrl to 1 and no extra con-
straints are needed. However, this approach will not work if IDELAY is used anywhere else in the
FPGA design.

For more information on IDELAYCTRL, see Xilinx Virtex4/5 User’s Guide.

23.7.4 Design tools

To run the design in Altera Quartus 7.2 you have to uncomment the lines in the .gsf file that assigns
the MEMORY_INTERFACE_DATA_PIN_GROUP for the DDR2 interface. These group assign-
ments result in error when Altera Quartus 8.0 is used.

AEROFLEX GAISLER

23.8 Signal descriptions

195

Table 221 shows the interface signals of the core (VHDL ports).

Table 221Signal descriptions

GRIP

Signal name Type Function Active
RST_DDR Input Reset input for the DDR PHY Low
RST_AHB Input Reset input for AHB clock domain Low
CLK_DDR Input DDR input Clock -
CLK_AHB Input AHB clock -
CLKREF200 Input 200 MHz reference clock -
LOCK Output DDR clock generator locked High
CLKDDRO Internal DDR clock output after clock multiplicatign
CLKDDRI Clock input for the internal DDR clock domain.

Must be connected to CLKDDRO.
AHBSI Input AHB slave input signals -
AHBSO Output AHB slave output signals -
DDR_CLK][2:0] Output DDR memory clocks (positive) High
DDR_CLKB[2:0] Output DDR memory clocks (negative) Low
DDR_CLK_FB_OUT Output DDR data synchronization clock, connect this tq a

signal path with equal length of the DDR_CLK trace

+ DDR_DQS trace
DDR_CLK_FB Input DDR data synchronization clock, connect this to|the

other end of the signal path connected to

DDR_CLK_FB_OUT
DDR_CKE[1:0] Output DDR memory clock enable High
DDR_CSB[1:0] Output DDR memory chip select Low
DDR_WEB Output DDR memory write enable Low
DDR_RASB Output DDR memory row address strobe Low
DDR_CASB Output DDR memory column address strobe Low
DDR_DM[(DDRBITS+FTBITS)/8-1:0] Output DDR memory data mask Low
DDR_DQS[(DDRBITS+FTBITS)/8-1:0] Bidir DDR memory data strobe Low
DDR_DQSN[(DDRBITS+FTBITS)/8-1:0] | Bidir DDR memory data strobe (inverted) High
DDR_AD[13:0] Output DDR memory address bus Low
DDR_BA[2 or 1:0]® Output | DDR memory bank address Low
DDR_DQ[DDRBITS+FTBITS-1:0] BiDir DDR memory data bus -
DDR_ODTI[1:0] Output DDR memory odt Low

1) see GRLIB IP Library User's Manual

2) Polarity selected with the oepol generic

3) DDR_BA[2:0] if the eightbanks generic is set to 1 else DDR_BA[1:0]

4) Only used on Virtex4/5
5) Only used on Spartan3

AEROFLEX GAISLER 196

23.9

Library dependencies

Table 222 shows libraries used when instantiating the core (VHDL libraries).

Table 222 ibrary dependencies

GRIP

Library Package Imported unit(s)

Description

GRLIB AMBA Signals

AHB signal definitions

GAISLER MEMCTRL Signals, component

Memory bus signals definitions, component declaration

23.10 Component declaration

component ddr2spa
generic (
fabtech : integer := 0;
memtech : integer := 0;
hindex : integer :=0;
haddr :integer :=0;
hmask :integer := 16#f00#;
ioaddr : integer := 16#000%#;
iomask : integer := 16#fff#;
MHz :integer := 100;
clkmul :integer := 2;
clkdiv : integer := 2;
col :integer:=9;
Mbyte :integer := 16;
rstdel :integer := 200;
pwron :integer :=0;
oepol :integer :=0;
ddrbits : integer := 16;
ahbfreq : integer := 50;
readdly : integer := 1,
ddelaybO: integer := 0;
ddelaybl: integer := 0;
ddelayb?2: integer := 0;
ddelayb3: integer := 0;
ddelayb4: integer := 0;
ddelayb5: integer := 0;
ddelayb6: integer := 0;
ddelayb7: integer :=0

);
port (

rst_ddr :in std_ulogic;

rst_ahb :in std_ulogic;

clk_ddr :in std_ulogic;

clk_ahb :in std_ulogic;
clkref200 : in std_ulogic;

lock : out std_ulogic;-- DCM locked

clkddro : out std_ulogic;-- DCM locked

clkddri in std_ulogic;

ahbsi 1in ahb_slv_in_type;

ahbso :out ahb_slv_out_type;

ddr_clk : out std_logic_vector(2 downto 0);

ddr_clkb :out std_logic_vector(2 downto 0);

ddr_cke : out std_logic_vector(1 downto 0);

ddr_csb : out std_logic_vector(1 downto 0);

ddr_web : out std_ulogic; -- ddr write enable

ddr_rasb : out std_ulogic; -- ddr ras

ddr_casb : out std_ulogic; -- ddr cas

ddr_dm :out std_logic_vector (ddrbits/8-1 downto 0); -- ddr dm
ddr_dgs : inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dgs
ddr_dgsn :inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dgs

ddr_ad :out std_logic_vector (13 downto 0); -- ddr address

ddr_ba :out std_logic_vector (1 downto 0); -- ddr bank address

ddr_dq inout std_logic_vector (ddrbits-1 downto 0); -- ddr data
ddr_odt : out std_logic_vector(1 downto 0) -- odt

):

end component;

AEROFLEX GAISLER 197 GRIP

23.11 Instantiation

This example shows how the core can be instantiated.

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - Ox7FFFFFFF. The DDR2
SDRAM registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

entity ddr_Interface is
port (
ddr_clk : out std_logic_vector(2 downto 0);
ddr_clkb : out std_logic_vector(2 downto 0);
ddr_cke :outstd_logic_vector(1 downto 0);
ddr_csb :outstd_logic_vector(1 downto 0);

ddr_web : out std_ulogic; -- ddr write enable
ddr_rasb : out std_ulogic; -- ddr ras
ddr_casb : out std_ulogic; -- ddr cas

ddr_dm : out std_logic_vector (7 downto 0); -- ddr dm
ddr_dgs :inout std_logic_vector (7 downto 0); -- ddr dgs
ddr_dgsn : inout std_logic_vector (7 downto 0); -- ddr dgsn
ddr_ad :out std_logic_vector (13 downto 0); -- ddr address
ddr_ba :out std_logic_vector (1 downto 0); -- ddr bank address
ddr_dq :inout std_logic_vector (63 downto 0); -- ddr data
ddr_odt : out std_logic_vector (1 downto 0) -- ddr odt
)i

end;
architecture rtl of mctrl_ex is

-- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock, clk_200,
signal clk_200 : std_ulogic; -- 200 MHz reference clock
signal ddrclkin, ahbclk : std_ulogic; -- DDR input clock and AMBA sys clock
signal rstn : std_ulogic; -- Synchronous reset signal
signal reset : std_ulogic; -- Asynchronous reset signal

begin

-- DDR controller

ddrc : ddr2spa generic map (fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,

pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64,
readdly => 1, ddelayb0 => 0, ddelayb1 => 0, ddelayb2 => 0, ddelayb3 => 0,

ddelayb4 => 0, ddelayb5 => 0, ddelayb6 => 0, ddelayb7 => 0)

port map (

reset, rstn, ddrclkin, ahbclk, clk_200, lock, clkml, clkml, ahbsi, ahbso(4),

ddr_clk, ddr_clkb,

ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,

ddr_dm, ddr_dgs, ddr_adl, ddr_ba, ddr_dq, ddr_odt);

AEROFLEX GAISLER 198

24

24.1

24.2

24.3

GRIP
DIV32 - Signed/unsigned 64/32 divider module

Overview

The divider module performs signed/unsigned 64-bit by 32-bit division. It implements the radix-2
non-restoring iterative division algorithm. The division operation takes 36 clock cycles. The divider
leaves no remainder. The result is rounded towards zero. Negative result, zero result and overflow
(according to the overflow detection method B of SPARC V8 Architecture manual) are detected.

Operation

The division is started when ‘1’ is samples on DIVI.START on positive clock edge. Operands are
latched externally and provided on inputs DIVL.Y, DIVI.OP1 and DIVI.OP2 during the whole opera-
tion. The result appears on the outputs during the clock cycle following the clock cycle after the
DIVO.READY was asserted. Asserting the HOLD input at any time will freeze the operation, until
HOLDN is de-asserted.

Signal descriptions
Table 223 shows the interface signals of the core (VHDL ports).

Table 223Signal declarations

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
HOLDN N/A Input Hold Low
DIVI Y[32:0] Input Dividend - MSB part High
Y[32] - Sign bit
Y[31:0] - Dividend MSB part in 2’'s complement
format
OP1[32:0] Dividend - LSB part High
OP1[32] - Sign bit
OP1[31:0] - Dividend LSB part in 2’s comple-
ment format
FLUSH Flush current operation High
SIGNED Signed division High
START Start division High
DIVO READY Output The result is available one clock after the readidigh
signal is asserted.
NREADY The result is available three clock cycles, assuiiigh
ing hold=HIGH, after the nready signal is
asserted.
ICC[3:0] Condition codes High
ICC[3] - Negative result
ICCI[2] - Zero result
ICC[1] - Overflow
ICC[0] - Not used. Always ‘0’.
RESULT[31:0] Result High

AEROFLEX GAISLER

24.4 Library dependencies

24.5

24.6

199

GRIP

Table 224 shows libraries used when instantiating the core (VHDL libraries).

Table 224 ibrary dependencies

Library

Package

Imported unit(s)

Description

GAISLER

ARITH

Signals, component

tion

Divider module signals, component declara

Component declaration

The core has the following component declaration.

component div32
port (

rst :in std_ulogic;

clk :in std_ulogic;
holdn :in std_ulogic;

divi :in div32_in_type;
divo :outdiv32_out_type

);

end component;

Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

signal divi : div32_in_type;
signal divo : div32_out_type;

begin

div0 : div32 port map (rst, clk, holdn, divi, divo);

end;

AEROFLEX GAISLER 200 GRIP
25 DSUS3 - LEONS3 Hardware Debug Support Unit

25.1 Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEONS Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or ethernet. The DSU supports multi-processor systems and can handle up to 16 pro-

Ccessors.
r—— - - - - - - - - - - - — — — — — — — — — — — a
| B |
| LEON3] Debug I/F |
| Processor(s) |
| < Debug S.upport |
| Unit |
| A <
| [x |
| I T t |
4 AHB Slave I/F
| AHB Master I/F |
| AMBA AHB BUS |
A A A
I I
: v v v v A 4 :
| RS232 PCI Ethernet JTAG usB |
I I

DEBUG HOST

Figure 70. LEON3/DSU Connection

25.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

e executing a breakpoint instruction (ta 1)

* integer unit hardware breakpoint/watchpoint hit (trap Oxb)

e rising edge of the external break signal (DSUBRE)

e setting the break-now (BN) bit in the DSU control register

e atrap that would cause the processor to enter error mode

e occurrence of any, or a selection of traps as defined in the DSU control register
e after a single-step operation

« one of the processors in a multiprocessor system has entered the debug mode
« DSU AHB breakpoint or watchpoint hit

AEROFLEX GAISLER 201 GRIP

25.3

The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break (DSUBRE), and the break-now BN bit, to have effect the Break-on-1U-
watchpoint (BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active
after reset and should also be set by debug monitor software (like Aeroflex Gaisler's GRMON) when
initializing the DSU. When the debug mode is entered, the following actions are taken:

« PC and nPC are saved in temporary registers (accessible by the debug unit)
e an output signal (DSUACT) is asserted to indicate the debug state
e the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the U which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128 bits wide, the information stored is indicated in the table below:

Table 225AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA
31:0 Load/Store address AHB HADDR

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-
ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode. Note that neither the trace buffer memory nor the
breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.

AEROFLEX GAISLER 202 GRIP

254

Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

Table 22@nstruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle instruc-
tion (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 Isb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [63:32] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the loaded data.
Multiply and divide instructions are entered twice, but only the last entry contains the result. Bit 126

is set for the second entry. For FPU operation producing a double-precision result, the first entry puts
the MSB 32 bits of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed.

AEROFLEX GAISLER 203 GRIP

25.5 DSU memory map

The DSU memory map can be seen in table 227 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.

Table 227DSU memory map

Address offset Register
0x000000 DSU control register
0x000008 Time tag counter
0x000020 Break and Single Step register
0x000024 Debug Mode Mask register
0x000040 AHB trace buffer control register
0x000044 AHB trace buffer index register
0x000050 AHB breakpoint address 1
0x000054 AHB mask register 1
0x000058 AHB breakpoint address 2
0x00005¢ AHB mask register 2
0x100000 - Ox10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)
0x110000 Instruction Trace buffer control register
0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)
0x300000 - 0x3007FC IU register file
0x300800 - Ox300FFC 1U register file check bits (LEON3FT only)
0x301000 - 0x30107C FPU register file
0x400000 - Ox4FFFFC IU special purpose registers
0x400000 Y register
0x400004 PSR register
0x400008 WIM register
0x40000C TBR register
0x400010 PC register
0x400014 NPC register
0x400018 FSR register
0x40001C CPSR register
0x400020 DSU trap register
0x400024 DSU ASI register
0x400040 - 0x40007C ASR16 - ASR31 (when implemented)
0x700000 - Ox7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI| = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = OxE : Data cache tags
ASI = OxF : Data cache data
ASI = Ox1E : Separate snoop tags

The addresses of the U registers depends on how many register windows has been implemented:
* %on :0x300000 + (((psr.cwp * 64) + 32r¥4) mod (NWINDOWS*64))

e %In :0x300000 + (((psr.cwp * 64) + 64rE4) mod (NWINDOWS*64))

* %in :0x300000 + (((psr.cwp * 64) + 96r*4) mod (NWINDOWS*64))

e %gn :0x300000 + (NWINDOWS*64) + n*4

e %fn :0x301000 n*4

AEROFLEX GAISLER 204 GRIP

25.6 DSU registers

25.6.1 DSU control register
The DSU is controlled by the DSU control register:

31 11 109 8 7 6 5 4 3 2 1
| | PW HL |PE |EB [EE|DM BZBX BSBW/BE| TE]

Figure 71. DSU control register

[0]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the trace buffer. Remains set
when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error
condition (trap in trap).

[2]: Break on IU watchpoint (BW)- if set, debug mode will be forced on a IU watchpoint (trap 0xb).

[3]: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed.

[4]: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.

[5]: Break on error traps (BZ) - if set, will force the processor into debug mode oaxakptthe following traps:
priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.

[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).

[7]: EE - value of the external DSUEN signal (read-only)

[8]: EB - value of the external DSUBRE signal (read-only)

[9]: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written with ‘1’, it will
clear the error and halt mode.

[10]: Processor halt (HL). Returns ‘1’ on read when processor is halted. If the processor is in debug mode, setting this bit
will put the processor in halt mode.

[112]: Power down (PW). Returns ‘1’ when processor in in power-down mode.

25.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

31 18 17 16 15 2 1 0
\ssﬁ \532\531\350\51\115\ ‘BNZ‘BNl‘BNO‘

Figure 72. DSU Break and Single Step register

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the processors DSU
control register is set. If cleared, the processor x will resume execution.

[31:16] : Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The bit remains set
after the processor goes into the debug mode.

25.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU

memory map of processor 0.

31 18 17 16 15 2 1 0
‘DMlS‘ . ‘ DMZ‘ DM].‘DMd ED15‘ . ‘ EDZ‘ EDl‘ EDO ‘

Figure 73. DSU Debug Mode Mask register

AEROFLEX GAISLER 205 GRIP

[15:0] : Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiprocessor system enters
the debug mode. If 0, the processor x will not enter the debug mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running processors into debug mode
even if it enters debug mode.

25.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be Oxb (hardware watchpoint trap).

31 13 12 11 4 3 0

| RESERVED EM TRAP TYPE | o000 |

Figure 74. DSU trap register

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

25.6.5 Trace buffer time tag counter
The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is resumed.

31 29 0
‘ 00 ‘ DSU TIME TAG VALUE

Figure 75. Trace buffer time tag counter
The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

25.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

31 7 0
‘ ‘ ASI

Figure 76. ASI diagnostic access register
[7:0]: ASI to be used on diagnostic ASI access

25.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

31 16 2 10
| DCNT | RESERVED [BRIDMEN

Figure 77. AHB trace buffer control register

[0]: Trace enable (EN). Enables the trace buffer.
[1]: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
[2]: Break (BR). If set, the processor will be putin debug mode when AHB trace buffer stops due to AHB breakpoint hit.

[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the
trace buffer.

AEROFLEX GAISLER 206 GRIP

25.7

25.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31 4 3 0
INDEX | o000 |

Figure 78. AHB trace buffer index register

314 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

25.6.9 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

31 2 10

Break address reg. ‘ BADDR[31:2] ‘ 0 ‘ 0 ‘
2 2 10

Break mask reg. ‘ BMASK][31:2] ‘LD ‘ ST‘

Figure 79. Trace buffer breakpoint registers

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)

[1]: LD - break on data load address
[O]: ST - beak on data store address

25.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

31 16 0
RESERVED ‘ IT POINTER

Figure 80. Instruction trace control register

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the size of the trace buffer.

Vendor and device identifiers

The core has vendor identifier 0Ox01 (Aeroflex Gaisler) and device idenif@r7. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 207 GRIP

25.8 Technology mapping

DSU3 has one technology mapping geneiéch This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use
two identical SYNCRAMG64 blocks to implement the buffer memory (SYNCRAMG64 may then result
in two 32-bit wide memories on the target technology). The depth will depend on the KBYTES
generic, which indicates the total size of trace buffer in Kbytes. If KBYTES =1 (1 Kbyte), then two
RAM blocks of 64x64 will be used. If KBYTES = 2, then the RAM blocks will be 128x64 and so on.

25.9 Configuration options

Table 228 shows the configuration options of the core (VHDL generics).

Table 228Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00+#

ncpu Number of attached processors 1-16 1

tbits Number of bits in the time tag counter 2-30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in Kbytes. A value of 0 - 64 0 (disabled)
will disable the trace buffer function.

25.10 Signal descriptions
Table 229 shows the interface signals of the core (VHDL ports).

Table 229Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
DBGI - Input Debug signals from LEON3 -
DBGO - Output Debug signals to LEON3 -
DSUI ENABLE Input DSU enable High
BREAK Input DSU break High
DSUO ACTIVE Output Debug mode High
PWDI[n-1: 0] Output Clock gating enable for processor [n] High

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER 208 GRIP

25.11 Library dependencies

Table 230 shows libraries used when instantiating the core (VHDL libraries).

Table 230Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON3 Component, signals Component declaration, signals declaratiorp

25.12 Component declaration

The core has the following component declaration.

component dsu3

generic (
hindex : integer := 0;
haddr : integer := 16#900%#;
hmask : integer := 16#f00%#;
ncpu :integer:=1;
thits : integer := 30;
tech :integer:=0;
irq :integer:=0;
kbytes :integer:=0

);

port (
rst :in std_ulogic;
clk :in std_ulogic;
ahbmi :in ahb_mst_in_type;
ahbsi :in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;
dbgi :inl3_debug_out_vector(0 to NCPU-1);
dbgo :outl3_debug_in_vector(0 to NCPU-1);
dsui :indsu_in_type;
dsuo :outdsu_out_type

)

end component;

25.13 Instantiation

This example shows how the core can be instantiated.

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

library gaisler;

use gaisler.leon3.all;

constant NCPU : integer := 1; -- select number of processors
signal leon3i : 13_in_vector(0 to NCPU-1);

signal leon3o : I13_out_vector(0 to NCPU-1);

signal irgi : irg_in_vector(0 to NCPU-1);

signal irgo :irg_out_vector(0 to NCPU-1);

signal dbgi : 13_debug_in_vector(0 to NCPU-1);
signal dbgo : I3_debug_out_vector(0 to NCPU-1);

signal dsui : dsu_in_type;

AEROFLEX GAISLER 209 GRIP

signal dsuo : dsu_out_type;

begin

cpu : foriin 0 to NCPU-1 generate
u0 : leon3s-- LEONS3 processor
generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
irqi(i), irgo(i), dbgi(i), dbgo(i));
irgi(i) <= leon3o(i).irqg; leon3i(i).irq <= irqo(i);
end generate;

dsu0 : dsu3-- LEON3 Debug Support Unit
generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;

AEROFLEX GAISLER 210 GRIP

AEROFLEX GAISLER 211 GRIP
26 DSU4 - LEON4 Hardware Debug Support Unit

26.1 Overview

To simplify debugging on target hardware, the LEON4 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON4 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or ethernet. The DSU supports multi-processor systems and can handle up to 16 pro-

Ccessors.
r—— - - - - - - - - - - - — — — — — — — — — — — a
| B |
| LEON4] Debug I/F |
| Processor(s) |
| < Debug S.upport |
| Unit |
| A <
| [x |
| I T t |
4 AHB Slave I/F
| AHB Master I/F |
| AMBA AHB BUS |
A A A
I I
: v v v v A 4 :
| RS232 PCI Ethernet JTAG usB |
I I

DEBUG HOST

Figure 81. LEON4/DSU Connection

26.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

e executing a breakpoint instruction (ta 1)

* integer unit hardware breakpoint/watchpoint hit (trap Oxb)

e rising edge of the external break signal (DSUBRE)

e setting the break-now (BN) bit in the DSU control register

e atrap that would cause the processor to enter error mode

e occurrence of any, or a selection of traps as defined in the DSU control register
e after a single-step operation

« one of the processors in a multiprocessor system has entered the debug mode
« DSU AHB breakpoint or watchpoint hit

AEROFLEX GAISLER 212 GRIP

26.3

The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break, and the break-now BN bit, to have effect the Break-on-IU-watchpoint
(BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active after reset
and should also be set by debug monitor software (like Aerofle Gaisler's GRMON) when initializing
the DSU. When the debug mode is entered, the following actions are taken:

« PC and nPC are saved in temporary registers (accessible by the debug unit)
e an output signal (DSUACT) is asserted to indicate the debug state
e the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the U which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128, 160 or 224 bits wide, depending on the AHB bus width. The information stored is indi-
cated in the table below:

Table 231AHB Trace buffer data allocation

Bits Name Definition

223:160 Load/Store data AHB HRDATA/HWDATA(127:64)
159:129 Load/Store data AHB HRDATA/HWDATA(63:32)
127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirg AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA/HWDATA(31:0)
31:0 Load/Store address AHB HADDR

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-

AEROFLEX GAISLER 213 GRIP

ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode, unless the trace force bit (TF) in the trace control
register is set. If the trace force bit is set, the trace buffer is activated as long as the enable bit is set.
The force bit is reset if an AHB breakpoint is hit and can also be cleared by software. Note that neither
the trace buffer memory nor the breakpoint registers (see below) can be read/written by software
when the trace buffer is enabled.

The DSU has an internal time tag counter and this counter is frozen when the processor enters debug
mode. When AHB tracing is performed in debug mode (using the trace force bit) it may be desirable
to also enable the time tag counter. This can be done using the timer enable bit (TE). Note that the
time tag is also used for the instruction trace buffer and the timer enable bit should only be set when
using the DSU as an AHB trace buffer only, and not when performing profiling or software debug-
ging. The timer enable bit is reset on the same events as the trace force bit.

26.3.1 AHB trace buffer filters

The DSU can be implemented with filters that can be applied to the AHB trace buffer, breakpoints and
watchpoints. If implemented, these filters are controlled via the AHB trace buffer filter control and
AHB trace buffer filter mask registers. The fields in these registers allows masking access characteris-
tics such as master, slave, read, write and address range so that accesses that correspond to the speci-
fied mask are not written into the trace buffer. Address range masking is done using the second AHB
breakpoint register set. The values of the LD and ST fields of this register has no effect on filtering.

26.3.2 AHB statistics

The DSU can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the DSU will assert outputs that are suitable to connect to a LEON4 statistics unit
(LASTAT). The statistical outputs can be filtered by the AHB trace bulffer filters, this is controlled by
the Performance counter Filter bit (PF) in the AHB trace buffer filter control register. The DSU can
collect data for the events listed in table 232 below.

Table 232AHB events

Event Description Note

idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and
slave has asserted HREADY.

busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and
slave has asserted HREADY.

nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs
and slave has asserted HREADY.

seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave
inputs and slave has asserted HREADY.

read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is low.

write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is high.

hsize[5:0] | Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4AWORD hsize[4], or BWORD (hsize[5]).

ws Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response

split SPLIT response Active when master receives SPLIT response

AEROFLEX GAISLER 214 GRIP

Table 232AHB events

Event Description Note

spdel SPLIT delay Active during the time a master waits to be granted access to the bus
after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT responsel|is
detected, the core will save the master index. This event will thep be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being grantec
access to the bus before the SPLIT:ed master is granted again [after
receiving SPLIT complete.

If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave
inputs.

26.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

Table 233nstruction trace buffer data allocation

Bits Name Definition

126 Multi-cycle instruction Set to ‘1’ on the second instance of a multi-cycle instruction
125:96 Time tag The value of the DSU time tag counter

95:64 Result or Store address/data Instruction result, Store address or Store data

63:34 Program counter Program counter (2 Isb bits removed since they are always z¢ro)
33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode
31:0 Opcode Instruction opcode

During tracing, one instruction is stored per line in the trace buffer with the exception of atomic load/
store instructions, which are entered twice (one for the load and one for the store operation). Bits
[63:32] in the buffer correspond to the store address and the loaded data for load instructions. Bit 126
is set for the second entry.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed. The traced instructions can optionally be filtered on instruction types. Which instructions
are traced is defined in the instruction trace register [31:28], as defined in the table below:

Table 234Trace filter operation

Trace filter Instructions traced

0x0 All instructions

0x1 SPARC Format 2 instructions

0x2 Control-flow changes. All Call, branch and trap instructions including branch targets
Ox4 SPARC Format 1 instructions (CALL)

0x8 SPARC Format 3 instructions except LOAD or STORE

0xC SPARC Format 3 LOAD or STORE instructions

AEROFLEX GAISLER 215 GRIP

26.5 DSU memory map

The DSU memory map can be seen in table 235 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.

Table 235DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000048 AHB trace buffer filter control register

0x00004c AHB trace buffer filter mask register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005¢ AHB mask register 2

0x000070 Instruction count register

0x000080 AHB watchpoint control register

0x000090 - 0x00009C AHB watchpoint 1 data registers

0x0000AO - 0XO000AC AHB watchpoint 1 mask registers

0x0000BO0 - 0x0000BC AHB watchpoint 2 data registers

0x0000C0 - 0x0000CC AHB watchpoint 2 mask registers

0x100000 - Ox10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file.

The addresses of the |U registers depends on how many register windows has been
implemented:

%on: 0x300000 + (((psr.cwp * 64) + 32r¥4) mod (NWINDOWS*64))
%In: 0x300000 + (((psr.cwp * 64) + 64r¥4) mod (NWINDOWS*64))
%in: 0x300000 + (((psr.cwp * 64) + 96r*4) mod (NWINDOWS*64))
%gn: 0x300000 + (NWINDOWS*64) + n*4

%fn: 0x301000 *4

0x300800 - 0x300FFC IU register file check bits (LEON4FT only)
0x301000 - 0x30107C FPU register file
0x400000 Y register
0x400004 PSR register
0x400008 WIM register
0x40000C TBR register
0x400010 PC register
0x400014 NPC register
0x400018 FSR register
0x40001C CPSR register
0x400020 DSU trap register

0x400024 DSU ASI register

AEROFLEX GAISLER

216 GRIP

Table 235DSU memory map

Address offset

Register

0x400040 - 0x40007C

ASR16 - ASR31 (when implemented)

0x700000 - OX7FFFFC

ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = OxE : Data cache tags
ASI = OxF : Data cache data
ASI = Ox1E : Separate snoop tags

26.6 DSU registers

26.6.1 DSU control register

The DSU is controlled by the DSU control register:

31

Table 236 DSU control register
2 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED ‘PW‘ HL‘PE‘EB‘EE‘DM‘ BZ‘BX‘BS‘BW‘ BE‘TE‘

31:12
11
10

g o N

N

Reserved
Power down (PW) - Returns ‘1’ when processor is in power-down mode.

Processor halt (HL) - Returns ‘1’ on read when processor is halted. If the processor is in debug
mode, setting this bit will put the processor in halt mode.

Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0. If written
with ‘1’, it will clear the error and halt mode.

External Break (EB) - Value of the external DSUBRE signal (read-only)
External Enable (EE) - Value of the external DSUEN signal (read-only)
Debug mode (DM) - Indicates when the processor has entered debug mode (read-only).

Break on error traps (BZ) - if set, will force the processor into debug mode excefithe follow-
ing traps: priviledged_instruction, fpu_disabled, window_overflow, window_underflow,
asynchronous_interrupt, ticc_trap.

Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.

Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta
1) is executed.

Break on IU watchpoint (BW) - if set, debug mode will be forced on a IU watchpoint (trap 0xb).

Break on error (BE) - if set, will force the processor to debug mode when the processor would have
entered error condition (trap in trap).

Trace enable (TE) - Enables instruction tracing. If set the instructions will be stored in the trace
buffer. Remains set when then processor enters debug or error mode

26.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

Table 237DSU Break and Single Step register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

SS[15:0] \ BN[15:0] \

31:16

15:0

Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The
bit remains set after the processor goes into the debug mode.

Break now (BNX) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the
processors DSU control register is set. If cleared, the processor x will resume execution.

AEROFLEX GAISLER 217 GRIP

26.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON4 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU

memory map of processor 0.

Table 238DSU Debug Mode Mask register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DM[15:0] \ ED[15:0] \
31: 16 Debug mode mask (DMXx) - If set, the corresponding processor will not be able to force running
processors into debug mode even if it enters debug mode.
15: 0 Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiproces-

sor system enters the debug mode. If O, the processor x will not enter the debug mode.

26.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be Oxb (hardware watchpoint trap).

Table 239DSU Trap register

31 13 12 11 4 3 0
RESERVED \ EM \ TRAPTYPE \ 0000 \
31:13 RESERVED
12 Error mode (EM) - Set if the trap would have cause the processor to enter error mode.
11: 4 Trap type (TRAPTYPE) - 8-bit SPARC trap type
3: 0 Read as 0x0

26.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode (unless the timer enable bit in the AHB
trace buffer control register is set), and restarted when execution is resumed.

Table 240Trace buffer time tag counter

31 30 29 0
\ 0b00 \ TIMETAG
31: 30 Read as 0b00
29:0 DSU Time Tag Value (TIMETAG)

The value is used as time tag in the instruction and AHB trace buffer.
The width of the timer (up to 30 bits) is configurable through the DSU generic port.

26.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

Table 241 ASI diagnostic access register
31 8 7 0

RESERVED ASI

AEROFLEX GAISLER 218 GRIP

Table 241 ASI diagnostic access register
31:8 RESERVED

7. 0 ASI (ASI) - ASI to be used on diagnostic ASI access

26.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

Table 242 AHB trace buffer control register

31 16 15 8 7 6 5 4 3 2 1 0
DCNT ‘ RESERVED ‘SF‘TE ‘ TF ‘ BW ‘BR ‘DM‘ EN‘
31:16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.
15:8 RESERVED
7 Sample Force (SF) - If this bit is written to ‘1’ it will have the same effect on the AHB trace buffer as

if HREADY was asserted on the bus at the same time as a sequential or non-sequential transfer is
made. This means that setting this bit to ‘1’ will cause the values in the trace buffer's sample regis-
ters to be written into the trace buffer, and new values will be sampled into the registers. This bit will
automatically be cleared after one clock cycle.

Writing to the trace buffer still requires that the trace buffer is enabled (EN bit set to ‘1) and that the
CPU is not in debug mode or that tracing is forced (TF bit set to ‘1’). This functionality is primarily
of interest when the trace buffer is tracing a separate bus and the traced bus appears to have frozen.

6 Timer enable (TE) - Activates time tag counter also in debug mode.
5 Trace force (TF) - Activates trace buffer also in debug mode. Note that the trace buffer must be disa-
bled when reading out trace buffer data via the core’s register interface.
3 Bus width (BW) - This value corresponds to log2(Supported bus width / 32)
2 Break (BR) - If set, the processor will be put in debug mode when AHB trace buffer stops due to
AHB breakpoint hit.
1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.

Trace enable (EN) - Enables the trace buffer.

26.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

Table 243 AHB trace buffer index register

31 4 3 2 1 0
INDEX \ 0x0 \
31:4 Trace buffer index counter (INDEX) - Note that the number of bits actually implemented depends on
the size of the trace buffer.
3:0 Read as 0x0

26.6.9 AHB trace buffer filter control register

The trace buffer filter control register is only available if the core has been implemented with support
for AHB trace buffer filtering.

Table 244 AHB trace buffer filter control register
31 14 13 12 11 10 9 8 7 4 3 2 1 0
RESERVED ‘ WPF ‘ R ‘ BPF ‘ RESERVED ‘PF‘AF‘FR‘FW‘

31:14 RESERVED

AEROFLEX GAISLER 219 GRIP

Table 244 AHB trace buffer filter control register
13:12 AHB watchpoint filtering (WPF) - Bit 13 of this field applies to AHB watchpoint 2 and bit 12
applies to AHB watchpoint 1. If the WPF bit for a watchpoint is set to ‘1’ then the watchpoint will
not trigger unless the access also passes through the filter. This functionality can be used to, for
instance, set a AHB watchpoint that only triggers if a specified master performs an access to a spec-

ified slave.
11:10 RESERVED
9: 8 AHB breakpoint filtering (BPF) - Bit 9 of this field applies to AHB breakpoint 2 and bit 8 applies to

AHB breakpoint 1. If the BPF bit for a breakpoint is set to ‘1’ then the breakpoint will not trigger
unless the access also passes through the filter. This functionality can be used to, for instance, set a
AHB breakpoint that only triggers if a specified master performs an access to a specified slave. Note
that if a AHB breakpoint is coupled with an AHB watchpoint then the setting of the corresponding

bit in this field has no effect.

74 RESERVED

Performance counter Filter (PF) - If this bit is set to ‘1’, the cores performance counter (statistical)
outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

2 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer.

1 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer.
Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.

26.6.10 AHB trace buffer filter mask register

The trace buffer filter mask register is only available if the core has been implemented with support
for AHB trace buffer filtering.

Table 245AHB trace buffer filter mask register

31 16 15 0
SMASK[15:0] ‘ MMASK][15:0] ‘
31:16 Slave Mask (SMASK) - If SMASK]n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.
15:0 Master Mask (MMASK) - If MMASK(n] is set to ‘1, the trace buffer will not save accesses per-

formed by master n.

26.6.11 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

Table 246 AHB trace buffer break address register
31 2 1 0

BADDR[31:2] ‘ 0b00 ‘

31:2 Break point address (BADDR) - Bits 31:2 of breakpoint address
1. 0 Read as 0b00

Table 247 AHB trace buffer break mask register
31 2 10

BMASK([31:2] ‘ LD ‘ ST‘

AEROFLEX GAISLER 220 GRIP

Table 247 AHB trace buffer break mask register

31:2 Breakpoint mask (BMASK) - (see text)
1 Load (LD) - Break on data load address
0 Store (ST) - Break on data store address

26.6.12 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

Table 248Instruction trace control register

31 16 15 0
ITRACE CFG RESERVED ITPOINTER
31:28 Trace filter configuration
27:16 RESERVED
15:0 Instruction trace pointer (ITPOINTER) - Note that the number of bits actually implemented depends

on the size of the trace buffer

26.6.13 Instruction count register

The DSU contains an instruction count register to allow profiling of application, or generation of
debug mode after a certain clocks or instructions. The instruction count register consists of a 29-bit
down-counter, which is decremented on either each clock (IC=0) or on each executed instruction
(IC=1). In profiling mode (PE=1), the counter will set to all ones after an underflow without generat-
ing a processor break. In this mode, the counter can be periodically polled and statistics can be formed
on CPI (clocks per instructions). In non-profiling mode (PE=0), the processor will be put in debug
mode when the counter underflows. This allows a debug tool such as GRMON to execute a defined
number of instructions, or for a defined number of clocks.

Table 249Instruction count register
31 30 29 28 0
‘CE‘ IC ‘PE‘ ICOUNTI[28:0]

31 Counter Enable (CE) - Counter enable

30 Instruction Count (IC) - Instruction (1) or clock (0) counting
29 Profiling Enable (PE) - Profiling enable

28: 0 Instruction count (ICOUNT) - Instruction count

26.6.14 AHB watchpoint control register

The DSU has two AHB watchpoints that can be used to freeze the AHB tracebuffer, or put the proces-
sor in debug mode, when a specified data pattern occurs on the AMBA bus. These watchpoints can
also be coupled with the two AHB breakpoints so that a watchpoint will not trigger unless the AHB
breakpoint is triggered. This also means that when a watchpoint is coupled with an AHB breakpoint,
the breakpoint will not cause an AHB tracebuffer freeze, or put the processor(s), in debug mode
unless also the watchpoint is triggered.

Table 250AHB watchpoint control register
31 7 6 5 4 3 2 1 0

RESERVED ‘IN‘CP‘EN‘R‘IN‘CP‘EN‘

31:7 RESERVED

AEROFLEX GAISLER 221 GRIP

26.7

26.8

Table 250AHB watchpoint control register
6 Invert (IN) - Invert AHB watchpoint 2. If this bit is set the watchpoint will trigger if data on the AHB
bus does NOT match the specified data pattern (typically only usable if the watchpoint has been cou-
pled with an address by setting the CP field).

Couple (CP) - Couple AHB watchpoint 2 with AHB breakpoint 1
Enable (EN) - Enable AHB watchpoint 2
RESERVED

Invert (IN) - Invert AHB watchpoint 1. If this bit is set the watchpoint will trigger if data on the AHB
bus does NOT match the specified data pattern (typically only usable if the watchpoint has been cou-
pled with an address by setting the CP field).

Couple (CP) - Couple AHB watchpoint 1 with AHB breakpoint 1
Enable (EN) - Enable AHB watchpoint 1

N W b O

o

26.6.15 AHB watchpoint data and mask registers

The AHB watchpoint data and mask registers specify the data pattern for an AHB watchpoint. A
watchpoint hit is used to freeze the trace buffer by automatically clearing the enable bit. A watchpoint
hit can also be used to force the processor(s) to debug mode.

A mask register is associated with each data register. Only data bits with the corresponding mask bit
set to ‘1’ are compared during watchpoint detection.

Table 251 AHB watchpoint data register
31 0
DATA[127-n*32 : 96-n*32] \

31:0 AHB watchpoint data (DATA) - Specifies the data pattern of one word for an AHB watchpoint. The
lower part of the register address specifies with part of the bus that the register value will be com-
pared against: Offset Ox0 specifies the data value for AHB bus bits 127:96, 0x4 for bits 95:64, 0x8
for 63:32 and offset OxC for bits 31:0.

Table 252 AHB watchpoint mask register
31 0
MASK[127-n*32 : 96-n*32] \

31:0 AHB watchpoint mask (MASK) - Specifies the mask to select bits for comparison out of one word
for an AHB watchpoint. The lower part of the register address specifies with part of the bus that the
register value will be compared against: Offset 0x0 specifies the data value for AHB bus bits 127:96,
0x4 for bits 95:64, 0x8 for 63:32 and offset OxC for bits 31:0.

In a system with 64-bit bus width only half of the data and mask registers must be written. For AHB
watchpoint 1, a data value with 64-bits would be written to the AHB watchpoint data registers at off-
sets 0x98 and 0x9C. The corresponding mask bits would be set in mask registers at offsets 0xA8 and
OxAC.

In most GRLIB systems with wide AMBA buses, the data for an access size that is less than the full
bus width will be replicated over the full bus. For instance, a 32-bit write access from a LEON proces-
sor on a 64-bit bus will place the same data on bus bits 64:32 and 31:0.

Vendor and device identifiers

The core has vendor identifier 0Ox01 (Aeroflex Gaisler) and device identit@7. For a description
of vendor and device identifiers see GRLIB IP Library User's Manual.

Technology mapping

DSU4 has one technology mapping geneiéch This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use

AEROFLEX GAISLER

26.9

222

GRIP

two identical SYNCRAMG64 blocks to implement the buffer memory (SYNCRAMG64 may then result
in two 32-bit wide memories on the target technology, depending on the technology map), with one
additional 32-bit wide SYNCRAM if the system’s AMBA data bus width is 64-bits, and also one
additional 64-bit wide SYNCRAM if the system’s AMBA data bus width exceeds 64 bits.

The depth of the RAMs depends on the KBYTES generic, which indicates the total size of trace
buffer in Kbytes. If KBYTES = 1 (1 Kbyte), then the depth will be 64. If KBYTES = 2, then the RAM
depth will be 128 and so on.

Configuration options

Table 253 shows the configuration options of the core (VHDL generics).

Table 253Configuration options

Generic

Function

Allowed range

Default

hindex

AHB slave index

0 - AHBSLVMAX-1

0

haddr

AHB slave address (AHB[31:20])

0 - 16#FFF#

16#900#

hmask

AHB slave address mask

0 - 16#FFF#

16#F00#

ncpu

Number of attached processors

1-16

1

thits

Number of bits in the time tag counter

2-30

30

tech

Memory technology for trace buffer RAM

0 - TECHMAX-1

0 (inferred

kbytes

Size of trace buffer memory in KiB. A value of 0 wi
disable the trace buffer function.

110 - 64

0 (disabled)

bwidth

Traced AHB bus width

32, 64, 128

64

ahbpf

AHB performance counters and filteringalibpfis
non-zero the core will support AHB trace buffer fi
tering. Ifahbpfis larger than 1 then the core’s stat
tical outputs will be enabled.

0-2

s_

ahbwp

AHB watchpoint enable. &hbwpis non-zero
(default) then the core will support AHB watch-

points (also referred to as AHB data breakpoints).

Pipeline registers will be added whahbwpis set to
2 (default value), one register for each bit on the
AMBA data bus. This setting is recommended in
order to improve timing but has a cost in area. Th
pipeline registers will also lead to the AHB watch
point being triggered one cycle later.

It is recommended to leave this functionality
enabled. However, the added logic can create crit
timing paths from the AMBA data vectors and so
AHB watchpoints can be completely disabled by g
ting this generic to 0.

0-2

cal

et-

)

AEROFLEX GAISLER 223 GRIP
26.10 Signal descriptions
Table 254 shows the interface signals of the core (VHDL ports).
Table 254Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
DBGI - Input Debug signals from LEON4 -
DBGO - Output Debug signals to LEON4 -
DSUI ENABLE Input DSU enable High
BREAK Input DSU break High
DSUO ACTIVE Output Debug mode High
PWDI[n-1: 0] Output Clock gating enable for processor [n] High
ASTAT (record) Output AHB statistic/performance counter events -

* see GRLIB IP Library User's Manual

26.11 Library dependencies

26.12

Table 255 shows libraries used when instantiating the core (VHDL libraries).

Table 259.ibrary dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON4 Component, signals Component declaration, signals declaratiorp

Component declaration

The core has the following component declaration.

component dsu4

generic (
hindex : integer := 0;
haddr : integer := 16#900%#;
hmask : integer := 16#f00#;
ncpu :integer:=1;
thits : integer := 30;
tech :integer:=0;
irq :integer:=0;
kbytes :integer:=0

)

port (
rst :in std_ulogic;
clk :in std_ulogic;
ahbmi :in ahb_mst_in_type;
ahbsi :in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;

dbgi :inl4_debug_out_vector(0 to NCPU-1);
dbgo :outl4_debug_in_vector(0 to NCPU-1);

dsui :indsu4_in_type;
dsuo :outdsud_out type

AEROFLEX GAISLER 224 GRIP

end component;

26.13 Instantiation

This example shows how the core can be instantiated.

The DSU is always instantiated with at least one LEON4 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

library gaisler;

use gaisler.leon4.all;

constant NCPU : integer := 1; -- select number of processors

signal leond4i : 14_in_vector(0 to NCPU-1);
signal leon4o : 14_out_vector(0 to NCPU-1);
signal irgi : irg_in_vector(0 to NCPU-1);
signal irgo : irg_out_vector(0 to NCPU-1);

signal dbgi : 14_debug_in_vector(0 to NCPU-1);
signal dbgo : 14_debug_out_vector(0 to NCPU-1);

signal dsui : dsu4_in_type;
signal dsuo :dsu4_out_type;

begin

cpu : foriin 0 to NCPU-1 generate
uo : leon4s -- LEON4 processor
generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
irqi(i), irgo(i), dbgi(i), dbgo(i));
irqgi(i) <= leon4o(i).irqg; leon4i(i).irq <= irqgo(i);
end generate;

dsu0 : dsu4 -- LEON4 Debug Support Unit
generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;

AEROFLEX GAISLER 225 GRIP

27 FTAHBRAM - On-chip SRAM with EDAC and AHB interface

27.1 Overview

The FTAHBRAM core is a version of the AHBRAM core with added Error Detection And Correction
(EDAC). The on-chip memory is accessed via an AMBA AHB slave interface. The memory imple-
ments 2 kbytes of data (configured via tkieytesVHDL generics). Registers are accessed via an
AMB APB interface.

The on-chip memory implements volatile memory that is protected by means of Error Detection And
Correction (EDAC). One error can be corrected and two errors can be detected, which is performed by
using a (32, 7) BCH code. Some of the optional features available are single error counter, diagnostic
reads and writes and autoscrubbing (automatic correction of single errors during reads). Configuration
is performed via a configuration register.

Figure 82 shows a block diagram of the internals of the memory.

AHB Bus

<
A 4
AHB Slave
Interface
FTAHBRAM AHB/APE
Bridge
data v
Mux — o — = A)) .
v error Configuration Register
Encoding | Mux I(- - - -IConfig bits| TCB I<
A A : A
¢ JI APB Bus
==+ -1+ -1
|
|
|
! Decoding
|
vYy |
Mux - ===
data cb
Syncram

Figure 82. Block diagram

27.2 Operation

The on-chip fault tolerant memory is accessed through an AMBA AHB slave interface.

The memory address range is configurable with VHDL generics. As for the standard AHB RAM, the
memory technology and size is configurable through the tech and kbytes VHDL generics. The mini-
mum size is 1 kb and the maximum is technology dependent but the values can only be increased in
binary steps.

Run-time configuration is done by writing to a configuration register accessed through an AMBA
APB interface.

The address of the interface and the available options are configured with VHDL generics. The EDAC
functionality can be completely removed by setting the edacen VHDL generic to zero during synthe-
sis. The APB interface is also removed since it is redundant without EDAC.

The following can be configured during run-time: EDAC can be enabled and disabled. When it is dis-
abled, reads and writes will behave as the standard memory. Read and write diagnostics can be con-
trolled through separate bits. The single error counter can be reset.

AEROFLEX GAISLER 226 GRIP

If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the mem-
ory area and read data will appear on the AHB bus immediately after it arrives from memory. If
EDAC is enabled write data is passed to an encoder which outputs a 7-bit checksum. The checksum is
stored together with the data in memory and the whole operation is performed without any added
waitstates. This applies to word stores (32-bit). If a byte or halfword store is performed, the whole
word to which the byte or halfword belongs must first be read from memory (read - modify - write). A
new checksum is calculated when the new data is placed in the word and both data and checksum are
stored in memory. This is done with 1 - 2 additional waitstates compared to the non EDAC case.

Reads with EDAC disabled are performed with O or 1 waitstates while there could also be 2 waitstates
when EDAC is enabled. There is no difference between word and subword reads. Table 256 shows a
summary of the number of waitstates for the different operations with and without EDAC.

Table 256Summary of the number of waitstates for the different operations for the memory.

Operation Waitstates with EDAC Disabled Waitstates with EDAC Enabled
Read 0-1 0-2

Word write 0

Subword write 0 1-2

If the ahbpipe VHDL generic is set to 1, pipeline registers are enabled for the AHB input signals. If
the pipeline registers are enabled, one extra waitstate should be added to the read and subword write
cases in Table 256.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and appears
on the bus the next cycle if no uncorrectable error is detected. The decoding is done by comparing the
stored checksum with a new one which is calculated from the stored data. This decoding is also done
during the read phase for a subword write. A so-called syndrome is generated from the comparison

between the checksum and it determines the number of errors that occured. One error is automatically
corrected and this situation is not visible on the bus. Two or more detected errors cannot be corrected
so the operation is aborted and the required two cycle error response is given on the AHB bus (see the
AMBA manual for more details). If no errors are detected data is passed through the decoder unal-

tered.

As mentioned earlier the memory provides read and write diagnostics when EDAC is enabled. When
write diagnostics are enabled, the calculated checksum is not stored in memory during the write
phase. Instead, the TCB field from the configuration register is used. In the same manner, if read diag-
nostics are enabled, the stored checksum from memory is stored in the TCB field during a read (and
also during a subword write). This way, the EDAC functionality can be tested during run-time. Note

that checkbits are stored in TCB during reads and subword writes even if a multiple error is detected.

An additional feature is the single error counter which can be enabled witlertcaten VHDL
generic. A single error counter (SEC) field is present in the configuration register, and is incremented
each time a single databit error is encountered (reads or subword writes). The number of bits of this
counter is 8, set with thentbitsVHDL generic. It is accessed through the configuration register. Each
counter bit can be reset to zero by writing a one to it. The counter saturates at the &/atLgdbits

- 1). Each time a single error is detected the aramo.ce signal will be driven high for one cycle. This
signal should be connected to an AHB status register which stores information and generates inter-
rupts (see the AHB Status register documentation for more information).

Autoscrubbing is an error handling feature which is enabled withatitescrubVHDL generic and

cannot be controlled through the configuration register. If enabled, every single error encountered dur-
ing a read results in the word being written back with the error corrected and new checkbits generated.
It is not visible externally except for that it can generate an extra waitstate. This happens if the read is
followed by an odd numbered read in a burst sequence of reads or if a subword write follows. These
situations are very rare during normal operation so the total timing impact is negligible. The aramo.ce
signal is normally used to generate interrupts which starts an interrupt routine that corrects errors.

AEROFLEX GAISLER 227 GRIP

Since this is not necessary when autoscrubbing is enabled, aramo.ce should not be connected to an
AHB status register or the interrupt should be disabled in the interrupt controller.

27.3 Registers
The core is programmed through registers mapped into APB address space.

Table 257 TAHBRAM registers

APB Address offset Register
0x0 Configuration Register

Table 258.Configuration Register
31 13+8 12+8 13 12 0 9 8 7 6 0

‘ SEC ‘ MEMSIZE ‘WB‘ RB ‘ EN‘ TCB ‘

12+8: 13 Single error counter (SEC): Incremented each time a single error is corrected (includes errors on
checkbits). Each bit can be set to zero by writing a one to it. This feature is only available if the errc-
nten VHDL generic is set.

12: 10 Log?2 of the current memory size

9 Write Bypass (WB): When set, the TCB field is stored as check bits when a write is performed to the
memory.

8 Read Bypass (RB) : When set during a read or subword write, the check bits loaded from memory
are stored in the TCB field.

7 EDAC Enable (EN): When set, the EDAC is used otherwise it is bypassed during read and write
operations.

6: 0 Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded with the

check bits during a read operation when the RB bit is set.
Any unused most significant bits are reserved. Always read as ‘000...0'.

All fields except TCB are initialised at reset. The EDAC is initally disabled (EN = 0), which also applies to diagnos-
tics fiels (RB and WB are zero).

When available, the single error counter (SEC) field is cleared to zero.
27.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x050. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

AEROFLEX GAISLER

228

27.5 Configuration options

Table 259 shows the configuration options of the core (VHDL generics).

Table 259Configuration options

GRIP

¢

Generic Function Allowed range Default
hindex Selects which AHB select signal (HSEL) will be used 1 to NAHBMAX-1 0
access the memory.
haddr ADDR field of the AHB BAR 0 to 16#FFF# 0
hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#
tech Memory technology 0to NTECH 0
kbytes SRAM size in kbytes 1 to targetdep. 1
pindex Selects which APB select signal (PSEL) will be used @oto NAPBMAX-1 0
access the memory configuration registers
paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask 0 to 16#FFF# 16#FFF
edacen Enable (1)/Disable (0) on-chip EDAC Otol 0
autoscrub Automatically store back corrected data with new che@ke 1 0
bits during a read when a single error is detected. Is
ignored when edacen is deasserted.
errcnten Enables a single error counter Oto1l
cntbits number of bits in the single error counter 1to8
ahbpipe Enable pipeline register on AHB input signals Oto1l 0
27.6 Signal descriptions
Table 260 shows the interface signals of the core (VHDL ports).
Table 260Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
ARAMO CE Output Single error detected High
* see GRLIB IP Library User’s Manual
27.7 Library dependencies

Tabel 261 shows libraries used when instantiating the core (VHDL libraries).

Table 261Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Signals and component declaration

AEROFLEX GAISLER 229

27.8

Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
library gaisler;

use grlib.amba.all;
use gaisler.misc.all;

entity ftram_ex is
port(
rst : std_ulogic;
clk : std_ulogic;

.... --others signals
)i

end,
architecture rtl of ftram_ex is

--AMBA signals

signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_type;
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector;

--other needed signals here
signal stati : ahbstat_in_type;
signal aramo : ahbram_out_type;

begin

--other component instantiations here

-- AHB Status Register
astatO : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 3)
port map(rstn, clkm, ahbmi, ahbso, stati, apbi, apbo(13));
stati.cerror(1 to NAHBSLV-1) <= (others => ‘0");

--FT AHB RAM

a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
errcnt => 1, cntbits => 4)
port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);
stati.cerror(0) <= aramo.ce;

end architecture;

GRIP

AEROFLEX GAISLER 230 GRIP
28 FTMCTRL - 8/16/32-bit Memory Controller with EDAC

28.1 Overview

The FTMCTRL combined 8/16/32-bit memory controller provides a bridge between external memory
and the AHB bus. The memory controller can handle four types of devices: PROM, asynchronous
static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped I/O devices (10). The
PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The BCH code
provides single-error correction and double-error detection for each 32-bit memory word.

The SDRAM area can optionally also be protected using Reed-Solomon coding. In this case a 16-bit
checksum is used for each 32-bit word, and any two adjacent 4-bit (nibble) errors can be corrected.

The EDAC capability is determined through a VHDL generic.

The memory controller is configured through three configuration registers accessible via an APB bus
interface. The PROM, 10, and SRAM external data bus can be configured in 8-, 16-, or 32-bit mode,
depending on application requirements. The controller decodes three address spaces on the AHB bus
(PROM, 10, and SRAM/SDRAM). The addresses are determined through VHDL generics. The 10
area is marked as non-cacheable in the core’s AMBA plug’n’play information record.

External chip-selects are provided for up to four PROM banks, one 10 bank, five SRAM banks and
two SDRAM banks. Figure 83 below shows how the connection to the different device types is made.

APB AHB A D CB
ROMSN3 :0] cs A
OEN OE PROM D l¢—— | —p
WRITEN WE CBle— |— | —)
> APB I0SN cs A
L1 oE 110 D &—— | —»
WE
FTMCTRL
RAMSN[4:0] cs A
RAMOEN[4:0] o SRAM [l |_}
RWEN[3:0] WE -
MBEN([3:0] MBEN Be— -
«—— | —————» AHB SDCSN[1:0] CSN A
SDRASN RAS gDRAM P #— |
SDCASN CAS CB l¢—— |— | —]
SDWEN WE
SDDQM[3:0] DQM
A[27:0]
D[31:0] —»
CB[15:0] |l

Figure 83. FTMCTRL connected to different types of memory devices

28.2 PROM access

Up to four PROM chip-select signals are provided for the PROM area, ROMSNI[3:0]. There are two
modes: one with two chip-select signals and one with four. The size of the banks can be set in binary
steps from 16KiB to 256MiB. If the AHB memory area assigned to the memory controller for PROM
accesses is larger than the combined size of the memory banks then the PROM memory area will
wrap, starting with the first chip-select being asserted again when accessing addresses higher than the
last decoded bank.

A read access to PROM consists of two data cycles and between 0 and 30 waitstates (in the default
configuration, seavsshiftVHDL generic documentation for details). The read data (and optional

AEROFLEX GAISLER

23

1

GRIP

EDAC check-bits) are latched on the rising edge of the clock on the last data cycle. On non-consecu-
tive accesses, a idle cycle is placed between the read cycles to prevent bus contention due to slow
turn-off time of PROM devices. Figure 84 shows the basic read cycle waveform (zero waitstate) for
non-consecutive PROM reads. Note that the address is undefined in the idle cycle. Figure 85 shows
the timing for consecutive cycles (zero waitstate). Waitstates are added by extending the data2 phase.
This is shown in figure 86 and applies to both consecutive and non-consecutive cycles. Only an even
number of waitstates can be assigned to the PROM area.

clk

address

romsn

oen

data

cb

clk

address

romsn

oen

data

cb

\

datal

"\

data2

<

"\

datal

data2

"\

N\

"\

"\

\/

AL X

"\
X
\
\

ile

N\
A2 | X
/
/
D
D

] [g]

(@)
joy]
N

[

[

Figure 84. Prom non-consecutive read cyclecs.

datal

"\

data2 datal

"\

<

data2

"\

"\

N\

"\

AL X

A2

4 \
\Dl

{
(D2

4 \
\CBl

NN N S 8

{
\CBZ

Figure 85. Prom consecutive read cyclecs.

AEROFLEX GAISLER 232 GRIP

datal data2 data2 data2
A AVAVAVAVAVAY
address AL X
/
/
N\
L/
A\
L/

C

romsn

oen

data

) [g]

cb CB

=

[

Figure 86. Prom read access with two waitstates.

lead-in data lead-out

clk __//__/ /__/

C
¢

AVAVAVAVAV AWV,

address AL
romsn \ /
rwen \ /
data / D:l-\
1/
cb [~ai\
{ CBI_./

Figure 87. Prom write cycle (0-waitstates)

lead-in data data data lead-out

N AVAVAVAVAVAVAVAVAY AW AW/

address A X

romsn \ /
rwen \ /

C

data /
. D] /
cb / \
{ CB1),

Figure 88. Prom write cycle (2-waitstates)

AEROFLEX GAISLER 233 GRIP

28.3 Memory mapped IO

Accesses to |0 have similar timing as PROM accesses. The 10 select (IOSN) and output enable
(OEN) signals are delayed one clock to provide stable address before IOSN is asserted. All accesses
are performed as non-consecutive accesses as shown in figure 89. The data2 phase is extended when
waitstates are added.

lead-in datal data2 lead-out

N AVAVAVAVAVAVAVAVAY AV AW/

address AL X

iosn

oen

NN

data / \
\ P1/
cb [T\
{ CBl_/

Figure 89. 1/O read cycle (0-waitstates)

lead-in data lead-out

S AVAVAVAVAYAVAVAVAY AV AW,
address X A X

iosn _ /

writen _ /

data @}

® (cel)

Figure 90. I/O write cycle (0O-waitstates)

28.4 SRAM access

The SRAM area is divided on up to five RAM banks. The size of banks 1-4 (RAMSN[3:0]) is pro-
grammed in the RAM bank-size field (MCFG2[12:9]) and can be set in binary steps from 8KiB to
256MiB. The fifth bank (RAMSNI[4]) decodes the upper 512MiB (controlled by means cfdtasel

VHDL generic) and cannot be used simultaneously with SDRAM memory. A read access to SRAM
consists of two data cycles and between zero and three waitstates (in the default configuration, see
wsshiftYHDL generic documentation for details). The read data (and optional EDAC check-bits) are
latched on the rising edge of the clock on the last data cycle. Accesses to RAMSNI4] can further be
stretched by de-asserting BRDYN until the data is available. On non-consecutive accesses, a idle
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of memories. Fig-

AEROFLEX GAISLER 234 GRIP

ure 91 shows the basic read cycle waveform (zero waitstate). Waitstates are added in the same way as
for PROM in figure 86.

datal data2 datal data2
A AVAVAY AW AW

address X

C
C

AVAVAVAV AWV,

Al

X
ramsn \ /_'\
oo e \ / N\

A
/
/
)
D

data / N\ /
°1) (D2

cb /S /o5
{ CBl_/ (CB2

Figure 91. Sram non-consecutive read cyclecs.

For read accesses to RAMSN[4:0], a separate output enable signal (RAMOENIn]) is provided for
each RAM bank and only asserted when that bank is selected. A write access is similar to the read
access but takes a minimum of three cycles. Waitstates are added in the same way as for PROM.

Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the mem-
ory uses a common write strobe for the full 16- or 32-bit data, the read-modify-write bit MCFG2
should be set to enable read-modify-write cycles for sub-word writes.

lead-in data lead-out

N AVAVAVAVAVAVAVAVAY AV AW/

C

address A X
ramsn \ /

rwen \ /

data @ }

Figure 92. Sram write cycle (0-waitstates)

AEROFLEX GAISLER 235 GRIP

rdatal rdata2 modify wdata lead-out

A AVAVAVAVAVAVAVAWAWAWAW,

address Al

ramsn

oen, \ /
ramoen

rwen _/

data / \ / \
{D1|) {nD1)
cb / \ V4 \
{ CBlL) {nCB1}

read / \ /

Figure 93. Sram read-modify-write cycle (0-waitstates)

28.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, the SRAM and
PROM areas can be individually configured for 8- or 16-bit operation by programming the ROM and
RAM width fields in the memory configuration registers. Since reads to memory are always done on
32-bit word basis, read access to 8-bit memory will be transformed in a burst of four read cycles while
access to 16-bit memory will generate a burst of two 16-bit reads. During writes, only the necessary
bytes will be written. Figure 94 shows an interface example with 8-bit PROM and 8-bit SRAM. Fig-
ure 95 shows an example of a 16-bit memory interface.

All possible combinations of width, EDAC, and RMW are not supported. The supported combina-
tions are given in table 262, and the behavior of setting an unsupported combination is undefined. It is
not allowed to set the ROM or RAM width fields to 8-bit or 16-bit width if the core does not imple-
ment support for these widths.

Table 26 2=TMCTRL supported SRAM and PROM configurations

PROM/SRAM | RWEN resolution RMW bit

bus width (SRAM) EDAC | (SRAM) | Core configuration

8 Bus width None | O 8-bit support

8 Bus width BCH | 1 8-bit support, EDAC
16 Byte None | O 16-bit support

16 Bus width None | 1 16-bit support

32 Byte None | O

32 Bus width None | 1

32+7 Bus width BCH | 1 EDAC support

8-bit width support is set witham8VHDL generic and 16-bit width support is set withm16VHDL
genericis.

AEROFLEX GAISLER 236 GRIP

28.6

8-bit PROM A b
ROMSNI0] s]eizse
OEN .
WRITEN o PROM EEETE N
MEMORY .
CONTROLLER 8-bit RAM
RAMSNIO] s leaizso
RAMOENIJO .
RWENH RWELD]| (e SRAM [lpjsias -
A[27:0] >
Ui [€ ->
Figure 94. 8-bit memory interface example
16-bit PROM A b
ROMSNI[0] cs N AR6:1]
OEN .
WRITEN oF PROM EECH N
MEMORY
CONTROLLER 16-bit RAM
RAMSNI[0] cs SRAM A A[26:1
RAMOENI[O OE .
RWEN[O[:]_]] RWE[1:0] WE D D[31:16 -
A27:0] >
Ty -

Figure 95. 16-bit memory interface example

In 8-bit mode, the PROM/SRAM devices should be connected to the MSB byte of the data bus
(D[31:24]). The LSB address bus should be used for addressing (A[25:0]). In 16-bit mode, D[31:16]
should be used as data bus, and A[26:1] as address bus.

8- and 16-bit I/O access

Similar to the PROM/SRAM areas, the 10 area can also be configured to 8- or 16-bits mode. How-
ever, the 1/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but
only with one single access just as in 32-bit mode. To access an 10 device on an 8-bit bus, only byte
accesses should be used (LDUB/STB instructions for the CPU). To accesses an IO device on a 16-bit
bus, only halfword accesses should be used (LDUH/STH instructions for the CPU).

AEROFLEX GAISLER 237 GRIP

28.7

28.8

To access the I/O-area in 8- or 16-bit moean8VHDL generic orram16VHDL generic must be set
respectively.

Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the idle cycle will only occurs after the last transfer. Burst cycles will not be generated to the 10 area.

Only word (HSIZE = “010") bursts of incremental type (HBURST=INCR, INCR4, INCRS8 or
INCR16) are supported.

SDRAM access

28.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Aeroflex Gaisler, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4MiB and 512MiB. The operation
of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and 64-bit
data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory controller
can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

28.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register, and cannot be used simultaneously with fifth SRAM bank
(RAMSNI[4]). When the SDRAM enable bit is set in MCFGZ2, the controller is enabled and mapped
into upper half of the RAM area as long as the SRAM disable bit is not set. If the SRAM disable bit is
set, all access to SRAM is disabled and the SDRAM banks are mapped into the lower half of the
RAM area.

28.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use single location access on write. The controller
programs the SDRAM to use line burst of length 8 wipageburstYyHDL generic is 0. The controller
programs the SDRAM to use page burst wipageburs’/HDL generic is 1. The controller programs

the SDRAM to use page burst or line burst of length 8, selectable via the MCFG2 register, when
pageburstYHDL generic is 2.

28.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memaory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 263.

AEROFLEX GAISLER 238 GRIP

Table 263SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
CAS latency, RAS/CAS delaydis, trcp) TCAS +2

Precharge to activates) TRP + 2

Auto-refresh command periockflo) TRFC + 3

Activate to prechargeghs) TRFC +1

Activate to Activate (o) TRP + TRFC + 4

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

Table 264SDRAM example programming

SDRAM settings tcas tre trp trRrC tras

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50
100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50
133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52
133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

28.8.5 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15)8s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

28.8.6 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command

is issued, the CAS delay as programmed in MCFG2 will be used. Line burst of length 8 will be set for
read whenpageburstVHDL generic is 0. Page burst will be set for read whesgeburstVHDL

generic is 1. Page burst or line burst of length 8, selectable via the MCFG2 register will be set, when
pageburstvHDL generic is 2. Remaining fields are fixed: single location write, sequential burst. The
command field will be cleared after a command has been executed. When changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time. NOTE:
when issuing SDRAM commands, the SDRAM refresh must be disabled.

28.8.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

AEROFLEX GAISLER 239 GRIP

28.9

28.8.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

After the WRITE command has completed, if there is an immediately following read or write access
(not RMW) to the same 1KiB page on the AHB bus, this access is performed during the same access
cycle without closing and re-opening the row.

28.8.9 Read-modify-write cycles

If EDAC is enabled and a byte or half-word write is performed, the controller will perform a read-
modify-write cycle to update the checkbits correctly. This is done by performing an ACTIVATE
command, followed by READ, WRITE and PRE-CHARGE. The write command interrupts the read
burst and the data mask signals will be raised two cycles before this happens as required by the
SDRAM standard.

28.8.10 Address bus

The memory controller can be configured to either share the address and data buses with the SRAM,

or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMS
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

28.8.11 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit

SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices

can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full

data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used.

28.8.12 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera device, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

28.8.13 Initialisation

Each time the SDRAM is enabled (bit 14 in MCFG2), an SDRAM initialisation sequence will be sent
to both SDRAM banks. The sequence consists of one PRECHARGE, eight AUTO-REFRESH and
one LOAD-COMMAND-REGISTER command.

Memory EDAC

28.9.1 BCHEDAC

The FTMCTRL is provided with an BCH EDAC that can correct one error and detect two errorsin a
32-bit word. For each word, a 7-bit checksum is generated according to the equations below. A cor-

AEROFLEX GAISLER 240 GRIP

rectable error will be handled transparently by the memory controller, but adding one waitstate to the
access. If an un-correctable error (double-error) is detected, the current AHB cycle will end with an
error response. The EDAC can be used during access to PROM, SRAM and SDRAM areas by setting
the corresponding EDAC enable bits in the MCFG3 register. The equations below show how the
EDAC checkbits are generated:

CBO = DO ~ D4 ~ D6 ~ D7 ~ D8 ~ D9 ~ D11 ~ D14 ~ D17 ~ D18 ~ D19 ~ D21 ~ D26 ~ D28 ~ D29 " D31
CBi1=D0~D1~D2"D4"D6"D8 " D10 ~ D12 ~ D16 ~ D17 ~ D18 ~ D20 ~ D22 ~ D24 ~ D26 ™ D28
CB2 = DO ~ D3 ~ D4 ~ D7 ~ D9 ~ D10 ~ D13 ~ D15 ~ D16 ~ D19 ~ D20 ~ D23 ~ D25 ~ D26 ~ D29 " D31
CB3 = DO ~ D1 ~ D5 ~ D6 ~ D7 ~ D11 ~ D12 ~ D13 ~ D16 ~ D17 ~ D21 ~ D22 ~ D23 ~ D27 ~ D28 " D29
CB4 = D2 ~D3 ~D4 ~ D5 "~ D6 ~ D7 ~ D14 ~ D15 ~ D18 ~ D19 ~ D20 ~ D21 ~ D22 ~ D23 ~ D30 ~ D31
CB5 = D8 ~ D9 ~ D10 ~ D11 ~ D12 ~ D13 ~ D14 ~ D15 ~ D24 ~ D25 ~ D26 ~ D27 ~ D28 ~ D29 ~ D30 ~ D31
CB6 = DO ~ D1 ~ D2 ~ D3 ~ D4 ~ D5 ~ D6 ~ D7 ~ D24 ~ D25 ~ D26 ~ D27 ~ D28 ~ D29 ~ D30 "~ D31

If the SRAM is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it is still
possible to use EDAC protection. Data is always accessed as words (4 bytes at a time) and the corre-
sponding checkbits are located at the address acquired by inverting the word address (bits 2 to 27) and
using it as a byte address. The same chip-select is kept active. A word written as four bytes to
addresses 0, 1, 2, 3 will have its checkbits at address OxFFFFFFF, addresses 4, 5, 6, 7 at OXFFFFFFE
and so on. All the bits up to the maximum bank size will be inverted while the same chip-select is
always asserted. This way all the bank sizes can be supported and no memory will be unused (except
for a maximum of 4 byte in the gap between the data and checkbit area). A read access will automati-
cally read the four data bytes individually from the nominal addresses and the EDAC checkbit byte
from the top part of the bank. A write cycle is performed the same way. Byte or half-word write
accesses will result in an automatic read-modify-write access where 4 data bytes and the checkbit byte
are firstly read, and then 4 data bytes and the newly calculated checkbit byte are writen back to the
memory. This 8-bit mode applies to SRAM while SDRAM always uses 32-bit accesses. The size of
the memory bank is determined from the settings in MCFG2. The EDAC cannot be used on memory
areas configured in 16-bit mode.

If the ROM is configured in 8-bit mode, EDAC protection is provided in a similar way as for the
SRAM memory described above. The difference is that write accesses are not being handled automat-
ically. Instead, write accesses must only be performed as individual byte accesses by the software,
writing one byte at a time, and the corresponding checkbit byte must be calculated and be written to
the correct location by the software.

NOTE: when the EDAC is enabled in 8-bit bus mode, only the first bank select (RAMSNIO],
PROMSN][0]) can be used.

The operation of the EDAC can be tested trough the MCFG3 register. If the WB (write bypass) bit is
set, the value in the TCB field will replace the normal checkbits during memory write cycles. If the
RB (read bypass) is set, the memory checkbits of the loaded data will be stored in the TCB field dur-
ing memory read cycles. NOTE: when the EDAC is enabled, the RMW bit in memory configuration
register 2 must be set.

Data access timing with EDAC enabled is identical to access without EDAC, iedae VHDL
generic is set to 1. To improve timing of the HREADY output, a pipeline stage can be inserted in the
EDAC error detection by setting trelacVHDL generic to 2. One clock extra latency will then occur

on single word reads, or on the first data word in a burst.

EDAC is not supported for 64-bit wide SDRAM data buses.

28.9.2 Reed-Solomon EDAC

The Reed-Solomon EDAC provides block error correction, and is capable of correcting up to two 4-
bit nibble errors in a 32-bit data word or 16-bit checksum. The Reed-Solomon EDAC can be enabled
for the SDRAM area only, and uses a 16-bit checksum. Operation and timing is identical to the BCH
EDAC with the pipeline option enabled. The Reed-Solomon EDAC is enabled by setting the RSE and

AEROFLEX GAISLER 241 GRIP

RE bits in MCFG3, and the RMW bit in MCFG2. The Reed-Solomon EDAC is not supported for 64-
bit wide SDRAM buses.

The Reed-Solomon data symbols are 4-bit wide, represented as GF(2"4). The basic Reed-Solomon
code is a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and
correct a single symbol error anywhere in the codeword. The EDAC implements an interleaved RS(6,
4, 2) code where the overall data is represented as 32 bits and the overall checksum is represented as
16 bits. The codewords are interleaved nibble-wise. The interleaved code can correct two 4-bit errors
when each error is located in a nibble and not in the same original RS(6, 4, 2) codeword.

The Reed-Solomon RS(15, 13, 2) code has the following definition:
e there are 4 bits per symbol;
e there are 15 symbols per codeword;
e the code is systematic;
« the code can correct one symbol error per codeword,;
e the field polynomial is
f(x) = X ex+1

» the code generator polynomial is
1

g = [](x+a) = 3 g;O¢
| <

i=0

for which the highest power afis stored first;
e acodeword is defined as 15 symbols:

Co» €1, &, C3, &y, G5, G, C7y Gg, Coy G100 C11, C12) 130 Cpg
where g to ¢, represent information symbols ang to ¢, represent check symbols.

The shortened and interleaved RS(6, 4, 2) code has the following definition:

» the codeword length is shortened to 4 information symbols and 2 check symbols and as follows:
CO:C1:(‘2:()3:C4:05:C6:C7:08:0
where the above information symbols are suppressed or virtually filled with zeros;

e two codewords are interleaved (i.e. interleaved dép#) with the following mapping to the 32-
bit data and 16-bit checksum, weygis a symbol with codeword indéand symbol indek

Cpg = sd[31:28]
Cp 9 =sd[27:24]
Cp,10= Sd[23:20]
Cy,10= Sd[19:16]
Cp,11= Sd[15:12]
Cy,11=sd[11:8]
Co,12= sd[7:4]
Cy,12=sd[3:0]
Cp,13= SCb[15:12]
Cy,13= SCb[11:8]

AEROFLEX GAISLER 242 GRIP

28.10

Co,14= SCb[7:4]
C1’14: SCb[3:0]
where SD[] is interchanable with DATA[] and SCBJ] is interchangable with CBJ[]

Note that the FTMCTRL must have tleelacVHDL generic set to 3 to enable the RS EDAC function-
ality. The Reed-Solomon EDAC is not supported for 64-bit wide SDRAM buses.

28.9.3 EDAC Error reporting

As mentioned above an un-correctable error results in an AHB error response which can be monitored
on the bus. Correctable errors however are handled transparently and are not visible on the AHB bus.
A sideband signal is provided which is asserted during one clock cycle for each access for which a
correctable error is detected. This can be used for providing an external scrubbing mechanism and/or
statistics. The correctable error signal is most commonly connected to the AHB status register which
monitors both this signal and error responses on the bus. Please see the AHB status register section for
more information.

Bus Ready signalling

The BRDYN signal can be used to stretch all types of access cycles to the PROM, I/O area and the
SRAM area decoded by RAMSNI[4]. This covers read and write accesses in general, and additionally
read-modify-write accesses to the SRAM area. The accesses will always have at least the pre-pro-
grammed number of waitstates as defined in memory configuration registers 1 & 2, but will be further
stretched until BRDYN is asserted. BRDYN should be asserted in the cycle preceding the last one. If
bit 29 in MCFGL1 is set, BRDYN can be asserted asynchronously with the system clock. In this case,
the read data must be kept stable until the de-assertion of OEN/RAMOEN and BRDYN must be
asserted for at least 1.5 clock cycle. The use of BRDYN can be enabled separately for the PROM, 1/O
and RAMSN[4] areas. It is recommended that BRDYN is asserted until the corresponding chip select
signal is de-asserted, to ensure that the access has been properly completed and avoiding the system to
stall.

datal data2 data2 lead-out

A AVAVAVAVAVAVAVAVAVAV AV
address A X
romsn/iosn/ramsn[4 /
oen /
data /B0
N/
brdyn _ /

Figure 96. READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle
applicable for I/O accesses.

Figure 97 shows the use of BRDYN with asynchronous sampling. BRDYN is kept asserted for more
than 1.5 clock-cycle. Two synchronization registers are used so it will take at least one additional
cycle from when BRDYN is first asserted until it is visible internally. In figure 97 one cycle is added
to the data2 phase.

AEROFLEX GAISLER 243 GRIP

28.11

datal data2 data2 lead-out

A AVAVAVAVAVAVAVAWAWAWAW,

address AL X

romsn/iosn/ramsn[4

oen

data

brdyn \
bexcn \

Figure 97. BRDYN (asynchronous) sampling and BEXCN timing. Lead-out cycle is only applicable for 1/0-act

N (D\\\
e

datal data2 data2 data2 lead-out

WS brdyn
address x X
romsn/iosn/ramsn[4 /
oen /
data (E
brdyn _ /

Figure 98. Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous sar

If burst accesses and BRDYN signaling are to be used together, special care needs to be taken to make
sure BRDYN is raised between the separate accesses of the burst. The controller does not raise the
select and OEN signal (in the read case) between accesses during the burst so if BRDYN is kept
asserted until the select signal is raised, all remaining accesses in the burst will finish with the config-
ured fixed number of wait states.

Access errors

An access error can be signalled by asserting the BEXCN signal for read and write accesses. For reads
it is sampled together with the read data. For writes it is sampled on the last rising edge before chip
select is de-asserted, which is controlled by means of waitstates or bus ready signalling. If the usage
of BEXCN is enabled in memory configuration register 1, an error response will be generated on the
internal AHB bus. BEXCN can be enabled or disabled through memory configuration register 1, and
is active for all areas (PROM, 10 and RAM). BEXCN is only sampled in the last access for 8- and 16-
bit mode for RAM and PROM. That is, when four bytes are written for a word access to 8-bit wide
memory BEXCN is only sampled in the last access with the same timing as a single access in 32-bit
mode.

AEROFLEX GAISLER 244 GRIP

datal data2 lead-out

N AVAVAVAVAVAVAVAVAYAY AW
address X AL X
romsn/iosn/ramsn \ /
oen \ /
data (TDo1)\
N7/
bexcn _ /

Figure 99. Read cycle with BEXCN.

lead-in data2 lead-out

S AVAVAVAVAY AVAVAVAY AV AW,
address X AL X
romsn/iosn/ramsn /
rwen _/
data @ }
bexcn _ /

Figure 100. Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses

28.12 Attaching an external DRAM controller

To attach an external DRAM controller, RAMSN[4] should be used since it allows the cycle time to
vary through the use of BRDYN. In this way, delays can be inserted as required for opening of banks
and refresh.

28.13 Output enable timing

A drive signal vector for the data 1/0-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay. An additional vector is used for the
separate SDRAM bus.

28.14 Read strobe

The READ signal indicates the direction of the current PROM,SRAM,IO or SDRAM transfer, and it
can be used to drive external bi-directional buffers on the data bus. It always is valid at least one cycle
before and after the bus is driven, at other times it is held either constant high or low.

AEROFLEX GAISLER 245 GRIP

28.15 Reqisters

The core is programmed through registers mapped into APB address space.

Table 265-TMCTRL memory controller registers

APB Address offset Register

0x0 Memory configuration register 1 (MCFG1)
Ox4 Memory configuration register 2 (MCFG2)
0x8 Memory configuration register 3 (MCFG3)
0xC Memory configuration register 4 (MCFG4)

28.15.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and IO accesses.

Table 266 Memory configuration register 1

31 30 29 28 27 26 25 24 23 20 19 18 17
‘ ‘PBRDY‘ABRDY‘ IOBUSW ‘ IBRDY ‘BEXCN‘ ‘ 10 WAITSTATES ‘ IOEN ‘ ‘ ROMBANKSZ ‘
14 13 12 11 10 9 8 7 4 3 0
‘ ‘ RESERVED ‘ PWEN ‘ ‘ PROM WIDTH ‘ PROM WRITE WS ‘ PROM READ WS ‘
31 RESERVED
30 PROM area bus ready enable (PBRDY) - Enables bus ready (BRDYN) signalling for the PROM
area. Reset to ‘0'.
29 Asynchronous bus ready (ABRDY) - Enables asynchronous bus ready.
28:27 1/0 bus width (IOBUSW) - Sets the data width of the I/O area (“00"=8, “01"=16, “10" =32).
26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the 1/O area. Reset to
‘0.
25 Bus error enable (BEXCN) - Enables bus error signalling for all areas. Reset to ‘0'.
24 RESERVED
23:20 1/0 waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000"=0,

“0001"=1, “0010"=2,..., “1111"=15).

The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (I0 WAIT-
STATES)*2"sshift \wherewsshiftcan be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

19 I/0 enable (IOEN) - Enables accesses to the memory bus I/O area.
18 RESERVED
17: 14 PROM bank size (ROMBANKSZ) - Returns current PROM bank size when read. “0000” is a spe-

cial case and corresponds to a bank size of 256MiB. All other values give the bank size in binary
steps: “0001"=16KiB, “0010"=32KiB, “0011"=64KiB,... , “1111"=256MiB (i.e. 8KiB * 2**ROM-
BANKSZ). For value “0000” or “1111" only two chip selects are available. For other values, two
chip select signals are available for fixed bank sizes. For other values, four chip select signals are
available for programmable bank sizes.

Programmable bank sizes can be changed by writing to this register field. The written values corre-
spond to the bank sizes and number of chip-selects as above. Reset to “0000” when programmable.

Programmable ROMBANKSZ is only available when romasel VHDL generic is 0. For other values
this is a read-only register field containing the fixed bank size value.

13:12 RESERVED

11 PROM write enable (PWEN) - Enables write cycles to the PROM area.

10 RESERVED

9:8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00"=8, “01"=16,

“10"=32).

AEROFLEX GAISLER 246 GRIP

Table 266 Memory configuration register 1
7:4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write cycles
(“0000"=0, “0001"=2, “0010"=4,..., “1111"=30).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM WRITE

WS)*2+2Wsshift \wherewsshiftcan be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

3:0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles
(“0000"=0, “0001"=2, “0010"=4,...,"1111"=30). Reset to “1111".
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM READ

ws)*2*2wsshift \yherewsshiftcan be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

During reset, the prom width (bits [9:8]) are set with value on BWIDTH inputs. The prom waitstates
fields are set to 15 (maximum). External bus error and bus ready are disabled. All other fields are
undefined.

28.15.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

Table 267 Memory configuration register 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| SDRF | TRP | SDRAM TRFC [TCAS | SDRAMBANKSZ [SDRAM COLSZ| SDRAM CMD | D64 | SDPB | ‘
15 14 13 12 9 8 7 6 5 4 3 2 1 0
‘ | sE | s | RAM BANK SIZE ‘ [RBRDY| RMW | RAM WIDTH [RAM WRITE WS| RAM READ WS |
31 SDRAM refresh (SDRF) - Enables SDRAM refresh.
30 SRAM TRP parameter (TRP)zgwill be equal to 2 or 3 system clocks (0/1).
29:27 SDRAM TRFC parameter (SDRAM TRFCke¢ will be equal to 3+field-value system clocks.
26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(trepy).
25:23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000"=4MiB,
“001"=8MiB, “010"=16MiB,...,. “111"=512MiB).
22:21 SDRAM column size (SDRAM COLSZ) - “00"=256, “01"=512, “10"=1024, “11"=4096 when bit
25:23="111" 2048 otherwise.
20:19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command.

“01"=PRECHARGE, “10"=AUTO-REFRESH, “11"=LOAD-COMMAND-REGISTER. The field is
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM
data bus width, ‘0’ otherwise. Read-only.

17 SDRAM Page Burst (SDPB) - SDRAM programmed for page bursts on read when set, else pro-
grammed for line burst lengths of 8 on read. Programmable when pageburst VHDL generic is 2, else
read-only.

16:15 RESERVED

14 SDRAM enable (SE) - Enables the SDRAM controller and disables fifth SRAM bank (RAMSN[4]).

13 SRAM disable (SI) - Disables accesses to SRAM bank if bit 14 (SE) is set to ‘1.

12:9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000"=8KiB,
“0001"=16KiB, “0010"=32KiB, “0011"= 64KiB,.., “1111"=256MiB)(i.e. 8KiB * 2**RAM B ANK
SIZE).

8 RESERVED

RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit
32-bit areas with common write strobe (no byte write strobe).

AEROFLEX GAISLER 247 GRIP

Table 267 Memory configuration register 2
5:4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00"=8, “01"=16, “1X"=32).
3:2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles
(“00"=0, “01"=1, “10"=2, “11"=3).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM WRITE

WS)*ZWSShiﬁ, wherewsshiftcan be read from the first user-defined register in the core’s plug&play
area (default is wsshift = 0).

1:0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles
(LLOOHZO’ “01”:1’ “10”:2' “11”:3),
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM READ

WS)*ZWSShiﬁ, wherewsshiftcan be read from the first user-defined register in the core’s plug&play
area (default is wsshift = 0).

28.15.3 Memory configuration register 3 (MCFG3)

MCFG3 contains the reload value for the SDRAM refresh counter and to control and monitor the
memory EDAC.

Table 268Memory configuration register 3

31 28 27 26
\ RESERVED | RSE | ME | SDRAM REFRESH COUNTER \
12 11 10 9 8 7 0
\ [we | RB [RE | PE | TCB \
31:29 RESERVED
28 Reed-Solomon EDAC enable (RSE) - if set, will enable Reed-Solomon protection of SDRAM area
when implemented
27 Memory EDAC (ME) - Indicates if memory EDAC is present. (read-only)
26:12 SDRAM refresh counter reload value (SDRAM REFRESH COUNTER)
11 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass.
10 EDAC diagnostic read bypass (RB) - Enables EDAC read bypass.
9 RAM EDAC enable (RE) - Enable EDAC checking of the RAM area (including SDRAM).
8 PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. Ar reset, this bit is initial-
ized with the value of MEMI.EDAC.
7:0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.

It is also loaded with the memory checkbits during read cycles when RB is set.

The period between each AUTO-REFRESH command is calculated as follows:
tREFRESH: ((reload Value) + 1) / SYSCLK

28.15.4 Memory configuration register 4 (MCFG4)

MCFG4 is only present if the Reed-Solomon EDAC has been enabled watiabeéHDL generic.
MCFG4 provides means to insert Reed-Solomon EDAC errors into memory for diagnostic purposes.

Table 269Memory configuration register 4

31 16
\ RESERVED \ WB \
15 0
\ TCB[15:0] \

31:17 RESERVED

AEROFLEX GAISLER 248 GRIP

Table 269 Memory configuration register 4
16 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass. Identical to WB in MCFG3.

15:0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.
It is also loaded with the memory checkbits during read cycles when RB is set. Note that TCB[7:0]
are identical to TCBJ[7:0] in MCFG3

28.16 Vendor and device identifiers

The core has vendor identifier 0x01 (GAISLER) and device identifier 0x054. For description of ven-

dor and device identifiers, see GRLIB IP Library User's Manual.

28.17 Configuration options

Table 270 shows the configuration options of the core (VHDL generics).

Table 270Configuration options

Generic Function Allowed range | Default

hindex AHB slave index 1-NAHBSLV-1 | O

pindex APB slave index 0-NAPBSLV-1 | O

romaddr ADDR field of the AHB BARO defining PROM address spagd - 16#FFF# 16#000#
Default PROM area is 0x0 - Ox1FFFFFFF.
Also see documentation of romasel VHDL generic below.

rommask MASK field of the AHB BARO defining PROM address spa¢®..- 16#FFF# 16#E00%#
Also see documentation of romasel VHDL generic below.

ioaddr ADDR field of the AHB BAR1 defining I/O address space. | 0 - 16#FFF# 16#200#
Default I/0O area is 0x20000000 - Ox2FFFFFFF.

iomask MASK field of the AHB BARL1 defining 1/0O address space. 0 - 16#FFF# 16#E0(Q

ramaddr ADDR field of the AHB BAR?2 defining RAM address space. 0 - 16#FFF# 16#400#
Default RAM area is 0x40000000-0x7FFFFFFF.

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#CO0(

paddr ADDR field of the APB BAR configuration registers address 0 - 16#FFF# 0
space.

pmask MASK field of the APB BAR configuration registers address 0 - 16#FFF# 16#FFF#
space.

wprot RAM write protection. 0-1 0

invelk unused N/A 0

fast Enable fast SDRAM address decoding. 0-1 0

AEROFLEX GAISLER

249

Table 270Configuration options

GRIP

Generic

Function

Allowed range

Default

romasel

Sets the PROM bank size.
romasel 0 selects a programmable mode where the ROM-

0-28

BANKSZ field in the MCFGL1 register sets the bank size. When

romasel is 0 and the bank size is configured (MCFG1 regist

ROMBANKS?Z field, via the core’s register interface) to 0b0QJ0

or Ob1111 then address bit 28 is used to decode the banks.
means that the core must be mapped at a 512 MiB address

er,

This

boundary (0x0, 0x20000000, 0x40000000, .. see romaddr and

rommask VHDL generics) for address decoding to work cor
rectly.

romasel 1 - 14Values 1 - 14 sets the size in binary steps (1
16KiB, 2 = 32KiB, 3=64KiB,, 14=128MiB). Four chip-
selects are available for these values. 15 sets the bank size
256MiB with two chip-selects.

to

romasel 1- 16Values 16 - 28 sets the bank size in binary steps

(16 = 64 KiB, 17 = 128KiB, ... 28 = 256MiB). Two chip-seleqgts

are available for this range. The selected bank size is readable
from the rombanksz field in the MCFGL register for the non-pro-

grammable modes.

The PROM area will wrap back to the first bank after the en

d of

the last decoded bank. As an example, if romasel is set to 14 the

following banks will be decoded:
bank 0: 0x00000000 - 0x07FFFFFFF
bank 1: 008000000 - OXOFFFFFFF
bank 2: 0x10000000 - Ox17FFFFFFF
bank 3: 0x18000000 - Ox1FFFFFFF

...bank 0 starting again at 0x20000000 (the same pattern applies

for other values less than 14, addresses will wrap after the |
decoded bank).

If romasel is 15 then the address decoding will result in the
lowing:

bank 0: 0x00000000 - OXOFFFFFFFF

bank 1: 0x10000000 - Ox1FFFFFFF

.. bank 0 starting again at offset 0x20000000

When instantiating the core care must be taken to see how n

ast

ol-

nany

chip-selects that will be used as a result of the setting of romasel.

This affects the base address at which the core can be plac
(setting of romaddr and rommask VHDL generics). As an ex
ple, placing the PROM area at a 256 MiB address boundry,
the base address 0x10000000 and using romasel =0, 14, 15
will NOT result in ROM chip-select 0 getting asserted for an
access to the PROM base address as the address decoding
requires that the core has been placed on a 512 MiB addres
boundary.

ed
am-
like
or 28

28

sdrasel

log2(RAM address space size) - 1. E.g if size of the RAM
address space is 0x40000000 sdrasel is log2(2730)-1= 29.

29

srbanks

Number of SRAM banks.

ram8

Enable 8-bit PROM, SRAM and I/O access.

raml6

Enable 16-bit PROM, SRAM and I/O access.

0-1

sden

Enable SDRAM controller.

0-1

sepbus

SDRAM is located on separate bus.

0-1

sdbits

32 or 64 -bit SDRAM data bus.

32,64

32

AEROFLEX GAISLER 250 GRIP
Table 270Configuration options
Generic Function Allowed range | Default
oepol Select polarity of drive signals for data pads. 0 = active low,| D=1 0
active high.
edac Enable EDAC. 0 = No EDAC; 1 =BCH EDAC; 2 = BCH EDA - 3 0
with pipelining; 3 = BCH + RS EDAC
sdisb Select least significant bit of the address bus that is connected to 2
SDRAM.
syncrst Choose between synchronous and asynchronous reset for|dhipi 0
select, oen and drive signals.
pageburst Line burst read of length 8 when 0, page burst read when 1 0p2o- 0
grammable read burst type when 2.
scantest Enable scan test support 0-1 0
netlist Use technology specific netlist instead of RTL code 0-1 0
tech Technology to use for netlists 0-NTECH 0
rahold Add additional lead-out cycles for holding the address bus affer 16 0
PROM writes. This is used when a PROM device needs extfa
hold time on the address bus during write cycles.
wsshift Wait state counter shift. This value defines the number of steps to 0
shift the wait state counter. The number of waitstates that the
core can generate is limited b‘S‘/SEhm. See the wait state fields
in the core’s APB register descriptions to see the effect of this
generic. The value of this generic can be read out in the first
user-defined register of the core’s plug&play area. This means
that if wsshift is non-zero then the AHB controller must have full
plug&play decoding enabled.

28.18 Scan support

Scan support is enabled by setting the SCANTEST generic to 1. When enabled, the asynchronous
reset of any flip-flop will be connected to AHBI.testrst during when AHBI.testen = ‘1".

28.19 Signal descriptions
Table 271 shows the interface signals of the core (VHDL ports).

Table 271Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
CB[15:0] Input EDAC checkbits High
WRN[3:0] Input SRAM write enable feedback signal Low
BWIDTHJ1:0] Input Sets the reset value of the PROM data bus wjdtligh

field in the MCFGL1 register

EDAC Input The reset value for the PROM EDAC enable pit High
SD[31:0] Input SDRAM separate data bus High
SCB[15:0] Input SDRAM separate checkbit bus High

AEROFLEX GAISLER 251 GRIP

Table 271Signal descriptions

Signal name Field Type Function Active

MEMO ADDRESS[31:0] Output Memory address High
CB[15:0] Output EDAC Checkbit
DATA[31:0] Output Memory data -
SDDATA[63:0] OQutput Sdram memory data -
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN][4:0] Output SRAM output enable Low
IOSN Output Local I/O select Low
ROMSNJ3:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable: Low

WRN][O] corresponds to DATA[31:24],
WRN[1] corresponds to DATA[23:16],
WRN][2] corresponds to DATA[15:8],
WRN[3] corresponds to DATA[7:0].

Any WRNJ] signal can be used for CB[].
MBENT[3:0] Output Read/write byte enable: Low
MBENTJO] corresponds to DATA[31:24],
MBENT[1] corresponds to DATA[23:16],
MBENT[2] corresponds to DATA[15:8],
MBENT[3] corresponds to DATA[7:0].

Any MBEN]] signal can be used for CB[].

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Cgri-ow/High
trols 1/0-pads connected to external memory
bus:

BDRIVE[O] corresponds to DATA[31:24],
BDRIVE[1] corresponds to DATA[23:16],
BDRIVE[2] corresponds to DATA[15:8],
BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[] signal can be used for CBJ].

VBDRIVE[31:0] Output Vectored 1/0-pad drive signals. Low/High
SVBDRIVE[63:0] Output Vectored I/0-pad drive signals for separate | Low/High
sdram bus.

READ Output Read strobe High
SA[14:0] Output SDRAM separate address bus High
CE Output Single error detected High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

AEROFLEX GAISLER 252 GRIP

Table 271Signal descriptions

Signal name Field Type Function Active

SDO SDCASN Output SDRAM column address strobe Low
SDCKEJ1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDDQMJ7:0] Output SDRAM data mask: Low

SDDQM][7] corresponds to SD[63:56],
SDDQM][6] corresponds to SD[55:48],
SDDQM][5] corresponds to SD[47:40],
SDDQM[4] corresponds to SD[39:32],
SDDQM][3] corresponds to SD[31:24],
SDDQM][2] corresponds to SD[23:16],
SDDQM][1] corresponds to SD[15:8],
SDDQMI0] corresponds to SD[7:0].

Any SDDQM][] signal can be used for CB[].
SDRASN Output SDRAM row address strobe Low
SDWEN Output SDRAM write enable Low
* see GRLIB IP Library User's Manual

28.20 Library dependencies

Table 272 shows libraries used when instantiating the core (VHDL libraries).

Table 272 ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals Memory bus signals definitions
Components FTMCTRL component

28.21 Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.

Memory controller decodes default memory areas: PROM area is 0x0 - OxX1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - Ox7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

use gaisler.pads.all; -- used for I/O pads

entity mctrl_ex is
port (
clk : in std_ulogic;

AEROFLEX GAISLER 253 GRIP

resetn : in std_ulogic;
pliref : in std_ulogic;

-- memory bus

address :out std_logic_vector(27 downto 0); -- memory bus
data :inout std_logic_vector(31 downto 0);

ramsn :out std_logic_vector(4 downto 0);

ramoen :out std_logic_vector(4 downto 0);

rwen :inout std_logic_vector(3 downto 0);

romsn :out std_logic_vector(3 downto 0);

iosn :out std_logic;

oen :out std_logic;

read :out std_logic;

writen : inout std_logic;

brdyn :in std_logic;

bexcn :in std_logic;

sdram i/f

sdcke :out std_logic_vector (1 downto 0); -- clk en
sdcsn : out std_logic_vector (1 downto 0); -- chip sel

sdwen : out std_logic; -- write en
sdrasn : out std_logic; -- row addr stb
sdcasn : out std_logic; -- col addr stb
sddgm : out std_logic_vector (7 downto 0); -- data i/o mask
sdclk : out std_logic; -- sdram clk output
sa :out std_logic_vector(14 downto 0); -- optional sdram address
S| :inout std_logic_vector(63 downto 0) -- optional sdram data
)
end;

architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- signals used to connect memory controller and memory bus
signal memi : memory_in_type;
signal memo : memory_out_type;

signal sdo : sdram_out_type;

signal wprot : wprot_out_type; -- dummy signal, not used
signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

signal gnd : std_ulogic;
begin

-- Clock and reset generators

clkgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)

port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

cgi.plictrl <="00"; cgi.plirst <= resetn; cgi.pliref <= pliref;

-- Memory controller
ftmctrlO : ftmctrl generic map (srbanks => 1, sden => 1, edac => 1)
port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

-- memory controller inputs not used in this configuration
memi.brdyn <="1’; memi.bexcn <="1"; memi.wrn <= "1111";
memi.sd <= sd;

AEROFLEX GAISLER 254 GRIP

-- prom width at reset
memi.bwidth <= "10";

-- 1/0 pads driving data memory bus data signals
datapads : for i in O to 3 generate
data_pad : iopadv generic map (width => 8)
port map (pad => memi.data(31-i*8 downto 24-i*8),
0 => memi.data(31-i*8 downto 24-i*8),
en => memo.bdrive(i),
i => memo.data(31-i*8 downto 24-i*8));
end generate;

-- connect memory controller outputs to entity output signals
address <= memo.address; ramsn <= memo.ramsh; romsn <= memo.romsn;
oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
sa <= memo.sa;
writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddgm <= sdo.dgm;
end;

AEROFLEX GAISLER 255 GRIP

29 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC

29.1 Overview

The fault tolerant SDRAM memory interface handles PC133 SDRAM compatible memory devices
attached to a 32- or 64-bit wide data bus. The interface acts as a slave on the AHB bus where it occu-
pies configurable amount of address space for SDRAM access. An optional Error Detection And
Correction Unit (EDAC) logic (only for the 32 - bit bus) corrects one bit error and detects two bit
errors.

The SDRAM controller function is programmed by means of register(s) mapped into AHB I/O
address space. Chip-select decoding is done for two SDRAM banks.

AHB

A D CB
FT SDRAM
CONTROLLER
SDO.SDCLK CLK A[16:15]
SDO.SDCSN[1:0] CSN BA 'Im
G SDO.SDRASN RAS N .
SDO.SDCASN cas SDRAM A (e
SDO.SDWEN \S/SM 5
SDO.SDDQM[7:0] r—
SDO.SDCLK CKE celg i N
SDO.ADDRESS|[16:2] .
SDI.D[63:0}/
SDO.D[[Sl:(])] M
cB6:0] |«

Figure 101. FT SDRAM memory controller connected to AMBA bus and SDRAM

29.2 Operation

29.2.1 General

Synchronous Dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64, 256 and 512 Mbyte devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG. A second register, ECFG, is available for configuring the
EDAC functions. SDRAM banks data bus width is configurable between 32 and 64 bits.

29.2.2 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use page burst on read and single location access on
write.

AEROFLEX GAISLER 256 GRIP

29.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through SDRAM configuration register (SDCFG) The pro-
grammable SDRAM parameters can be seen in table below:

Table 273SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay chs trebp 2-3 clocks
Precharge to activate R 2-3 clocks
Auto-refresh command period rAC 3-11 clocks
Auto-refresh interval 10 - 32768 clocks

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

29.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15)6s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

29.2.5 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command

is issued, the CAS delay as programmed in SDCFG will be used, remaining fields are fixed: page read
burst, single location write, sequential burst. The command field will be cleared after a command has
been executed. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER
command should be generated at the same time.

29.2.6 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses. Note that only word bursts are supported by the
SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and halfwords but
they cannot be used.

29.2.7 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

29.2.8 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

AEROFLEX GAISLER 257 GRIP

29.3

29.2.9 Data bus

Data bus width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit SDRAM devices to
be connected using the full data capacity of the devices. 64-bit SDRAM devices can be connected to
32-bit data bus if 64-bit data bus is not available but in this case only half the full data capacity will be
used.

29.2.10 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Virtex targets, GR
Clock Generator can be configured to produce a properly synchronised SDRAM clock. For other
FPGA targets, the GR Clock Generator can produce an inverted clock.

29.2.11 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(32, 7)
code. It is capable of correcting one bit error and detecting two bit errors. The EDAC logic does not
add any additional waitstates during normal operation. Detected errors will cause additional waitstates
for correction (single errors) or error reporting (multiple errors). Single errors are automatically cor-
rected and generally not visible externally unless explicitly checked.

This checking is done by monitoring the ce signal and single error counter. This counter holds the
number of detected single errors. The ce signal is asserted one clock cycle when a single error is
detected and should be connected to the AHB status register. This module stores the AHB status of
the instruction causing the single error and generates interrupts (see the AHB status register documen-
tation for more information).

The EDAC functionality can be enabled/disabled during run-time from the ECFG register (and the
logic can also be completely removed during synthesis with VHDL generics. The ECFG register also
contains control bits and checkbit fields for diagnostic reads. These diagnostic functions are used for
testing the EDAC functions on-chip and allows one to store arbitrary checkbits with each written
word. Checkbits read from memory can also be controlled.

64-bit bus support is not provided when EDAC is enabled. Thus, the sd64 and edacen VHDL generics
should never be set to one at the same time.

The equations below show how the EDAC checkbits are generated:

CBO = DO~ D4 ~D6 ~ D7 ~ D8 ~ D9 N~ D11 ~ D14 ~ D17 ~ D18 ~ D19 ~ D21 ~ D26 ~ D28 ~ D29 ~ D31
CBl1 =D0O~D1"~D2"~D4 ~D6 " D8 ~ D10 ~ D12 ~ D16 ~ D17 ~ D18 ~ D20 ~ D22 ~ D24 N D26 ™ D28
CB2 = DO ~D3 ~D4 ~ D7 ~ D9 ~ D10 ~ D13 ~ D15 ~ D16 ~ D19 ~ D20 ~ D23 ~ D25 ~ D26 ~ D29 ~ D31
CB3 =DO0O~D1~D5"D6"D7 " D11 ~ D12 ~ D13 ~ D16 ~ D17 ~ D21 ~ D22 ~ D23 ~ D27 ~ D28 "~ D29
CB4 = D2 D3 D4 ~D5 D6 ~D7 " D14 ~ D15 ~ D18 ~ D19 ~ D20 ~ D21 ~ D22 ~ D23 ~ D30 ~ D31
CB5 = D8 ~ D9 ~ D10 ~ D11 ~ D12 ~ D13 ~ D14 ~ D15 ~ D24 ~ D25 ™ D26 ~ D27 ~ D28 ~ D29 ~ D30 ~ D31
CB6 = DO ~D1~D2~D3"D4 D5 "D6"D7 " D24 ~ D25~ D26 ~ D27 ~ D28 ~ D29 ~ D30 N D31
Registers

The memory controller is programmed through register(s) mapped into the AHB 1/O space defined by
the controllers AHB BAR1.

If EDAC is enabled through the use of the edacen VHDL generic, an EDAC configuration register
will be available.

Table 2745T SDRAM controller registers

AHB address offset Register
0x0 SDRAM Configuration register
0x4 EDAC Configuration register

AEROFLEX GAISLER 258 GRIP

29.3.1 SDRAM configuration register (SDCFG)
SDRAM configuration register is used to control the timing of the SDRAM.

31302927 2625 23 22212019 15 14 0
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ DG‘* SDRAM refresh reload value

SDRAM command
SDRAM Col. size
SDRAM Bank size
CAS delay, tRCD
tRFC

tRP

Refresh enable

Figure 102. SDRAM configuration register

[14:0]: The period between each AUTO-REFRESH command - Calculated as fifemggEn= ((reload value) + 1) /
SYSCLK

[15]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise ‘0’. Read-only.

[20:19]: SDRAM command. Writing a non-zero value will generate an SDRAM command: “01"=PRECHARGE,
“10"=AUTO-REFRESH, “11"=LOAD-COMMAND-REGISTER. The field is reset after command has been
executed.

[22:21]: SDRAM column size. “00"=256, “01"=512, “10"=1024, “11"=4096 when bit[25:23]= “111", 2048 otherwise.

[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000"=4 Mbyte, “001"=8 Mbyte, “010"=16
Mbyte “111"=512 Mbyte.

[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER
command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

[29:27]: SDRAM Kectiming. igec Will be equal to 3 + field-value system clocks.

[30]: SDRAM trptiming. p will be equal to 2 or 3 system clocks (0/1).

[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

29.3.2 EDAC Configuration register (ECFG)

The EDAC configuration register controls the EDAC functions of the SDRAM controller during run
time.

31 30 cntbits + 10 cnbits + 9 10 9 8 7 6 0
EAV RESERVED SEC | we RB| EN] TCB

Figure 103. EDAC configuration register

[6:0] TCB : Test checkbits. These bits are written as checkbits into memory during a write operation when the WB bit in
the ECFG register is set. Checkbits read from memory during a read operation are written to this field when the RB

bit is set.

[7] EN : EDAC enable. Run time enable/disable of the EDAC functions. If EDAC is disabled no error detection will be
done during reads and subword writes. Checkbits will still be written to memory during write operations.

[8] RB : Read bypass. Store the checkbits read from memory during a read operation into the TCB field.

[9] WB : Write bypass. Write the TCB field as checkbits into memory for all write operations.

[cntbits + 9:10] SEC : Single error counter. This field is available when the errcnt VHDL generic is set to one during synthesis.
It increments each time a single error is detected. It saturates when the maximum value is reached. The maximum
value is the largest number representable in the number of bits used, which in turn is determined by the cntbits
VHDL generic. Each bit in the counter can be reset by writing a one to it.

[30:cntbits + 10] Reserved.

[31] EAV : EDAC available. This bit is always one if the SDRAM controller contains EDAC.

AEROFLEX GAISLER 259 GRIP

29.4 \Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x055. For a descrip-
tion of vendor and device identifiers see GRLIB IP Library User's Manual.

29.5 Configuration options

Table 275 shows the configuration options of the core (VHDL generics).

Table 275Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
haddr ADDR field of the AHB BARO defining SDRAM area, 0 - 16#FFF# 16#000#
Default is 0xFO000000 - OxFFFFFFFF.
hmask MASK field of the AHB BARO defining SDRAM ared. 0 - 16#FFF# 16#F00#,
ioaddr ADDR field of the AHB BAR1 defining I/O address | O - 16#FFF# 16#000#
space where SDCFG register is mapped.
iomask MASK field of the AHB BARL defining I/O address | 0 - 16#FFF# 16#FFF#
space.
wprot Write protection. 0-1 0
invclk Inverted clock is used for the SDRAM. 0-1 0
fast Enable fast SDRAM address decoding. 0-1 0
pwron Enable SDRAM at power-on. 0-1 0
sdbits 32 or 64 -bit data bus width. 32,64 32
edacen EDAC enable. If set to one, EDAC logic will be include@ - 1 0
in the synthesized design. An EDAC configuration regis-
ter will also be available.
errcnt Include an single error counter which is accessible frdm 1 0
the EDAC configuration register.
cntbits Number of bits used in the single error counter 1-8 1

AEROFLEX GAISLER

29.6 Signal descriptions

260

Table 276 shows the interface signals of the core (VHDL ports).

Table 276Signals declarations

GRIP

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SDI WPROT Input Not used -
DATA[63:0] Input Data -
CB[7:0] Input Checkbits -
SDO SDCKE[1:0] Output SDRAM clock enable High
SDCSN][1:0] Output SDRAM chip select Low
SDWEN Output SDRAM write enable Low
RASN Output SDRAM row address strobe Low
CASN Output SDRAM column address strobe Low
DQMJ[7:0] Output SDRAM data mask: Low
DQM[7] corresponds to DATA[63:56],
DQM]6] corresponds to DATA[55:48],
DQM]I5] corresponds to DATA[47:40],
DQM]J4] corresponds to DATA[39:32],
DQM]J3] corresponds to DATA[31:24],
DQM]J2] corresponds to DATA[23:16],
DQM[1] corresponds to DATA[15:8],
DQMIJ0] corresponds to DATA[7:0].
Any DQM[] signal can be used for CBJ].
BDRIVE Output Drive SDRAM data bus Low
ADDRESSJ[16:2] Output SDRAM address -
DATA[31:0] Output SDRAM data -
CB[7:0] Output Checkbits -
CE N/A Output Correctable Error High

* see GRLIB IP Library User’s Manual

29.7 Library dependencies

29.8

Table 5 shows libraries used when instantiating the core (VHDL libraries).

Table 277.ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, componen
laration

Instantiation

This example shows how the core can be instantiated.

dec-

AEROFLEX GAISLER 261 GRIP

The example design contains an AMBA bus with a number of AHB components connected to it
including the FT SDRAM controller. The external SDRAM bus is defined in the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator. It is also shown how the correctable error (CE) signal is connected to
the ahb status register. It is not mandatory to connect this signal. In this example, 3 units can be con-
nected to the status register.

The SDRAM controller decodes SDRAM area: 0x60000000 - Ox6FFFFFFF. SDRAM Configuration
and EDAC configuration registers are mapped into AHB 1/O space on address (AHB I/O base address
+ 0x100).

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

use gaisler.pads.all; -- used for /O pads
use gaisler.misc.all;

entity mctrl_ex is
port (
clk : in std_ulogic;
resetn : in std_ulogic;
pliref : in std_ulogic;
... -- other signals

-- sdram memory bus
sdcke :outstd_logic_vector (1 downto 0); -- clk en
sdcsn : out std_logic_vector (1 downto 0); -- chip sel

sdwen : out std_logic; -- write en
sdrasn : out std_logic; -- row addr stb
sdcasn : out std_logic; -- col addr stb
sddgm : out std_logic_vector (7 downto 0); -- data i/o mask
sdclk :out std_logic; -- sdram clk output
sa :out std_logic_vector(14 downto 0); -- optional sdram address
sd :inout std_logic_vector(63 downto 0); -- optional sdram data
cb : inout std_logic_vector(7 downto 0) --EDAC checkbits
)i
end;

architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- signals used to connect SDRAM controller and SDRAM memory bus
signal sdi : sdctrl_in_type;
signal sdo : sdctrl_out_type;

signal clkm, rstn : std_ulogic; -- system clock and reset
signal ce : std_logic_vector(0 to 2); --correctable error signal vector

-- signals used by clock and reset generators
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;
signal gnd : std_ulogic;

begin

-- AMBA Components are defined here ...

AEROFLEX GAISLER 262 GRIP

-- Clock and reset generators

clkgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)

port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

cgi.plictrl <="00"; cgi.pllrst <= resetn; cgi.pliref <= pliref;

rstO : rstgen
port map (resetn, clkm, cgo.clklock, rstn);

-- AHB Status Register

astatO : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 3)
port map(rstn, clkm, ahbmi, ahbsi, ce, apbi, apbo(13));

-- SDRAM controller
sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
cntbits => 4)
port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo, ce(0));

-- input signals
sdi.data(31 downto 0) <= sd(31 downto 0);

-- connect SDRAM controller outputs to entity output signals
sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
sddgm <= sdo.dgm;

-- 1/0 pads driving data bus signals
sd_pad : iopadv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));

-- 1/0 pads driving checkbit signals

cb_pad : iopadv generic map (width => 8)
port map (cb, sdo.cb, sdo.bdrive, sdi.cb);

end;

AEROFLEX GAISLER 263 GRIP

AEROFLEX GAISLER 264 GRIP
30 FTSDCTRL64 - 64-bit PC133 SDRAM Controller with EDAC

30.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to a 64 bit
wide data bus. The controller acts as a slave on the AHB bus where it occupies a configurable amount
of address space for SDRAM access. Error correction is optionally implemented using BCH or Reed-
Solomon codes. The SDRAM controller function is programmed by writing to configuration registers
mapped into AHB I/O address space. Chip-select decoding is provided for two SDRAM banks.

AHB

A D CB
SDRAM
CONTROLLER
A[14:13]
SDCLK CLK C—
SDCSN[L:0] CSN BA A[12:0]
| —) SDRASN RAS SDRAM A |(ee—
SDCASN CAS D[63:0]
SDWEN WE b —CB[310] =
SDDQM[7:0] DQM ——
SDCKE CKE ' g
ADDRESS[14:0] P
DI63:0] | »
CB[31:0)] | =)

Figure 104. SDRAM Memory controller connected to AMBA bus and SDRAM

30.2 Operation

30.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two memory banks of PC100/PC133
compatible devices. The controller supports 64M, 256M and 512M devices with 8 - 12 column-
address bits, up to 13 row-address bits, and 4 internal banks. The size of each of the two memory
banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The operation of the
SDRAM controller is controlled through four configuration registers (see section 30.3). The
FTSDCTRL64 controller also supports mobile SDRAM if required.

30.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled, the initialization sequence is appended with
a LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
accesses and single location access on write accessespifitbeVHDL generic is 1, the initializa-

tion sequence is also sent automatically when reset is released. Note that some SDRAM devices
require a stable clock of 100 us before any commands might be sent. When using on-chip PLL, this
might not always be the case and plaeon VHDL generic should be set to 0 in such cases.

AEROFLEX GAISLER 265 GRIP

30.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these fields affect the SDRAM timing as described in table 278.

Table 278SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
CAS latency, RAS/CAS delaydis, trcp) TCAS +2

Precharge to activatezf) TRP + 2

Auto-refresh command periocgkfo) TRFC + 3

Activate to prechargeghs) TRFC +1

Activate to Activate (o) TRP + TRFC + 4

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled, the
remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

Table 279SDRAM example programming

SDRAM settings tcas tre trp trrc tras

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50
100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50
133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52
133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

Table 280Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Self Refresh mode to first valid commangks) tXSR

30.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15)8s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

30.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile SDRAM
functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving
configuration register to “010” (Self Refresh). The controller will enter self refresh mode after every

AEROFLEX GAISLER 266 GRIP

memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-Sav-
ing configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available when
the VHDL generianobileis >= 1.

30.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deactivated.
All data in the SDRAM is retained during this operation. To enable the power-down mode, set the
PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller will
enter power-down mode after every memory access (when the controller has been idle for 16 clock
cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the control-
ler in this mode. When exiting this mode a delay of one clock cycles are added before issue any com-
mand to the memory. This mode is only available when the VHDL gemebdeis >= 1.

30.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available when the VHDL genenmbileis >= 1 and mobile SDRAM func-
tionality is enabled.

30.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory ignore the TCSR bits. This
functionality is only available when the VHDL genenwbileis >= 1 and mobile SDRAM function-

ality is enabled.

30.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL generiwbileis >= 1 and mobile SDRAM function-

ality is enabled.

30.2.10 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in the
SDRAM Configuration register: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR)
and LOAD-EXTMODE-REG (EMR). If the LMR command is issued, the CAS delay as programmed

in SDCFG will be used, remaining fields are fixed: page read burst, single location write, sequential
burst. If the EMR command is issued, the DS, TCSR and PASR as programmed in Power-Saving con-
figuration register will be used. The command field will be cleared after a command has been exe-
cuted. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER command
should be generated at the same time.

AEROFLEX GAISLER 267 GRIP

30.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command with data read after the programmed CAS delay. A read burst is performed if a
burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE
command, no banks are left open between two accesses. Note that only 64-bit AHB bursts are sup-
ported by the SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and
half-words but they cannot be used.

30.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only 64-bit bursts are supported.

30.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13].

30.2.14 Data bus

The external SDRAM data bus should be connected to SD[63:0]. The polarity of the output enable
signal to the data pads can be selected with the oepol generic. Sometimes it is difficult to fulfil the out-
put delay requirements of the output enable signal. In this case, the vbdrive signal can be used instead
of bdrive. Each bit in this vector is driven by a separate register.

30.2.15 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera devices, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

30.2.16 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(64, 8)

or a Reed-Solomon (64, 32) code. The BCH code It is capable of correcting one bit error and detect-
ing two bit errors, while the RS code can correct four nibble errors. Correctable errors are automati-
cally corrected and generally not visible externally unless explicitly checked. This checking is done
by monitoring the ce signal and single error counter. This counter holds the number of detected single
errors. The ce signal is asserted one clock cycle when a single error is detected and should be con-
nected to the AHB status register. This module stores the AHB status of the instruction causing the
single error and generates interrupts (see the AHB status register documentation for more informa-
tion).

The EDAC functionality can be enabled/disabled during run-time from the EDAC configuration regis-
ter (and the logic can also be completely removed during synthesis with VHDL generics). The EDAC
checkbits register also contains checkbit fields for diagnostic reads and writes. These diagnostic func-
tions are used for testing the EDAC functions on-chip and allows one to store arbitrary checkbits with
each written word. Checkbits read from memory can also be controlled.

AEROFLEX GAISLER 268 GRIP

30.3 Registers

The memory controller is programmed through register(s) mapped into the AHB 1/O space defined by
the controllers AHB BARL.

Table 281SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

Ox4 SDRAM Power-Saving configuration register
0x8 EDAC Configuration register

0xC EDAC checkbits registers

Table 282. SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh |tRP tRFC tCD SDRAM |SDRAM| SDRAM Page- [MS| D64 SDRAM refresh load value
bank size |col. size| command | Burst

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile SDRAM support
is enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile SDRAM
support is enabled, this field is extended with the bit 30.

26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-
REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

25:23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000"= 4
Mbyte, “001"= 8 Mbyte, “010"= 16 Mbyte “111"= 512 Mbyte.

22:21 SDRAM column size. “00"=256, “01"=512, “10"=1024, “11"=4096 when bit[25:23]= “111", 2048
otherwise.

20:18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010"=PRE-

CHARGE, “100"=AUTO-REFRESH, “110"=LOAD-COMMAND-REGISTER, “111"=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 =pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 64-bit data bus (D64) - Reads ‘1’ to indicate 64-bit data bus. Read-only.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =

((reload value) + 1) / SYSCLK

Table 283SDRAM Power-Saving configuration register

31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0
‘ME‘ CE‘ Reserved ‘ tXSR ‘res‘ PMODE ‘ Reserved ‘ DS ‘ TCSR ‘ PASR
31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)
30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.
29: 24 Reserved
23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile

SDR support is disabled).
19 Reserved

AEROFLEX GAISLER

30.4

18: 16

15:7

6:5

4:3

2:0

31 30 29

269 GRIP

Table 283SDRAM Power-Saving configuration register
Power-Saving mode (Read only when Mobile SDR support is disabled).
“000": none
“001": Power-Down (PD)

“010": Self-Refresh (SR)
“101": Deep Power-Down (DPD)

Reserved

Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full

“01": One-half

“10”: One-quarter

“11": Three-quarter

Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).

“00": 702C

“01": 452C

“10™ 15aC

“11™: 852C

Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000": Full array (Banks 0, 1, 2 and 3)

“001": Half array (Banks 0 and 1)

“010": Quarter array (Bank 0)

“101": One-eighth array (Bank 0 with row MSB = 0)

“110": One-sixteenth array (Bank 0 with row MSB = 00)

Table 284EDAC Configuration register
25 24 23 22 21 20 19 18 17 16 15 7 6 5 4 3 2 0

Reserved

‘ SEC ‘ Reserved ‘ED‘RS‘WB‘RB‘EN‘ Reserved ‘

25: 24

20
19
18
17

16

31

Single error counter. This field is increments each time a single error is detected. It saturates when
the maximum value is reached (3).

Disable EDAC checking. EDAC errors will be ignored if set to 1
Reed-Solomon enable. Set to 1 to enable RS coding instead of BCH.
Write bypass. Write the EDAC checkbits register as checkbits into memory for all write operations.

Read bypass. Store the checkbits read from memory during a read operation into the EDAC check-
bits register.

EDAC enable. Set to 1 to enable EDAC error detection and correction.

Table 285EDAC checkbits register

EDAC Test Checkbits

310

Checkbits for diagnostic read/write

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x058. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER

270

30.5 Configuration options

Table 286 shows the configuration options of the core (VHDL generics).

Table 286Configuration options

GRIP

Generic Function Allowed range | Default
hindex AHB slave index 1-NAHBSLV-1 | O
haddr ADDR field of the AHB BARO defining SDRAM area. Defaylt0 - 16#FFF# 16#000#
is 0xFO000000 - OXFFFFFFFF.
hmask MASK field of the AHB BARO defining SDRAM area. 0 - 16#FFF# 16#F00#,
ioaddr ADDR field of the AHB BARL1 defining I/O address space whefe- 16#FFF# 16#000#
SDCEFG register is mapped.
iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#FFH
wprot Write protection. 0-1 0
invclk Inverted clock is used for the SDRAM. 0-1
pwron Enable SDRAM at power-on initialization 0-1
sdbits 32 or 64-bit data bus width. 32,64 32
oepol Polarity of bdrive and vbdrive signals. O=active low, 1=active O - 1 0
high
pageburst Enable SDRAM page burst operation. 0-2 0
0: Controller uses line burst of length 8 for read operations.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on PageBurst
bit in SDRAM configuration register.
mobile Enable Mobile SDRAM support 0-3 0
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)
edac Enable EDAC 0-3 0
0: No EDAC
1: BCH EDAC
2: RS EDAC
3: BCH and RS EDAC

AEROFLEX GAISLER

30.6 Signal descriptions

271

Table 287 shows the interface signals of the core (VHDL ports).

Table 287Signal descriptions

GRIP

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
AHBSI 1) Input AHB slave input signals -
AHBSO 1) Output AHB slave output signals -
SDI WPROT Input Not used -
DATA[63:0] Input Data High
SDO SDCKEJ1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDWEN Output SDRAM write enable Low
RASN Output SDRAM row address strobe Low
CASN Output SDRAM column address strobe Low
DQM[7:0] Output SDRAM data mask: Low
DQM]7] corresponds to DATA[63:56],
DQMI6] corresponds to DATA[55:48],
DQM]J5] corresponds to DATA[47:40],
DQM]J4] corresponds to DATA[39:32],
DQM]3] corresponds to DATA[31:24],
DQM[2] corresponds to DATA[23:16],
DQM]J1] corresponds to DATA[15:8],
DQM[0] corresponds to DATA[7:0].
BDRIVE Output | Drive SDRAM data bus Low/High?
VBDRIVE[63:0] Output Identical to BDRIVE but has one signal for eachgw/High?
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.
VCBDRIVE[31:0] Output Identical to BDRIVE but has one signal for eachow/High?
check bit. Every index is driven by its own regjis-
ter. This can be used to reduce the output delay.
ADDRESS[14:0] Output SDRAM address -
DATA[63:0] Output SDRAM data -
CB[31:0] Outputs | EDAC checkbits. BCH uses [7:0] only.

1) see GRLIB IP Library User's Manual

2) Polarity selected with the oepol generic

30.7 Library dependencies

Table 288 shows libraries used when instantiating the core (VHDL libraries).

Table 288.ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, componen
laration

dec-

AEROFLEX GAISLER 272 GRIP

30.8

Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the SDRAM controller. The external SDRAM bus is defined on the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator.

SDRAM controller decodes SDRAM area:0x60000000 - Ox6FFFFFFF. SDRAM Configuration regis-
ter is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
port (
clk : in std_ulogic;
resetn : in std_ulogic;
pliref : in std_ulogic;
sdcke :out std_logic_vector (1 downto 0); -- clk en
sdcsn : out std_logic_vector (1 downto 0); -- chip sel

sdwen : out std_logic; -- write en
sdrasn : out std_logic; -- row addr stb
sdcasn : out std_logic; -- col addr stb
sddgm : out std_logic_vector (7 downto 0); -- data i/o mask
sdclk : out std_logic; -- sdram clk output
sa :out std_logic_vector(14 downto 0); -- optional sdram address
S| :inout std_logic_vector(63 downto 0) -- optional sdram data
)
end;

architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal sdi : sdctrl_in_type;
signal sdo : sdctrl_out_type;

signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;

signal cgo : clkgen_out_type;

signal gnd : std_ulogic;

begin
-- Clock and reset generators
clkgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)
port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

cgi.plictrl <= "00"; cgi.pllrst <= resetn; cgi.pliref <= pliref;

rstO : rstgen
port map (resetn, clkm, cgo.clklock, rstn);

AEROFLEX GAISLER 273 GRIP

-- SDRAM controller

sdc : ftsdctrl64 generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
ioaddr => 1, pwron => 0, invclk => 0)
port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo);

-- connect SDRAM controller outputs to entity output signals
sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
sdcsn <= sdo.sdcsh; sdrasn <= sdo.rash; sdcasn <= sdo.casn;
sddgm <= sdo.dgm;

--Data pad instantiation with scalar bdrive

sd_pad : iopadv generic map (width => 32)

port map (sd(63 downto 0), sdo.data(63 downto 0), sdo.bdrive, sdi.data(63 downto 0));
end;

--Alternative data pad instantiation with vectored bdrive

sd_pad : iopadvv generic map (width => 32)

port map (sd(63 downto 0), sdo.data(63 downto 0), sdo.vbdrive(63 downto 0), sdi.data(63
downto 0));

end;

AEROFLEX GAISLER 274 GRIP

31 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller

31.1 Overview

The fault tolerant 32-bit PROM/SRAM memory interface uses a common 32-bit memory bus to inter-
face PROM, SRAM and I/O devices. Support for 8-bit PROM banks can also be separately enabled.
In addition it also provides an Error Detection And Correction Unit (EDAC), correcting one and
detecting two errors. Configuration of the memory controller functions is performed through the APB
bus interface.

AHB A D CB
SRO.ROMSN cs A
SRO.OEN o PROM » =)
SRO.WRITEN WE ca -
MEMORY
) CONTROLLER
A
SRO.RAMSN cs
SRO.RAMOEN oE SRAM D =)
SRO.RWEN[3:0] WE cB =]
A 1
SRO.IOSN cs
oe 10 D L |
WE
SRI.A[27:0]
SRI.D[31:0
SRO.D[[31:O]]< 1-’
cB[7:0] |«
AHB/APB ‘APB
—) .
Bridge

Figure 105. 32-bit FT PROM/SRAM/IO controller

31.2 Operation

The controller is configured through VHDL generics to decode three address ranges: PROM, SRAM
and I/O area. By default the PROM area is mapped into address range 0x0 - OXxOOFFFFFF, the SRAM
area is mapped into address range 0x40000000 - Ox40FFFFFF, and the I/O area is mapped to
0x20000000 - Ox20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to 8 chip select sig-
nals. The controller generates both a common write-enable signal (WRITEN) as well as four byte-
write enable signals (WREN). If the SRAM uses a common write enable signal the controller can be
configured to perform read-modify-write cycles for byte and half-word write accesses. Number of
waitstates is separately configurable for the three address ranges.

The EDAC function is optional, and can be enabled withédacenvHDL generic. The configura-

tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. Single errors are
corrected without generating any indication of this condition in the bus response. If a multiple error is
detected, a two cycle error response is given on the AHB bus.

AEROFLEX GAISLER 275 GRIP

Single errors can be monitored in two ways:
« by monitoring the CE signal which is asserted for one cycle each time a single error is detected.
« by checking the single error counter which is accessed from the MCFG3 configuration register.

The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information. When EDAC is enabled, one extra latency cycle is generated during reads and
subword writes.

The EDAC function can be enabled for SRAM and PROM area accesses, but not for I1/O area
accesses. For the SRAM area, the EDAC functionality is only supported for accessing 32-bit wide
SRAM banks. For the PROM area, the EDAC functionality is supported for accessing 32-bit wide
PROM banks, as well as for read accesses to 8-bit wide PROM banks.

The equations below show how the EDAC checkbits are generated:

CBO = DO ~ D4 ~ D6 ~ D7 ~ D8 ~ D9 ~ D11 ~ D14 ~ D17 ~ D18 ~ D19 ~ D21 ~ D26 ~ D28 ~ D29 ~ D31
CB1 =D0O~D1~D2 " D4 ~D6 " D8 " D10 ~ D12 ~ D16 ~ D17 ~ D18 ~ D20 ~ D22 ~ D24 ~ D26 ™ D28
CB2 = DO ~ D3 ~ D4 ~ D7 ~ D9 ~ D10 ~ D13 ~ D15 ~ D16 ~ D19 ~ D20 ~ D23 ~ D25 ~ D26 ~ D29 ~ D31
CB3 =D0O ~ D1 ~ D5 ~ D6 ~ D7 ~ D11 ~ D12 ~ D13 ~ D16 ~ D17 ~ D21 ~ D22 ~ D23 ~ D27 ™~ D28 ~ D29
CB4 = D2 ~D3 D4 ~D5 " D6 ~ D7 ~ D14 ~ D15 ~ D18 ~ D19 ~ D20 ~ D21 ~ D22 ~ D23 ~ D30 ~ D31
CB5 = D8 ~ D9 ~ D10 ~ D11 ~ D12 ~ D13 ~ D14 ~ D15 ~ D24 ~ D25 ~ D26 ~ D27 ~ D28 ~ D29 ~ D30 ~ D31
CB6 = DO ~ D1 ~ D2 ~ D3 ~ D4 ~ D5 ~ D6 ~ D7 ~ D24 ~ D25 ~ D26 ™~ D27 ~ D28 ~ D29 ~ D30 ~ D31

31.2.1 8-bit PROM access

The FTSRCTRL controller can be configured to access an 8-bit wide PROM. The data bus of the
external PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit
mode is enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area
will be done in four-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. The whole 32-bit
word is then output on the AHB data bus, allowing the master to chose the bytes needed (big-endian).

Writes should be done one byte at a time. For correct word aligned 32-bit word write accesses, the
byte should always be driven on bits 31 to 24 on the AHB data bus. For non-aligned 32-bit word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For correct half-word aligned 16-bit half-word write accesses, the byte should always be
driven on bits 31 to 24, or 15 to 8, on the AHB data bus. For non-aligned 16-bit half-word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For 8-bit word write accesses the byte should always be driven on the AHB data bus bits
that corresponds to the byte address (big-endian). To summarize, all legal AMBA AHB write accesses
are supported according to the AMBA standard, additional illegal accesses are supported as described
above, and it is always the addressed byte that is output.

It is possible to dynamically switch between 8- and 32-bit PROM mode by writing to the RBW field
of the MCFGL1 register. The BWIDTH[1:0] input signal determines the reset value of this RBW regis-
ter field. When RBW is “00” then 8-bit mode is selected. If RBW is “10” then 32-bit mode is selected.
Other RBW values are reserved for future use. SRAM access is not affected by the 8-bit PROM mode.

It is also possible to use the EDAC in the 8-bit PROM mode, configured by the edacen VHDL
generic, and enabled via the MCFG3 register. Read accesses to the 8-bit PROM area will be done in
five-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. After a potential correction, the
whole 32-bit word is output on the AHB data bus, allowing the master to chose the bytes needed (big-
endian). EDAC support is not provided for write accesses, they are instead performed in the same way
as without the EDAC enabled. The checksum byte must be written by the user into the correct byte
address location.

The fifth byte corresponds to the EDAC checksum and is located in the upper part of the effective
memory area, as explained in detail in the definition of the MCFG1 memory configuration register.
The EDAC checksums are located in the upper quarter of what is defined as available EDAC area by
means of the EBSZ field and the ROMBSZ field or rombanksz VHDL generic. When set to 0, the size

AEROFLEX GAISLER 276 GRIP

of the available EDAC area is defined as the PROM bank size. When set to 1, as twice the PROM
bank size. When set to 2, as four times the PROM bank size. And when set to 3, as eight times the
PROM bank size. For any other value than 0, the use of multiple PROM banks is required.

Example, if ROMBSZ=10 and EBSZ=1, the EDAC area is 8KiB*2"ROMBSZ*2"EBSZ=
16MiB=0x01000000. The checksum byte for the first word located at address 0x00000000 to
0x00000003 is located at 0x00C00000. The checksum byte for the second word located at address
0x00000004 to 0x00000007 is located at 0Ox00C00001, and so on. Since EBSZ=1, two PROM banks
are required for implementing the EDAC area, each bank with size 8MiB=0x00800000.

31.2.2 Access errors

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFGL1 and is active for all types of accesses to all areas (PROM, SRAM
and 1/0). The BEXCN signal is sampled on the same cycle as read data is sampled. For writes it is
sampled on the last rising edge before writen/rwen is de-asserted (writen and rwen are clocked on the
falling edge). When a bus exception is detected an error response will be generated for the access.

data lead-out

A AVAVAVAVAVAVAVAVAWAW AW,
address X AL X
romsn/iosn/ramsn _/
oen \ /
data @}

bexcn /

Figure 106. Read cycle with BEXCN.

lead-in datal data2 data3 lead-out

LAV AVAVAVAVAVAVAVYAVAY AW
address X AL X
romsn/iosn/ramsn \ /
rwen _ _/
data D1
bexcn _ /

Figure 107. Write cycle with BEXCN.

31.2.3 Using bus ready signalling

The Bus Ready (BRDYN) signal can be used to add waitstates to |/O-area accesses, covering the com-
plete memory area and both read and write accesses. It is enabled by setting the Bus Ready Enable

AEROFLEX GAISLER 277 GRIP

(BRDYEN) bit in the MCFGL1 register. An access will have at least the amount of waitstates set with
the VHDL generic or through the register, but will be further stretched until BRDYN is asserted.
Additional waitstates can thus be inserted after the pre-set number of waitstates by de-asserting the
BRDYN signal. BRDYN should be asserted in the cycle preceding the last one. It is recommended
that BRDYN remains asserted until the IOSN signal is de-asserted, to ensure that the access has been
properly completed and avoiding the system to stall. Read accesses will have the same timing as when
EDAC is enabled while write accesses will have the timing as for single accesses even if bursts are
performed.

lead-in wait data data

N AVAVAVAVAVAVAVAVAY AV AW/
A
/
/

address AL

josn \
oen \

data

(o1)
/

brdyn \ \

first
sample

Figure 108.1/0 READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDY

31.3 PROM/SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures hereafter.

datal lead-out datal lead-out

S AYAVaAV VAV AV AVAV AV AV AV,
address A1 X A2 X

ramsn L/

L/

data {OPD—0D)

o EE—2)

haddr Al n2 X A3

htrans 10 10 X 00

hready \ / \ /

hrdata X D1l X X D2 X

Figure 109. PROM/SRAM non-consecutive read cyclecs.

AEROFLEX GAISLER 278 GRIP

datal datal datal datal lead-out

A AVAVAVAVAVAVAVAWAWAWAW,

address AL A2)X As]X A4

ramsn \ /

oen \ /

data (o] X p2[X D3[X D4])

cb (ce1Xce Xced Xced)

haddr Al a2 X A3 X a4 X A5
htrans 5 T X 50

hready _/
hrdata X p1] X p2[X D3[X D4 X

Figure 110. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC disabled.

datal wunused lead-out datal unused lead-out

AV aVaVaVaVaAVAVAV AV AVAW,
address Al X A2 X

£ I AN N 7 N B

AN /N B

e &2

o e

haddr Al A2 X A3

htrans 10 10 X 00

hready \ /_ '\ /

hrdata X D1l X X D2 X

Figure 111. 32-bit PROM/SRAM non-sequential read access with 0 wait-states and EDAC enabled.

AEROFLEX GAISLER

clk

address
romsn
ramsn

oen

data

cb

haddr

htrans

hready

hrdata

datal

"\

27

datal datal

S\

9

datal unused lead-out

S\

AVAW

GRIP

ALX A2 X A3[X A4
\ /
\ /
(D1 X D2| X D3[X D4|)
(cB1 XCB2 XCB3 XCB4 }
Al A2 X A3[X A4 A5
10 11 00

/

X D1

X D2

X D3

X D4X

Figure 112. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC enabled..

clk
address
romsn

ramsn

writen

data

cb

haddr

htrans

hready

hwdata

\

lead-in datal data2

M\

AVAW

lead-out

N\

lead-in

M\

datal data2

S\

lead-out

"\

S\

Al

A2

—

\

AL e X A3

10 0 X %0
I/ N\ /
X_[or [X D2 X

Figure 113. 32-bit PROM/SRAM non-sequential write access with 0 wait-states and EDAC disabled.

AEROFLEX GAISLER 280 GRIP

lead-in datal data2 datal data2 datal data2 lead-out

S AVAVAVAVAYAVAVAVAY AV AW,
odcress ~ e X m X

o \ /

/T T\

o G G2 G

o I G2 G-

haddr AT e X e X A4

wans [— _ v _

nready /[[\

e [TXJor b2 IX_bs X

Figure 114. 32-bit PROM/SRAM sequential write access with 0 wait-states and EDAC disabled.

If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles. The timing for write accesses is not affected
when EDAC is enabled while one extra latency cycle is introduced for single access reads and at the
beginning of read bursts.

AEROFLEX GAISLER 281 GRIP

A AVAVAVAVAVAVAVAWAWAWAW,

address Al
ramsn \ /
writen __/
oen \ /

data / \

{ D1) D1/M1
cb / \

\CBl) CM1
haddr Al A2
htrans 10 00
hready \ /
hwdata X

M X

Figure 115. 32-bit PROM/SRAM rmw access with 0 wait-states and EDAC disabled.

Read-Modify-Write (RMW) accesses will have an additional waitstate inserted to accommodate
decoding when EDAC is enabled.

I/O accesses are similar to PROM and SRAM accesses but a lead-in and lead-out cycle is always
present.

lead-in datal data2 data3 lead-out

N AVAVAVAVAVAVAVAWAWAWAW,

address Al X
iosn \ /
writen __/

data D1
haddr Al A2
htrans 10 00

hready \ /

D1

hwdata X X

Figure 116. I/O write access with 0 wait-states.

AEROFLEX GAISLER

clk
address
iosn
oen
data
haddr

htrans

hready

hrdata

31.4 Registers

282 GRIP

lead-in data lead-out

AVAVAVAVAVAVAVAWAWAWAW,
|

(<]

Al A2

10 00

Ao X

Figure 117.1/0O read access with 0 wait-states

The core is programmed through registers mapped into APB address space.

Table 289 T PROM/SRAM/IO controlleregisters

APB Address offset Register
0x0 Memory configuration register 1
0x4 Memory configuration register 2
0x8 Memory configuration register 3
Table 290Memory configuration register 1.
31 27 26 25 24 23 20 19 18 17 14 13 12 11 10 9 8 7 4 3 0
RESERVED [BR|BE| Iows ROMBSZ [EBSZ [RW| [RBW | RESERVED | ROMWS
31: 27 RESERVED
26 Bus ready enable (BR) - Enables the bus ready signal (BRDYN) for 1/O-area.
25 Bus exception enable (BE) - Enables the bus exception signal (BEXCEN) for PROM, SRAM and I/
O areas
24 RESERVED
23: 20 1/0 wait states (IOWS) - Sets the number of waitstates for accesses to the 1/0-area. Only available if
the wsreg VHDL generic is set to one.
19: 18 RESERVED
17: 14 ROM bank size (ROMBSZ) - Sets the PROM bank size. Only available if the rombanksz VHDL

generic is set to zero. Otherwise, the rombanksz VHDL generic sets the bank size and the value can
be read from this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB *
2*ROMBSZ).

AEROFLEX GAISLER

31.5

283 GRIP

Table 290Memory configuration register 1.

13:12 EDAC bank size (EBSZ) - Sets the EDAC bank size for 8-bit PROM support. Only available if the
rombanksz VHDL generic is zero, and edacen and prom8en VHDL generics are one. Otherwise, the
value is fixed to 0. The resulting EDAC bank size is 2"EBSZ * 2"ROMBSZ * 8KiB. Note that only
the three lower quarters of the bank can be used for user data. The EDAC checksums are placed in
the upper quarter of the bank.

11 ROM write enable (RW) - Enables writes to the PROM memory area. When disabled, writes to the
PROM area will generate an ERROR response on the AHB bus.

10 RESERVED

9. 8 ROM data bus width (RBW) - Sets the PROM data bus width. “00” = 8-bit, “10” = 32-bit, others
reserved.

7. 4 RESERVED

3: 0 ROM waitstates (ROMWS) - Sets the number of waitstates for accesses to the PROM area. Reset to
all-ones. Only available if the wsreg generic is set to one.

Table 291 Memory configuration register 2.
31 13 12 9 8 7 6 5 4 3 2 1 0
RESERVED ‘ RAMBSZ ‘ ‘RW‘ RESERVED ‘ RAMW ‘

31:13 RESERVED

12: 9 RAM bank size (RAMBSZ) - Sets the RAM bank size. Only available if the banksz VHDL generic
is set to zero. Otherwise, the banksz VHDL generic sets the bank size and the value can be read from
this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB * 2**RAMBSZ)

8 7 RESERVED

6 Read-modify-write enable (RW) - Enables read-modify-write cycles for write accesses. Only availa-
ble if the rmw VHDL generic is set to one.

5 2 RESERVED

1: 0 RAM waitstates (RAMW) - Sets the number of waitstates for accesses to the RAM area. Only avail-
able if the wsreg VHDL generic is set to one.

Table 292Memory configuration register 3.
31 20 19 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED ‘ SEC ‘WB‘ RB ‘ SE ‘ PE ‘ TCB

31: 20 RESERVED

19:12 Single error counter.(SEC) - This field increments each time a single error is detected until the max-
imum value that can be stored in the field is reached. Each bit can be reset by writing a one to it.

11 Write bypass (WB) - Enables EDAC write bypass. When enabled the TCB field will be used as
checkbits in all write operations.

10 Read bypass (RB) - Enables EDAC read bypass. When enabled checkbits read from memory in all
read operations will be stored in the TCB field.

9 SRAM EDAC enable (SE) - Enables EDAC for the SRAM area.

8 PROM EDAC enable (PE) - Enables EDAC for the PROM area. Reset value is taken from the input
signal sri.edac.

7.0 Test checkbits (TCB) - Used as checkbits in write operations when WB is activated and checkbits

from read operations are stored here when RB is activated.

All the fields in MCFG3 register are available if the edacen VHDL generic is set to one except SEC
field which also requires that the errcnt VHDL generic is set to one. The exact breakpoint between the
SEC and RESERVED field depends on the cntbits generic. The breakpoint is 11+cntbits. The values
shown in the table is for maximum cntbits value 8.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x051. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 284 GRIP
31.6 Configuration options
Table 289 shows the configuration options of the core (VHDL generics).
Table 293 Controller configuration options
Generic Function Allowed range | Default
hindex AHB slave index. 1-NAHBSLV-1 | O
romaddr ADDR field of the AHB BARO defining PROM address spagd) - 16#FFF# 16#000#
Default PROM area is 0x0 - OXFFFFFF.
rommask MASK field of the AHB BARO defining PROM address spa¢ce. 0 - 16#FFF# 16#FFO#
ramaddr ADDR field of the AHB BAR1 defining RAM address space.0 - 16#FFF# 16#400#
Default RAM area is 0x40000000-0x40FFFFFF.
rammask MASK field of the AHB BAR1 defining RAM address spacs. 0 -16#FFF# 16#FFQ#
ioaddr ADDR field of the AHB BARZ2 defining IO address space. |0 - 16#FFF# 16#200#
Default RAM area is 0x20000000-0x20FFFFFF.
iomask MASK field of the AHB BAR2 defining 10 address space. 0 - 16#FFF# 16#FFQ#
ramws Number of waitstates during access to SRAM area. 0-15 0
romws Number of waitstates during access to PROM area. 0-15 2
iows Number of waitstates during access to 10 area. 0-15 2
rmw Enable read-modify-write cycles. 0-1 0
srbanks Set the number of RAM banks. 1-8 1
banksz Set the size of bank 1 - 4. 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, |.0,- 15 15
15 = 256 MiB (i.e. 8 KiB * 2**banksz). If set to zero, the bank
size is set with the rambsz field in the MCFG2 register.
rombanks Sets the number of PROM banks available. 1-8 1
rombanksz Sets the size of one PROM bank. 1 = 16KiB, 2 = 32KiB, 3 £0 - 15 15
64KiB, ..., 15 = 256 MiB (i.e. 8 KiB * 2**rombanksz). If set tp
zero, the bank size is set with the rombsz field in the MCFG[L
register.
rombankszdef Sets the reset value of the rombsz register field in MCFG1|iD - 15 15
available.
pindex APB slave index. 1-NAPBSLV-1 | O
paddr APB address. 1- 16#FFF# 0
pmask APB address mask. 1- 16#FFF# 16#FFF#
edacen EDAC enable. If set to one, EDAC logic is synthesized. 0-1 0
errcnt If one, a single error counter is added. 0-1 0
cntbits Number of bits in the single error counter. 1-8
wsreg Enable programmable waitstate generation. 0-1 0
prom8en Enable 8-bit PROM mode. 0-1 0
oepol Select polarity of output enable signals. 0 = active low, G- 1 0
active high.
31.7 Signal descriptions
Table 294 shows the interface signals of the core (VHDL ports).
Table 294Signal descriptions
Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low

AEROFLEX GAISLER 285 GRIP
Table 294Signal descriptions

Signal name Field Type Function Active

SRI DATA[31:0] Input Memory data High
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input Not used -
BWIDTHI[1:0] Input Sets the reset value of the PROM data bus wjdth

field in the MCFGL1 register

SD[31:0] Input Not used -
CB[7:0] Input Checkbits -
PROMDATA[31:0] | Input Not used -

EDAC

Input

The reset value for the PROM EDAC enable

bi

t High

AEROFLEX GAISLER 286 GRIP
Table 294Signal descriptions
Signal name Field Type Function Active
SRO ADDRESS[31:0] Output Memory address High
DATA[31:0] Output Memory data High
RAMSN][7:0] Output SRAM chip-select Low
RAMOEN][7:0] Output SRAM output enable Low
IOSN Output 10 area chip select Low
ROMSNJ[7:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable: Low
WRN][O] corresponds to DATA[31:24],
WRN[1] corresponds to DATA[23:16],
WRN][2] corresponds to DATA[15:8],
WRN[3] corresponds to DATA[7:0].
Any WRNJ] signal can be used for CBJ[].
MBENT[3:0] Output Byte enable:
MBENTJO] corresponds to DATA[31:24],
MBENT[1] corresponds to DATA[23:16],
MBENT[2] corresponds to DATA[15:8],
MBENT[3] corresponds to DATA[7:0].
Any MBEN]] signal can be used for CB[].
BDRIVE[3:0] Output Drive byte lanes on external memory bus.Conhtow
trols 1/0-pads connected to external memory
bus:
BDRIVE[OQ] corresponds to DATA[31:24],
BDRIVE[1] corresponds to DATA[23:16],
BDRIVE[2] corresponds to DATA[15:8],
BDRIVE[3] corresponds to DATA[7:0].
Any BDRIVE[] signal can be used for CBJ].
READ Output Read strobe High
RAMN Output Common SRAM Chip Select. Always asserted_ow
when one of the 8 RAMSN signals is asserted.
ROMN Output Common PROM Chip Select. Always asserted.ow
when one of the 8 ROMSN signals is asserted.
SA[14:0] Output Not used -
CBJ[7:0] Output Checkbits -
PSEL Output Not used -
CE Output Single error detected. High
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SDO SDCASN Output Not used. All signals are drive to inactive stgte. Low

* see GRLIB IP Library User’s Manual

AEROFLEX GAISLER 287 GRIP

31.8 Library dependencies

Table 295 shows libraries used when instantiating the core (VHDL libraries).

Table 299.ibrary dependencies

31.9 Component declaration
The core has the following component declaration.
component ftsrctrl is

generic (
hindex :integer :=0;
romaddr :integer:=0;
rommask :integer := 16#ffO#;
ramaddr :integer := 16#400#;
rammask :integer := 16#ff0#;
ioaddr :integer := 16#200#;
iomask s integer := 16#ff0#;
ramws :integer :=0;
romws :integer := 2;
iows :integer := 2;
rmw :integer :=0;
srbanks :integerrange 1to 8 :=1,;
banksz : integer range 0 to 15 := 15;
rombanks :integerrange 1to 8 :=1;
rombanksz :integer range O to 15 := 15;
rombankszdef : integer range 0 to 15 := 15;
pindex :integer :=0;
paddr :integer := 0;
pmask : integer := 16#fff#;
edacen :integerrange 0 to 1 :=1;
errcnt :integerrange 0 to 1 :=0;
cntbits :integer range 1to 8 :=1;
wsreg :integer :=0;
oepol :integer :=0;
prom8en :integer :=0

);

port (
rst :in std_ulogic;
clk :in std_ulogic;
ahbsi 1in ahb_slv_in_type;
ahbso :out ahb_slv_out_type;
apbi ;in apb_slv_in_type;
apbo s out apb_slv_out_type;
Sri 1in memory_in_type;
Sro : out memory_out_type;
sdo : out sdctrl_out_type

)i

end component;
31.10 Instantiation

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. The CE signal of the memory controller is also connected to the AHB sta-
tus register.

AEROFLEX GAISLER 288 GRIP

Memory controller decodes default memory areas: PROM area is 0x0 - OxFFFFFF and RAM area is
0x40000000 - Ox40FFFFF.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.tech.all;

library gaisler;

use gaisler.memctrl.all;

use gaisler.pads.all; -- used for /O pads
use gaisler.misc.all;

entity mctrl_ex is
port (
clk : in std_ulogic;
resetn : in std_ulogic;
pliref : in std_ulogic;

-- memory bus

address :out std_logic_vector(27 downto 0); -- memory bus
data :inout std_logic_vector(31 downto 0);

ramsn :out std_logic_vector(4 downto 0);

ramoen :out std_logic_vector(4 downto 0);

rwen :inout std_logic_vector(3 downto 0);

romsn :out std_logic_vector(1 downto 0);

iosn :out std_logic;

oen :out std_logic;

read :out std_logic;

writen :inout std_logic;

brdyn :in std_logic;

bexcn :in std_logic;

sdram i/f

sdcke :outstd_logic_vector (1 downto 0); -- clk en
sdesn :out std_logic_vector (1 downto 0); -- chip sel

sdwen : out std_logic; -- write en
sdrasn : out std_logic; -- row addr stb
sdcasn : out std_logic; -- col addr stb
sddgm : out std_logic_vector (7 downto 0); -- data i/o mask
sdclk : out std_logic; -- sdram clk output
sa :out std_logic_vector(14 downto 0); -- optional sdram address
sd :inout std_logic_vector(63 downto 0); -- optional sdram data
cb :inout std_logic_vector(7 downto 0); --checkbits
)i
end;

architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- signals used to connect memory controller and memory bus
signal memi : memory_in_type;
signal memo : memory_out_type;

signal sdo : sdctrl_out_type;

signal wprot : wprot_out_type; -- dummy signal, not used
signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

AEROFLEX GAISLER 289

signal gnd : std_ulogic;
signal stati : ahbstat_in_type; --correctable error vector
begin

-- AMBA Components are defined here ...

-- Clock and reset generators

clkgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)

port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pliref <= pliref;

rstO : rstgen
port map (resetn, clkm, cgo.clklock, rstn);

-- AHB Status Register

astatO : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 1)
port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));

stati.cerror(0) <= memo.ce;

-- Memory controller
mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,

edacen => 1, errcnt => 1, cntbits => 4)

port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(10), memi, memo,
sdo);

-- 1/0 pads driving data memory bus data signals
datapads : for i in O to 3 generate
data_pad : iopadv generic map (width => 8)
port map (pad => data(31-i*8 downto 24-i*8),
0 => memi.data(31-i*8 downto 24-i*8),
en => memo.bdrive(i),
i => memo.data(31-i*8 downto 24-i*8));
end generate;

--1/0 pads driving checkbit signals
cb_pad : iopadv generic map (width => 8)
port map (pad => cb,
0 => memi.ch,
en => memo.bdrive(0),
i => memo.cb;

-- connect memory controller outputs to entity output signals

address <= memo.address; ramsn <= memo.ramsn; romsn <= memao.romsn;
oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;

writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;

sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;

sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddgm <= sdo.dgm;

end;

GRIP

AEROFLEX GAISLER 290 GRIP

32 FTSRCTRLS - 8-bit SRAM/16-bit IO Memory Controller with EDAC

32.1 Overview

The fault tolerant 8-bit SRAM/16-bit /O memory interface uses a common 16-bit data bus to inter-
face 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC),
correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits
are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller
functions is performed through the APB bus interface.

AHB A D
SRO.RAMSN cs A
SRO.OEN OE SRAM D *
SRO.WRITEN WE
MEMORY
 — CONTROLLER
A
SRO.IOSN Ccs
o 10 D =)
WE
SRI.A[27:0] 1
SRI.D[15:0] ¢
SRO.D[[15:O]] - =>
AHB/APB | APB
| G—)

Bridge

Figure 118. Block diagram

32.2 Operation

The controller is configured through VHDL generics to decode two address ranges: SRAM and 1/O
area. By default the SRAM area is mapped into address range 0x40000000 - Ox40FFFFFF, and the I/
O area is mapped to 0x20000000 - Ox20FFFFFF.

One chip select is decoded for the I/O area, while SRAM can have up to 8 chip select signals. The
controller generates a common write-enable signal (WRITEN) for both SRAM and I/O. The number
of waitstates may be separately configured for the two address ranges.

The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. The 8-bit input to the
EDAC function is split into two 4-bit nibbles. A modified hamming(8,4,4) coding featuring a single

error correction and double error detection is applied to each 4-bit nibble. This makes the EDAC capa-
ble of correcting up to two errors and detecting up to four errors per 8-bit data. Single errors (correct-
able errors) are corrected without generating any indication of this condition in the bus response. If a
multiple error (uncorrectable errors) is detected, a two cycle error response is given on the AHB bus.

Single errors may be monitored in two ways:

* by monitoring the CE signal which is asserted for one cycle each time a correctable error is
detected.

* by checking the single error counter which is accessed from the MCFG3 configuration register.

AEROFLEX GAISLER 291 GRIP

The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information.

The EDAC function can only be enabled for SRAM area accesses. If a 16-bit or 32-bit bus access is
performed, the memory controller calculates the EDAC checksum for each byte read from the mem-
ory but the indication of single error is only signaled when the access is done. (l.e. if more than one
byte in a 32-bit access has a single error, only one error is indicated for the hole 32-bit access.)

The equations below show how the EDAC checkbits are generated:

CB7 = Data[15] ~ Data[14] ~ Data[13] /'i.e. Data[7]
CBb6 = Data[15] N Data[14] * Data[12] /l'i.e. Data[6]
CB5 = Data[15] "~ Data[13] ~ Data[12] /l i.e. Data[5]
CB4 = Data[14] ~ Data[13] ~ Data[12] /l'i.e. Data[4]
CB3 = Data[11] ~ Data[10] ~ Data[9] /l'i.e. Data[3]
CB2 = Data[11] " Data[10] ~ Data[8] I/l i.e. Data[2]
CB1 = Data[11] ~ Data[9] * Data[8] /l'i.e. Data[1]
CBO = Data[10] ~ Data[9] ~ Data[8] I/l i.e. Data[0]

32.2.1 Memory access

The memory controller supports 32/16/8-bit single accesses and 32-bit burst accesses to the SRAM. A
32-bit or a 16-bit access is performed as multiple 8-bit accesses on the 16-bit memory bus, where data
is transferred on data lines 8 to 15 (Data[15:8]). The eight checkbits generated/used by the EDAC are
transferred on the eight first data lines (Data[7:0]). For 32-bit and 16-bit accesses, the bytes read from
the memory are arranged according to the big-endian order (i.e. for a 32-bit read access, the bytes read
from memory address A, A+1, A+2, and A+3 correspond to the bit[31:24], bit[23:16], bit[15:8], and
bit[7:0] in the 32-bit word transferred to the AMBA bus. The table 303 shows the expected latency
from the memory controller.

Table 296-TSCTRLS8 access latency

Accesses Single data First data (burst) Middle data (burst]) Last data (burst
32-bit write 10 8 8 10

32-bit read 6 6 4 4

16-bit write 4 (+1)

16-bit read 4 - -

8-bit write 4

8-bit read 3 - - -

One extra cycle is added for 16-bit burst accesses when Bus Exception is enabled.

32.2.2 /O access

The memory controller accepts 32/16/8-bit single accesses to the 1/0O area, but the access generated
towards the I/O device is always 16-bit. The two least significant bits of the AMBA address (byte
address) determine which half word that should be transferred to the 1/0 device. (i.e. If the byte
address is 0 and it is a 32-bit access, bits 16 to 31 on the AHB bus is transferred on the 16-bit memory
bus. If the byte address is 2 and it is a 16-bit access, bit 0 to 15 on the AHB bus is transferred on the
16-bit memory bus.) If the access is an 8-bit access, the data is transferred on data lines 8 to 15
(Data[15:8]) on the memory bus. In case of a write, data lines 0 to 7 is also written to the I/O device
but these data lines do not transfer any valid data.

32.2.3 Using Bus Exception

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bitin MCFGL1 and is only active for the 1/0O area. The BEXCN signal is sampled

AEROFLEX GAISLER 292 GRIP

on the same cycle as data is written to memory or read data is sampled. When a bus exception is
detected an error response will be generated for the access. One additional latency cycle is added to
the AMBA access when the Bus Exception is enable.

32.2.4 Using Bus Ready

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses. It is enabled by
setting the Bus Ready Enable (BRDYEN) bit in the MCFGL1 register. An access will have at least the
amount of waitstates set with the VHDL generic or through the register, but will be further stretched
until BRDYN is asserted. Additional waitstates can thus be inserted after the pre-set number of wait-
states by deasserting the BRDYN signal. BRDYN should be asserted in the cycle preceding the last
one. It is recommended that BRDY remains asserted until the IOSN signal is de-asserted, to ensure
that the access has been properly completed and avoiding the system to stall.

lead-in wait data data

N AVAVAVAVAVAVAVAVAY AV AW/
A
/
/

address AL

iosn \
oen \

data

(o1)
/

brdyn \ \

irst
sample

Figure 119.1/0 READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDY

32.3 SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures below.

AEROFLEX GAISLER 293 GRIP
S AVAVAVAVAVAYAVAVYAWAWAW,
address A0 [X A1 X A2 X A3 [Y A4 X A5 [X A6 [X A7
ramsn
oen
data (B3| X B2| X B1| X BO| X B7| X B6| X B5| X B4 —
haddr AO X A4 X A8
htrans 10 ¥ 11 X 00
hready \
hrdata DO X D1

Figure 120. 32-bit SRAM sequential read accesses with 0

wait-states and EDAC enabled.

A AVAVAVAVAVAVAVAVAVAVAVAVYAWY
address A0 Al A2 A3 A4
ramsn \
writen /_ _\ /_ ___/__\ /_ _\ N
data (B3 B2 B1 BO B4
htrans 10 11 00
hready \
hwdata DO D1

Figure 121. 32-bit SRAM sequential writeaccess with 0
wait-states and EDAC enabled.

AEROFLEX GAISLER 294 GRIP

W AVAVAVAVAVAVAVAVAW AW AW

address AO A

ramsn \ \
writen _ _/ _ _/

data (B3 B2
haddr AO Al A2

htrans 10 11 00

hready \

hwdata DO D1

Figure 122.8-bit SRAM non-sequential write access with O
wait-states and EDAC enabled.

N AVAVAYAVAVAVAYAWAY AW AW,

address 20 A

ramsn \

oen \
data (B3 B2)

haddr A0 Al A2

htrans 10 10 00

hready \

hrdata D[3L:24 D[23:16

Figure 123. 8-bit SRAM non-sequential read access with 0
wait-states and EDAC enabled.

On a read access, data is sampled one clock cycle before HREADY is asserted.

AEROFLEX GAISLER 295 GRIP

VAV AV AVAVAVAVAVAVAVAV
address X)

iosn \
writen \ /
data (H1 >
haddr A0 X Al
htrans 10 00
hready /
hwdata >(D[31:16] >(

Figure 124. 16-bit /0 non-sequential write access with 0
wait-states.

N AVAVAVAVAVAVAVAYAVAY AW/

address

A2 A4

ramsn

oen

g \
\H3

data /)
\H 1

N

haddr A2 Ad

htrans 10 10 00

hready \

hrdata D[15:0] D[31:16

Figure 125. 16-bit I/O non-sequential read access with 0
wait-states.
I/O write accesses are extended with one extra latency cycle if the bus exception is enabled.

If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles.

AEROFLEX GAISLER 296 GRIP

32.4 Registers

The core is programmed through registers mapped into APB address space.

Table 297=T SRAM/IO controller registers

APB Address offset Register
0x0 Memory configuration register 1
Ox4 Memory configuration register 2
0x8 Memory configuration register 3
Table 298MCFGL1 register
31 27 26 25 24 23 20 19 0
RESERVED ‘ BRDY ‘ BEXC ‘ ‘ IoWS RESERVED
31:27 RESERVED
26 BRDYEN: Enables the BRDYN signal.
25 BEXCEN: Enables the BEXCN signal.
24 RESERVED
23:20 IOWS: Sets the number of waitstates for accesses to the 10 area. Only available if the wsreg VHDL
generic is set to one.
19:0 RESERVED
Table 299MCFG2 register
31 13 12 9 8 2 1 0
RESERVED \ RAMBSZ \ RESERVED | RAMWS |
31:12 RESERVED
12:9 RAMBSZ: Sets the SRAM bank size. Only available if the banksz VHDL generic is set to zero. Oth-
erwise the banksz VHDL generic sets the bank size. 0 = 8 kB, 15 = 256 MB.
8:2 RESERVED
1:0 RAMWS: Sets the number of waitstates for accesses to the RAM area. Only available if the wsreg
VHDL generic is set to one.
Table 300MCFGS3 register
31 cnt+ 13 cnt + 12 12 11 10 9 8 7 0
RESERVED SEC ‘ WB ‘ RB ‘ SEN ‘ TCB
31: RESERVED
cnt+13
cnt+12 SEC. Single error counter. This field increments each time a single error is detected. It saturates at
112 the maximum value that can be stored in this field. Each bit can be reset by writing a one to it. cnt =
the number of counter bits.
11 WB: Write bypass. If set, the TCB field will be used as checkbits in all write operations.
10 RB: Read bypass. If set, checkbits read from memory in all read operations will be stored in the TCB
field.

9 SEN: SRAM EDAC enable. If set, EDAC will be active for the SRAM area.

AEROFLEX GAISLER 297 GRIP

Table 300MCFG3 register
RESERVED

7:0 TCB: Used as checkbits in write operations when WB is one and checkbits from read operations are
stored here when RB is one.

All the fields in the MCFG3 register are available if the edacen VHDL generic is set to one except for
the SEC field which also requires that the errcnt VHDL generic is set to one.

32.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x056. For description of
vendor and device identifiers see the GRLIB IP Library User's Manual.

32.6 Configuration options
Table 297 shows the configuration options of the core (VHDL generics).

Table 301 Controller configuration options

Generic Function Allowed range | Default
hindex AHB slave index. 1-NAHBSLV-1 | O
ramaddr ADDR field of the AHB BAR1 defining RAM address space. 0 - 16#FFF# 16#400#
Default RAM area is 0x40000000-0x40FFFFFF.
rammask MASK field of the AHB BARL1 defining RAM address space. 0 -16#FFF# 16#FFQ#
ioaddr ADDR field of the AHB BAR?2 defining IO address space. |0 - 16#FFF# 16#200#
Default RAM area is 0x20000000-0x20FFFFFF.
iomask MASK field of the AHB BAR2 defining 10 address space. 0 - 16#FFF# 16#FFQ#
ramws Number of waitstates during access to SRAM area. 0-15 0
iows Number of waitstates during access to 10 area. 0-15 2
srbanks Set the number of RAM banks. 1-8 1
banksz Set the size of bank 1 - 4.1 =16 kB, ..., 15 = 256 MB. If se0te 15 15
zero, the bank size is set with the rambsz field in the MCFG2
register.
pindex APB slave index. 1-NAPBSLV-1 | O
paddr APB address. 1 - 16#FFF# 0
pmask APB address mask. 1 - 16#FFF# 16#FFF#
edacen EDAC enable. If set to one, EDAC logic is synthesized. 0-1 0
errcnt If one, a single error counter is added. 0-1 0
cntbits Number of bits in the single error counter. 1-8
wsreg Enable programmable waitstate generation. 0-1 0

32.7 Signal descriptions
Table 302 shows the interface signals of the core (VHDL ports).

Table 302Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low

AEROFLEX GAISLER 298 GRIP
Table 302Signal descriptions
Signal name Field Type Function Active
SRI DATA[31:0] Input Memory data: High
[15:0] used for 10 accesses
[7:0] used for checkbits for SRAM accesses
[15:8] use for data for SRAM accesses
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input Not used -
BWIDTHI1:0] Input Not used -
SD[31:0] Input Not used -
CB[7:0] Input Not used -
PROMDATA[31:0] | Input Not used -
EDAC Input Not used -
SRO ADDRESS[31:0] Output Memory address High
DATA[31:0] Output Memory data: High
[15:0] used for 10 accesses
[7:0] used for checkbits for SRAM accesses
[15:8] use for data for SRAM accesses
RAMSN][7:0] Output SRAM chip-select Low
RAMOEN][7:0] Output SRAM output enable Low
IOSN Output 10 area chip select Low
ROMSNJ[7:0] Output Not used Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable: Low
WRNI[O] corresponds to DATA[15:8],
WRNJ[1] corresponds to DATA[7:0],
WRN[3:2] Not used
BDRIVE[3:0] Output Drive byte lanes on external memory bus. Cari-ow
trols I/O-pads connected to external memory
bus:
BDRIVE[0] corresponds to DATA[15:8],
BDRIVE[1] corresponds to DATA[7:0],
BDRIVE[3:2] Not used
VBDRIVE[31:0] Output Vectored 1/O-pad drive signal. Low
READ Output Read strobe High
RAMN Output Common SRAM Chip Select. Always asserted_ow
when one of the 8 RAMSN signals is asserted.
ROMN Output Not used -
SA[14:0] Output Not used -
CB[7:0] Output Not used -
PSEL Output Not used -
CE Output Single error detected. High
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER

32.8 Library dependencies

299

GRIP

Table 303 shows libraries used when instantiating the core (VHDL libraries).

Table 303.ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, componen
laration

32.9 Component declaration

32.10

The core has the following component declaration.
component ftsrctrl8 is

generic (
hindex
ramaddr
rammask
ioaddr
iomask
ramws
iows
srbanks
banksz
pindex
paddr
pmask
edacen
errcnt
cntbits
wsreg
oepol

)i

port (
rst :

clk :

ahbs|
ahbso
apbi
apbo

sri :
Ssro

);

:integer :=0;
:integer := 16#400#;
s integer := 16#ff0#;
:integer := 16#200#;
:integer := 16#ff0#;
: integer := 0;
:integer = 2;
integerrange 1to 8 = 1;
: integer range 0 to 15 := 15;
:integer :=0;
:integer := 0;
: integer := 16#fff#;
:integerrange 0 to 1 :=1;
:integerrange 0 to 1 :=0;
:integer range 1 to 8 := 1,
:integer :=0;
:integer :=0

in std_ulogic;

in std_ulogic;

1in ahb_slv_in_type;
:out ahb_slv_out_type;
:in apb_slv_in_type;
:out apb_slv_out_type;
in memory_in_type;

: out memory_out_type

end component;

Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. The system clock and reset are generated by GR Clock
Generator and Reset Generator. The CE signal of the memory controller is also connected to the AHB

status register.

The memory controller decodes default memory areas: 1/0O area is 0x20000000 - Ox20FFFFFF and

RAM area is 0x40000000 - Ox40FFFFF.

library ieee;

use ieee.std_logic_1164.all;

dec-

AEROFLEX GAISLER 300 GRIP

library grlib;

use grlib.amba.all;

library techmap;

use techmap.gencomp.all;
library gaisler;

use gaisler.memctrl.all;
use gaisler.misc.all;

entity ftsrctrl8_ex is

port (
resetn :in std_ulogic;
clk in std_ulogic;

address : out std_logic_vector(27 downto 0);

data :inout std_logic_vector(31 downto 0);
ramsn : out std_logic_vector (3 downto 0);
ramoen : out std_logic_vector (3 downto 0);
rwen :out std_logic_vector (3 downto 0);
oen : out std_ulogic;
writen : out std_ulogic;
read : out std_ulogic;
iosn : out std_ulogic;
brdyn :in std_ulogic; -- Bus ready
bexcn :in std_ulogic -- Bus exception
)

end,

architecture rtl of ftsrctrl8_ex is
signal memi : memory_in_type;
signal memo : memory_out_type;

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector ;= (others => ahbm_none);

signal clkm, rstn, rstraw : std_ulogic;
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

signal stati : ahbstat_in_type;
begin

-- clock and reset

cgi.plictrl <= "00"; cgi.pllrst <= rstraw; cgi.plliref <="0";
clk_pad : clkpad port map (clk, clkm);

rstO : rstgen -- reset generator

port map (resetn, clkm, '1’, rstn, rstraw);

-- AHB controller

ahbO : ahbctrl -- AHB arbiter/multiplexer

generic map (rrobin => 1, ioaddr => 16#fff#, devid => 16#201#)
port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- Memory controller
sr0 : ftsrctrl8 generic map (hindex => 0, pindex => 0, edacen => 1)
port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(0), memi, memo);

brdyn_pad : inpad port map (brdyn, memi.brdyn);
bexcn_pad : inpad port map (bexcn, memi.bexcn);

addr_pad : outpadv generic map (width => 28)
port map (address, memo.address(27 downto 0));
rams_pad : outpadv generic map (width => 4)
port map (ramsn, memo.ramsn(3 downto 0));
oen_pad : outpad
port map (oen, memo.oen);
rwen_pad : outpadv generic map (width => 4)

AEROFLEX GAISLER 301 GRIP

port map (rwen, memo.wrn);
roen_pad : outpadv generic map (width => 4)
port map (ramoen, memo.ramoen(3 downto 0));
wri_pad : outpad
port map (writen, memo.writen);
read_pad : outpad
port map (read, memo.read);
iosn_pad : outpad
port map (iosn, memo.iosn);
data_pad : iopadvv generic map (width => 8) -- SRAM and I/O Data
port map (data(15 downto 8), memo.data(15 downto 8),
memao.vbdrive(15 downto 8), memi.data(15 downto 8));
cbdata_pad : iopadvv generic map (width => 8) -- SRAM checkbits and 1/O Data
port map (data(7 downto 0), memo.data(7 downto 0),
memao.vbdrive(7 downto 0), memi.data(7 downto 0));

-- APB bridge and AHB stat
apbO : apbctrl -- AHB/APB bridge
generic map (hindex => 1, haddr => 16#800#)
port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo);

stati.cerror(0) <= memo.ce;
ahbstat0 : ahbstat generic map (pindex => 15, paddr => 15, pirq => 1)
port map (rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(15));
end;

AEROFLEX GAISLER 302 GRIP

AEROFLEX GAISLER 303 GRIP

33

33.1

33.2

GR1553B - MIL-STD-1553B / AS15531 Interface

Overview
This interface core connects the AMBA AHB/APB bus to a single- or dual redundant MIL-STD-
1553B bus, and can act as either Bus Controller, Remote Terminal or Bus Monitor.

MIL-STD-1553B (and derived standard SAE AS15531) is a bus standard for transferring data
between up to 32 devices over a shared (typically dual-redundant) differential wire. The bus is
designed for predictable real-time behavior and fault-tolerance. The raw bus data rate is fixed at 1
Mbit/s, giving a maximum of around 770 kbit/s payload data rate.

One of the terminals on the bus is the Bus Controller (BC), which controls all traffic on the bus. The
other terminals are Remote Terminals (RTs), which act on commands issued by the bus controller.
Each RT is assigned a unique address between 0-30. In addition, the bus may have passive Bus Moni-
tors (BM:s) connected.

There are 5 possible data transfer types on the MIL-STD-1553 bus:
e BC-to-RT transfer (“receive”)

e RT-to-BC transfer (“transmit”)

* RT-to-RT transfer

* Broadcast BC-to-RTs

* Broadcast RT-to-RTs

Each transfer can contain 1-32 data words of 16 bits each.

The bus controller can also send “mode codes” to the RTs to perform administrative tasks such as
time synchronization, and reading out terminal status.

Electrical interface

The core is connected to the MIL-STD-1553B bus wire through single or dual transceivers, isolation
transformers and transformer or stub couplers as shown in figure 126. If single-redundancy is used,
the unused bus receive P/N signals should be tied both-high or both-low. The transmitter enables are
typically inverted and therefore called transmitter inibit (txinh). See the standard and the respective
component’s data sheets for more information on the electrical connection.

Bus A
txinhA
txA_P l
txA N
rXA_P é ‘ % § ‘ g
XA N
rxenA
GR1553B Bus B

txinhB

txB_P l
txB_N
rxB_P

rxB_N

3E

Terminal boundary

rxenB

Figure 126. Interface between core and MIL-STD-1553B bus (dual-redundant, transformer coupled)

AEROFLEX GAISLER 304 GRIP

33.3 Operation

33.3.1 Operating modes

The core contains three separate control units for the Bus Controller, Remote Terminal and Bus Mon-
itor handling, with a shared 1553 codec. All parts may not be present in the hardware, which parts are
available can be checked from software by looking at the BCSUP/RTSUP/BMSUP register bits.

The operating mode of the core is controlled by starting and stopping of the BC/RT/BM units via reg-
ister writes. At start-up, none of the parts are enabled, and the core is completely passive on both the
1553 and AMBA bus.

The BC and RT parts of the core can not be active on the 1553 bus at the same time. While the BC is
running or suspended, only the BC (and possibly BM) has access to the 1553 bus, and the RT can only
receive and respond to commands when both the BC schedules are completely stopped (not running
or even suspended).

The Bus Monitor, however, is only listening on the codec receivers and can therefore operate regard-
less of the enabled/disabled state of the other two parts.

33.3.2 Register interface

The core is configured and controlled through control registers accessed over the APB bus. Each of
the BC,RT,BM parts has a separate set of registers, plus there is a small set of shared registers.

Some of the control register fields for the BC and RT are protected using a ‘key’, a field in the same
register that has to be written with a certain value for the write to take effect. The purpose of the keys
are to give RT/BM designers a way to ensure that the software can not interfere with the bus traffic by
enabling the BC or changing the RT address. If the software is built without knowledge of the key to a
certain register, it is very unlikely that it will accidentally perform a write with the correct key to that
control register.

33.3.3 Interrupting

The core has one interrupt output, which can be generated from several different source events. Which
events should cause an interrupt can be controlled through the IRQ Enable Mask register.

33.3.4 MIL-STD-1553 Codec

The core’s internal codec receives and transmits data words on the 1553 bus, and generates and
checks sync patterns and parity.

Loop-back checking logic checks that each transmitted word is also seen on the receive inputs. If the
transmitted word is not echoed back, the transmitter stops and signals an error condition, which is
then reported back to the user.

AEROFLEX GAISLER 305 GRIP

33.4 Bus Controller Operation

33.4.1 Overview

When operating as Bus Controller, the core acts as master on the MIL-STD-1553 bus, initiates and
performs transfers.

This mode works based on a scheduled transfer list concept. The software sets up in memory a
sequence of transfer descriptors and branches, data buffers for sent and received data, and an IRQ
pointer ring buffer. When the schedule is started (through a BC action register write), the core pro-
cesses the list, performs the transfers one after another and writes resulting status into the transfer list
and incoming data into the corresponding buffers.

33.4.2 Timing control

In each transfer descriptor in the schedule is a “slot time” field. If the scheduled transfer finishes
sooner than its slot time, the core will pause the remaining time before scheduling the next command.
This allows the user to accurately control the message timing during a communication frame.

If the transfer uses more than its slot time, the overshooting time will be subtracted from the following
command'’s time slot. The following command may in turn borrow time from the following command

and so on. The core can keep track of up to one second of borrowed time, and will not insert pauses
again until the balance is positive, except for intermessage gaps and pauses that the standard requires.

If you wish to execute the schedule as fast as possible you can set all slot times in the schedule to zero.
If you want to group a number of transfers you can move all the slot time to the last transfer.

The schedule can be stopped or suspended by writing into the BC action register. When suspended,
the schedule’s time will still be accounted, so that the schedule timing will still be correct when the
schedule is resumed. When stopped, on the other hand, the schedule’s timers will be reset.

When the extsync bit is set in the schedule’s next transfer descriptor, the core will wait for a positive
edge on the external sync input before starting the command. The schedule timer and the time slot
balance will then be reset and the command is started. If the sync pulse arrives before the transfer is
reached, it is stored so the command will begin immediately. The trigger memory is cleared when
stopping (but not when suspending) the schedule. Also, the trigger can be set/cleared by software
through the BC action register.

33.4.3 Bus selection

Each transfer descriptor has a bus selection bit that allows you to control on which one of the two
redundant buses (‘0’ for bus A, ‘1’ for bus B) the transfer will occur.

Another way to control the bus usage is through the per-RT bus swap register, which has one register
bit for each RT address. The bus swap register is an optional feature, software can check the BCFEAT
read-only register field to see if it is available.

Writing a ‘1’ to a bit in the per-RT Bus Swap register inverts the meaning of the bus selection bit for
all transfers to the corresponding RT, so ‘0’ now means bus ‘B’ and ‘1’ means bus ‘A. This allows
you to switch all transfers to one or a set of RT:s over to the other bus with a single register write and
without having to modify any descriptors.

The hardware determines which bus to use by taking the exclusive-or of the bus swap register bit and
the bus selection bit. Normally it only makes sense to use one of these two methods for each RT,
either the bus selection bit is always zero and the swap register is used, or the swap register bit is
always zero and the bus selection bit is used.

If the bus swap register is used for bus selection, the store-bus descriptor bit can be enabled to auto-
matically update the register depending on transfer outcome. If the transfer succeeded on bus A, the
bus swap register bit is set to ‘0’, if it succeeds on bus B, the swap register bit is set to ‘1'. If the trans-
fer fails, the bus swap register is set to the opposite value.

AEROFLEX GAISLER 306 GRIP

33.4.4 Secondary transfer list

The core can be set up with a secondary “asynchronous” transfer list with the same format as the ordi-
nary schedule. This transfer list can be commanded to start at any time during the ordinary schedule.
While the core is waiting for a scheduled command’s slot time to finish, it will check if the next asyn-
chronous transfer’s slot time is lower than the remaining sleep time. In that case, the asynchronous
command will be scheduled.

If the asynchronous command doesn't finish in time, time will be borrowed from the next command in
the ordinary schedule. In order to not disturb the ordinary schedule, the slot time for the asynchronous
messages must therefore be set to pessimistic values.

The exclusive bit in the transfer descriptor can be set if one does not want an asynchronous command
scheduled during the sleep time following the transfer.

Asynchronous messages will not be scheduled while the schedule is waiting for a sync pulse or the
schedule is suspended and the current slot time has expired, since it is then not known when the next
scheduled command will start.

33.4.5 Interrupt generation

Each command in the transfer schedule can be set to generate an interrupt after certain transfers have
completed, with or without error. Invalid command descriptors always generate interrupts and stop the
schedule. Before a transfer-triggered interrupt is generated, the address to the corresponding descrip-
tor is written into the BC transfer-triggered IRQ ring buffer and the BC Transfer-triggered IRQ Ring
Position Register is incremented.

A separate error interrupt signals DMA errors. If a DMA error occurs when reading/writing descrip-
tors, the executing schedule will be suspended. DMA errors in data buffers will cause the correspond-
ing transfer to fail with an error code (see table 307).

Whether any of these interrupt events actually cause an interrupt request on the AMBA bus is con-
trolled by the IRQ Mask Register setting.

33.4.6 Transfer list format

The BC:s transfer list is an array of transfer descriptors mixed with branches as shown in table 304.
Each entry has to be aligned to start on a 128-bit (16-byte) boundary. The two unused words in the
branch case are free to be used by software to store arbitrary data.

Table 304GR1553B transfer descriptor format

Offset Value for transfer descriptor DMA R/W ||Value for branch DMA R/W
0x00 Transfer descriptor word O (see table 305) R Condition word (see table 309) R

0x04 Transfer descriptor word 1 (see table 306) R Jump address, 128-bit aligned R
0x08 Data buffer pointer, 16-bit aligned. R Unused -

For write buffers, if bit 0 is set the received

data is discarded and the pointer is ignored
This can be used for RT-to-RT transfers where
the BC is not interested in the data transferred.

0x0C Result word, written by core (see table 307 W Unused -

AEROFLEX GAISLER 307 GRIP
The transfer descriptor words are structured as shown in tables 305-307 below.

Table 305GR1553B BC transfer descriptor word 0 (offset 0x00)
31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 15 0

| 0 |WTRIG | EXCL | IRQE | IRQN | SUSE | SUSN | RETMD | NRET |STBUS| GAP | RESERVED| STIME
31 Must be 0 to identify as descriptor
30 Wait for external trigger (WTRIG)
29 Exclusive time slot (EXCL) - Do not schedule asynchronous messages
28 IRQ after transfer on Error (IRQE)
27 IRQ normally (IRQN) - Always interrupts after transfer
26 Suspend on Error (SUSE) - Suspends the schedule (or stops the async transfer list) on error
25 Suspend normally (SUSN) - Always suspends after transfer
24 :23 Retry mode (RETMD). 00 - Retry on same bus only. 01 - Retry alternating on both buses

10: Retry first on same bus, then on alternating bus. 11 - Reserved, do not use

22:20 Number of retries (NRET) - Number of automatic retries per bus
The total number of tries (including the first attempt) is NRET+1 for RETMD=00, 2 x (NRET+1) for RETMD=01/
1

19 Store bus (STBUS) - If the transfer succeeds and this bit is set, store the bus on which the transfer succeeded (0
for bus A, 1 for bus B) into the per-RT bus swap register. If the transfer fails and this bit is set, store the opposite
bus instead. (only if the per-RT bus mask is supported in the core)

See section 33.4.3 for more information.

18 Extended intermessage gap (GAP) - If set, adds an additional amount of gap time, corresponding to the RTTO
field, after the transfer

17:16 Reserved - Set to 0 for forward compatibility

15:0 Slot time (STIME) - Allocated time in 4 microsecond units, remaining time after transfer will insert delay

Table 306 GR1553B BC transfer descriptor word 1 (offset 0x04)

31 30 29 26 25 21 20 16 15 11 10 9 5 4 0
[bum | BUS | RTTO | Rmp2 | Rrsa2 | RmD1 [TR | RTSAL | weMmc
31 Dummy transfer (DUM) - If set to ‘1’ no bus traffic is generated and transfer “succeeds” immediately

For dummy transfers, the EXCL,IRQN,SUSN,STBUS,GAP,STIME settings are still in effect, other bits and
the data buffer pointer are ignored.

30 Bus selection (BUS) - Bus to use for transfer, 0 - Bus A, 1 - Bus B
29:26 RT Timeout (RTTO) - Extra RT status word timeout above nominal in units of 4 us (0000 -14 us, 1111 -74
us). Note: This extra time is also used as extra intermessage gap time if the GAP bit is set.
25:21 Second RT Address for RT-to-RT transfer (RTAD2) See table 308 for details on how to setup
RTAD1,RTSA1,RTAD2,RTSA2, WCMC,TR
20:16 Second RT Subaddress for RT-to-RT transfer (RTSA2) for different transfer types.
15:11 RT Address (RTAD1)
10 Transmit/receive (TR Note that bits 15:0 correspond to the (first)
(TR) command word on the 1553 bus
9:5 RT Subaddress (RTSA1L)

4:0 Word count/Mode code (WCMC)

AEROFLEX GAISLER 308 GRIP
Table 307 GR1553B transfer descriptor result word (offset 0x0C)
31 30 24 23 16 15 8 7 4 2 0
| 0 | Reserved | RT2ST | RTST | RETCNT [RES | TFRST
31 Always written as 0
30:24 Reserved - Mask away on read for forward compatibility
23:16 RT 2 Status Bits (RT2ST) - Status bits from receiving RT in RT-to-RT transfer, otherwise 0
Same bit pattern as for RTST below
15:8 RT Status Bits (RTST) - Status bits from RT (transmitting RT in RT-to-RT transfer)
15 - Message error, 14 - Instrumentation bit or reserved bit set, 13 - Service request,
ﬁgl-ﬂig’oadcast command received, 11 - Busy bit, 10 - Subsystem flag, 9 - Dynamic bus control acceptance, 8 - Termi-
74 Retry count (RETCNT) - Number of retries performed
3 Reserved - Mask away on read for forward compatibility
2:0 Transfer status (TFRST) - Outcome of last try

000 - Success (or dummy bit was set)
001 - RT did not respond (transmitting RT in RT-to-RT transfer)
010 - Receiving RT of RT-to-RT transfer did not respond

011 - A responding RT:s status word had message error, busy, instrumentation or reserved bit set (*)

100 - Protocol error (improperly timed data words, decoder error, wrong humber of data words)

101 - The transfer descriptor was invalid
110 - Data buffer DMA timeout or error response
111 - Transfer aborted due to loop back check failure

* Error code 011 is issued only when the number of data words match the success case, otherwise code 100 is used. Error code 011 can be
issued for a correctly executed “transmit last command” or “transmit last status word” mode code since these commands do not reset the status

word.

Table 308GR1553B BC Transfer configuration bits for different transfer types

RTAD1 RTSAl RTAD2 RTSA2 WCMC TR Data buffer
Transfer type (15:11) (9:5) (25:21) (20:16) (4:0) (20) direction
Data, BC-to-RT | RT addressRT subaddr | Don’tcare | O Word count | O Read
(0-30) (1-30) (0 for 32) (2-64 bytes)
Data, RT-to-BC | RT addressRT subaddr | Don't care | O Word count | 1 Write
(0-30) (2-30) (0 for 32) (2-64 bytes)
Data, RT-to-RT | Recv-RT | Recv-RT Xmit-RT Xmit-RT Word count | 0 Write
addr (0-30)| subad. (1-30) addr (0-30)| subad. (1-30) (0 for 32) (2-64 bytes)
Mode, no data RT addregs0 or 31 (*) Don't care| Don't care Mode code| 1 Unused
(0-30) (0-8)
Mode, RT-to-BC| RT address0 or 31 (*) Don't care| Don't care Mode code| 1 Write
(0-30) (16/18/19) (2 bytes)
Mode, BC-to-RT| RT address0 or 31 (*) Don't care| Don't care Mode code| 0 Read
(0-30) (17/20/21) (2 bytes)
Broadcast 31 RTs subaddr| Don’t care | O Word count | O Read
Data, BC-t0-RTS| (1-30) (0 for 32) (2-64 bytes)
Broadcast 31 Recv-RTs Xmit-RT Xmit-RT Word count |0 Write
Data, RT-to-RTs subad. (1-30) addr (0-30)| subad. (1-30) (O for 32) (2-64 bytes)
Broadcast 31 Oor31l(¥ Don't care| Don't care Mode code| 1 Unused
Mode, no data (1, 3-8)
Broadcast 31 Oor31(* Don’t care| Don't care Mode code| 0 Read
Mode, BC-to-RT (17/20/21) (2 bytes)

(*) The standard allows using either of subaddress 0 or 31 for mode commands.

AEROFLEX GAISLER 309 GRIP

The branch condition word is formed as shown in table 309.

Table 309GR1553B branch condition word (offset 0x00)

31 30 27 26 25 24 23 16 15 8 7 0
| 1 | Reserved (0) | IRQC | ACT | MODE | RT2CC | RTCC | sTCC
31 Must be 1 to identify as branch
30:27 Reserved - Setto 0
26 Interrupt if condition met (IRQC)
25 Action (ACT) - What to do if condition is met, O - Suspend schedule, 1 - Jump
24 Logic mode (MODE):

0 = Or mode (any bit set in RT2CC, RTCC is set in RT2ST,RTST, or result is in STCC mask)
1 - And mode (all bits set in RT2CC,RTCC are set in RT2ST,RTST and result is in STCC mask)

23:16 RT 2 Condition Code (RT2CC) - Mask with bits corresponding to RT2ST in result word of last transfer
15:8 RT Condition Code (RTCC) - Mask with bits corresponding to RTST in result word of last transfer
7:0 Status Condition Code (STCC) - Mask with bits corresponding to status value of last transfer

Note that you can get a constant true condition by setting MODE=0 and STCC=0xFF, and a constant
false condition by setting STCC=0x00. 0x800000FF can thus be used as an end-of-list marker.

AEROFLEX GAISLER 310 GRIP

33.5 Remote Terminal Operation

33.5.1 Overview

When operating as Remote Terminal, the core acts as a slave on the MIL-STD-1553B bus. It listens
for requests to its own RT address (or broadcast transfers), checks whether they are configured as
legal and, if legal, performs the corresponding transfer or, if illegal, sets the message error flag in the
status word. Legality is controlled by the subaddress control word for data transfers and by the mode
code control register for mode codes.

To start the RT, set up the subaddress table and log ring buffer, and then write the address and RT
enable bit is into the RT Config Register.

33.5.2 Data transfer handling

The Remote Terminal mode uses a three-level structure to handle data transfer DMA. The top level is

a subaddress table, where each subaddress has a subaddress control word, and pointers to a transmit
descriptor and a receive descriptor. Each descriptor in turn contains a descriptor control/status word,
pointer to a data buffer, and a pointer to a next descriptor, forming a linked list or ring of descriptors.
Data buffers can reside anywhere in memory with 16-bit alignment.

When the RT receives a data transfer request, it checks in the subaddress table that the request is legal.
If it is legal, the transfer is then performed with DMA to or from the corresponding data buffer. After

a data transfer, the descriptor’s control/status word is updated with success or failure status and the
subaddress table pointer is changed to point to the next descriptor.

If logging is enabled, a log entry will be written into a log ring buffer area. A transfer-triggered IRQ
may also be enabled. To identify which transfer caused the interrupt, the RT Event Log IRQ Position
points to the corresponding log entry. For that reason, logging must be enabled in order to enable
interrupts.

If a request is legal but can not be fulfilled, either because there is no valid descriptor ready or because
the data can not be accessed within the required response time, the core will signal a RT table access
error interrupt and not respond to the request. Optionally, the terminal flag status bit can be automati-
cally set on these error conditions.

Descriptor ctrl/stat
SAN-1 j

Data buffer ptr. Transmit data

Next pointer

SA ctrl word
Transmit descr. ptr — Descriptor ctrl/stat

SAN
Receive descr. ptr Data buffer ptr. Receive buffer

Next pointer

Descriptor ctrl/stat

SA N+1

Data buffer ptr. Receive buffer

Next pointer —> 0x3

Subaddress table
Figure 127. RT subaddress data structure example diagram

AEROFLEX GAISLER 311 GRIP

33.5.3 Mode Codes

Which of the MIL-STD-1553B mode codes that are legal and should be logged and interrupted are
controlled by the RT Mode Code Control register. As for data transfers, to enable interrupts you must
also enable logging. Inhibit mode codes are controlled by the same fields as their non-inhibit counter-
part and mode codes that can be broadcast have two separate fields to control the broadcast and non-
broadcast variants.

The different mode codes and the corresponding action taken by the RT are tabulated below. Some
mode codes do not have a built-in action, so they will need to be implemented in software if desired.
The relation between each mode code to the fields in the RT Mode Code control register is also
shown.

Table 310RT Mode Codes

Can Enabled | Ctrl.

log/ after reg
Mode code Description Built-in action, if mode code is enabled IRQ reset bits
0 | 00000 | Dynamic bus control If the DBCA bit is set in the RT Bus Status regiées No 17:16
ter, a Dynamic Bus Control Acceptance response
is sent.
1 00001 | Synchronize The time field in the RT sync register is updatedes Yes 3.0

The output rtsync is pulsed high one AMBA cygdle.

2 00010 | Transmit status word Transmits the RT:s status word No Yes -
Enabled always, can not be logged or disabled

00011 | Initiate self test No built-in action Yes No 21:18
00100 | Transmitter shutdownn The RT will stop responding to commands on Yies Yes 11:8
other bus (not the bus on which this command was
given).
5 00101 | Override transmitter | Removes the effect of an earlier transmitter shutYes Yes 11:8
shutdown down mode code received on the same bus
00110 | Inhibit terminal flag Masks the terminal flag of the sent RT status Words Yes No 25:22
00111 | Override inhibit termiqi Removes the effect of an earlier inhibit terminal Yes No 25:22
nal flag flag mode code.
8 01000 | Reset remote termindl The fail-safe timers, transmitter shutdown andres No 29:26

inhibit terminal flag inhibit status are reset.

The Terminal Flag and Service Request bits in the
RT Bus Status register are cleared.

The extreset output is pulsed high one AMBA

cycle.
16 | 10000 | Transmit vector word| Responds with vector word from RT Status Woves No 13:12
Register
17 | 10001 | Synchronize with dataThe time and data fields in the RT sync register aies Yes 7.4
word updated. The rtsync output is pulsed high one
AMBA cycle
18 | 10010 | Transmit last com- | Transmits the last command sent to the RT. No Yes -
mand Enabled always, can not be logged or disabled
19 | 10011 | Transmit BIT word Responds with BIT word from RT Status Word¥es No 15:14
Register
20 | 10100 | Selected transmitter | No built-in action No No -
shutdown
21 | 10101 | Override selected No built-in action No No -

transmitter shutdown

AEROFLEX GAISLER 312 GRIP

33.5.4 Event Log

The event log is a ring of 32-bit entries, each entry having the format given in table 311. Note that for
data transfers, bits 23-0 in the event log are identical to bits 23-0 in the descriptor status word.

Table 311GR1553B RT Event Log entry format

31 30 29 28 24 23 10 9 8 3 2 0
| IRQSR | TYPE SAMC | TIMEL | BC | sz TRES
31 IRQ Source (IRQSRC) - Set to ‘1’ if this transfer caused an interrupt
30:29 Transfer type (TYPE) - 00 - Transmit data, 01 - Receive data, 10 - Mode code
28:24 Subaddress / Mode code (SAMC) - If TYPE=00/01 this is the transfer subaddress, If TYPE=10, this is the
mode code
23:10 TIMEL - Low 14 bits of time tag counter.
9 Broadcast (BC) - Set to 1 if request was to the broadcast address
8:3 Transfer size (SZ) - Count in 16-bit words (0-32)
2:0 Transfer result (TRES)

000 = Success

001 = Superseded (canceled because a new command was given on the other bus)

010 = DMA error or memory timeout occurred

011 = Protocol error (improperly timed data words or decoder error)

100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error

33.5.5 Subaddress table format

Table 312GR1553B RT Subaddress table entry for subaddress number N, 0<N<31

Offset Value DMA R/W
0x10*N + 0x00 Subaddress N control word (table 313) R

0x10*N + 0x04 Transmit descriptor pointer, bgte aligned (0x3 to indicate invalid pointer R/W
0x10*N + 0x08 Receive descriptor pointer, igte aligned (0x3 to indicate invalid pointer) R/W
0x10*N + 0x0C Unused -

Note: The table entries for mode code subaddresses 0 and 31 are never accessed by the core.

Table 313GR1553B RT Subaddress table control word (offset 0x00)

31 19 18 17 16 15 14 13 12 8 7 6 5 4 0
| 0 (reserved) | WRAP | IGNDV | BCRXEl RXEN |RXLOG| RXIRQ | RXSZ | TXEN |TXLOG| TXIRQ | TXSZ
31:19 Reserved - set to 0 for forward compatibility
18 Auto-wraparound enable (WRAP) - Enables a test mode for this subaddress, where transmit transfers send back the

last received data. This is done by copying the finished transfer’s descriptor pointer to the transmit descriptor pointer
address after each successful transfer.

Note: If WRAP=1, you should not set TXSZ > RXSZ as this might cause reading beyond buffer end

17 Ignore data valid bit (IGNDV) - If this is ‘1’ then receive transfers will proceed (and overwrite the buffer) if the receive
descriptor has the data valid bit set, instead of not responding to the request.
This can be used for descriptor rings where you don't care if the oldest data is overwritten.

16 Broadcast receive enable (BCRXEN) - Allow broadcast receive transfers to this subaddress

15 Receive enable (RXEN) - Allow receive transfers to this subaddress

14 Log receive transfers (RXLOG) - Log all receive transfers in event log ring (only used if RXEN=1)

13 Interrupt on receive transfers (RXIRQ) - Each receive transfer will cause an interrupt (only if also RXEN,RXLOG=1)
12:8 Maximum legal receive size (RXSZ) to this subaddress - in16-bit words, 0 means 32

7 Transmit enable (TXEN) - Allow transmit transfers from this subaddress

6 Log transmit transfers (TXLOG) - Log all transmit transfers in event log ring (only if also TXEN=1)

5 Interrupt on transmit transfers (TXIRQ) - Each transmit transfer will cause an interrupt (only if TXEN,TXLOG=1)
4:0 Maximum legal transmit size (TXSZ) from this subaddress - in 16-bit words, 0 means 32

AEROFLEX GAISLER

313

Table 314GR1553B RT Descriptor format

Offset

Value

DMA R/W

0x00

Control and status word, see table 315

R/W

0x04

Data buffer pointer, 16-bit aligned

0x08

Pointer to next descriptor, 16-byte aligned
or 0x0000003 to indicate end of list

31

30

Table 315GR1553B RT Descriptor control/status word (offset 0x00)

29 26 25 10

9

8

| DV ||RQEN|

Reserved (0) | TIME | BC | sz | TRES

31

30

29:26
25:10

Data valid (DV) - Should be set to 0 by software before and set to 1 by hardware after transfer.

If DV=1 in the current receive descriptor before the receive transfer begins then a descriptor table error will
be triggered. You can override this by setting the IGNDV bit in the subaddress table.

IRQ Enable override (IRQEN) - Log and IRQ after transfer regardless of SA control word settings
Can be used for getting an interrupt when nearing the end of a descriptor list.

Reserved - Write 0 and mask out on read for forward compatibility

Transmission time tag (TTIME) - Set by the core to the value of the RT timer when the transfer finished.
Broadcast (BC) - Set by the core if the transfer was a broadcast transfer

Transfer size (SZ) - Count in 16-bit words (0-32)

Transfer result (TRES)

000 = Success

001 = Superseded (canceled because a new command was given on the other bus)

010 = DMA error or memory timeout occurred

011 = Protocol error (improperly timed data words or decoder error)

100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error

GRIP

AEROFLEX GAISLER 314 GRIP

33.6 Bus Monitor Operation

33.6.1 Overview

The Bus Monitor (BM) can be enabled by itself, or in parallel to the BC or RT. The BM acts as a pas-
sive logging device, writing received data with time stamps to a ring buffer.

33.6.2 Filtering

The Bus Monitor can also support filtering. This is an optional feature, software can check for this by
testing whether the BM filter registers are writable.

Transfers can be filtered per RT address and per subaddress or mode code, and the filter conditions are
logically AND:ed. If all bits of the three filter registers and bits 2-3 of the control register are set to
'1’, the BM core will log all words that are received on the bus.

In order to filter on subaddress/mode code, the BM has logic to track 1553 words belonging to the
same message. All 10 message types are supported. If an unexpected word appears, the filter logic
will restart. Data words not appearing to belong to any message can be logged by setting a bit in the
control register.

The filter logic can be manually restarted by setting the BM enable bit low and then back to high. This
feature is mainly to improve testability of the BM itself.

The filtering capability can be configured out of the BM to save area. If this is done, all words seen are
logged and the filter control registers become read-only and always read out as all-ones. You can,
however, still control whether Manchester/parity errors are logged.

33.6.3 No-response handling

In the MIL-STD-1553B protocol, a command word for a mode code using indicator O or a regular
transfer to subaddress 8 has the same structure as a legal status word. Therefore ambiguity can arise
when the subaddress or mode code filters are used, an RT is not responding on a subaddress, and the
BC then commands the same RT again on subaddress 8 or mode code indicator 0 on the same bus.
This can lead to the second command word being interpreted as a status word and filtered out.

The BM can use the instrumentation bit and reserved bits to disambiguate, which means that this case
will never occur when subaddresses 1-7, 9-30 and mode code indicator 31 are used. Also, this case
does not occur when the subaddress/mode code filters are unused and only the RT address filter is
used.

33.6.4 Log entry format

Each log entry is two 32-bit words.

Table 316 GR1553B BM Log entry word 0 (offset 0x00)

31 30 24 23 0
| 1 | Reserved | TIME
31 Always written as 1
30:24 Reserved - Mask out on read for forward compatibility
23:0 Time tag (TIME)

Table 317GR1553B BM Log entry word 1 (offset 0x04)

31 30 20 19 18 17 16 15 0
| 0 | Reserved | BUS | WwST | WTP | WD
31 Always written as 0

30:20 Reserved - Mask out on read for forward compatibility

AEROFLEX GAISLER 315 GRIP

Table 317GR1553B BM Log entry word 1 (offset 0x04)

19 Receive data bus (BUS) - 0:A, 1:B
18:17 Word status (WST) - 00=word OK, 01=Manchester error, 10=Parity error
16 Word type (WTP) - 0:Data, 1:Command/status
15:0 Word data (WD)
33.7 Clocking

The core operates in two clock domains, the AMBA clock domain and the 1553 codec clock domain,
with synchronization and handshaking between the domains. The AMBA clock can be at any fre-
guency but must be at a minimum of 10 MHz. A propagation delay of up to one codec clock cycle (50
ns) can be tolerated in each clock-domain crossing signal.

The core has two separate reset inputs for the two clock domains. They should be reset simulta-
neously, for instance by using two Reset generator cores connected to the same reset input but clocked
by the respective clocks.

33.8 Registers

The core is programmed through registers mapped into APB address space. If the RT, BC or BM parts
of the core have been configured out, the corresponding registers will become unimplemented and
return zero when read. Reserved register fields should be written as zeroes and masked out on read.

Table 318MIL-STD-1553B interface registers

APB address offset Register R/W Reset value
0x00 IRQ Register RW (write ‘1’ to clear) 0x00000000
0x04 IRQ Enable RW 0x00000000
0x08...0x0F (Reserved)

0x10 Hardware config register R (constant) 0x00000000*
0x14...0x3F (Reserved)

0x40...0x7F BC Register area (see table 319)

0x80...0xBF RT Register area (see table 320)

0xCO0...0xFF BM Register area (see table 321)

(*) May differ depending on core configuration

Table 319MIL-STD-1553B interface BC-specific registers

APB address offset Register R/W Reset value
0x40 BC Status and Config register RW 0xf0000000*
0x44 BC Action register W

0x48 BC Transfer list next pointer RW 0x00000000
0x4C BC Asynchronous list next pointer RW 0x00000000
0x50 BC Timer register R 0x00000000
0x54 BC Timer wake-up register RW 0x00000000
0x58 BC Transfer-triggered IRQ ring position RW 0x00000000
0x5C BC Per-RT bus swap register RW 0x00000000
0x60...0x67 (Reserved)

0x68 BC Transfer list current slot pointer R 0x00000000
0x6C BC Asynchronous list current slot pointer R 0x00000000
0x70...0x7F (Reserved)

(*) May differ depending on core configuration

AEROFLEX GAISLER 316 GRIP

Table 320MIL-STD-1553B interface RT-specific registers

APB address offset Register R/W Reset value
0x80 RT Status register R 0x80000000*
0x84 RT Config register RW 0x0000e03e***
0x88 RT Bus status bits register RW 0x00000000
0x8C RT Status words register RW 0x00000000
0x90 RT Sync register R 0x00000000
0x94 RT Subaddress table base address RW 0x00000000
0x98 RT Mode code control register RW 0x00000555
0x9C...0xA3 (Reserved)

OxA4 RT Time tag control register RW 0x00000000
OxA8 (Reserved)

OxAC RT Event log size mask RW Oxfffffffc

0xB0 RT Event log position RW 0x00000000
0xB4 RT Event log interrupt position R 0x00000000
0xB8.. OxBF (Reserved)

(*) May differ depending on core configuration
(***) Reset value is affected by the external RTADDR/RTPAR input signals

Table 32IMIL-STD-1553B interface BM-specific registers

APB address offset Register R/W Reset value
0xCO BM Status register R 0x80000000*
0xC4 BM Control register RW 0x00000000
0xC8 BM RT Address filter register RW Oxffffffff
0xCC BM RT Subaddress filter register RW Oxfffffftf
0xDO BM RT Mode code filter register RW Oxffffffff
0xD4 BM Log buffer start RW 0x00000000
0xD8 BM Log buffer end RW 0x00000007
0xDC BM Log buffer position RW 0x00000000
OxEO BM Time tag control register RW 0x00000000
OxE4...0xFF (Reserved)

(*) May differ depending on core configuration

Table 322GR1553B IRQ Register
31 18 17 16 15 11 10 9 8 7 3 2 1 0

RESERVED |BMTOF| BMD | RESERVED | RTTE| RTD | RTEV| RESERVED |BCWK| BCD |BCEV|

Bits read ‘1’ if interrupt occurred, write back ‘1’ to acknowledge

17 BM Timer overflow (BMTOF)
16 BM DMA Error (BMD)
10 RT Table access error (RTTE)

9 RT DMA Error (RTD)

8 RT transfer-triggered event interrupt (RTEV)
2 BC Wake-up timer interrupt (BCWK)

1 BC DMA Error (BCD)

0 BC Transfer-triggered event interrupt (BCEV)

AEROFLEX GAISLER 317 GRIP

Table 323GR1553B IRQ Enable Register

31 18 17 16 15 11 10 9 8 7 3 2 1 0
RESERVED |[BMTOE| BMDE | RESERVED |RTTEE| RTDE [RTEVE| RESERVED [BCWKE| BCDE |BCEVE|
17 BM Timer overflow interrupt enable (BMTOE)
16 BM DMA error interrupt enable (BMDE)
10 RT Table access error interrupt enable (RTTEE)

9 RT DMA error interrupt enable (RTDE)

8 RT Transfer-triggered event interrupt enable (RTEVE)
2 BC Wake up timer interrupt (BCWKE)

1 BC DMA Error Enable (BCDE)

0 BC Transfer-triggered event interrupt (BCEVE)

Table 324GR1553B Hardware Configuration Register

31 30 12 11 10 9 8 7 0
| MOD | RESERVED |XKEYS| ENDIAN | SCLK | CCFREQ

Note: This register reads 0x0000 for the standard configuration of the core

31 Modified (MOD) - Reserved to indicate that the core has been modified / customized in an unspecified man-
ner

11 Set if safety keys are enabled for the BM Control Register and for all RT Control Register fields.

10:9 AHB Endianness - 00=Big-endian, 01=Little-endian, 10/11=Reserved

8 Same clock (SCLK) - Reserved for future versions to indicate that the core has been modified to run with a
single clock

7:0 Codec clock frequency (CCFREQ) - Reserved for future versions of the core to indicate that the core runs at

a different codec clock frequency. Frequency value in MHz, a value of 0 means 20 MHz.

Table 325GR1553B BC Status and Config Register

31 30 28 27 17 16 15 11 10 9 8 7 3 2 0
|BCSUP| BCFEAT RESERVED |BCCHK| ASADL | 0 | ASST | SCADL | ScsT
31 BC Supported (BCSUP) - Reads ‘1’ if core supports BC mode
30:28 BC Features (BCFEAT) - Bit field describing supported optional features (‘1'=supported):

30 BC Schedule timer supported
29 BC Schedule time wake-up interrupt supported
28 BC per-RT bus swap register and STBUS descriptor bit supported

16 Check broadcasts (BCCHK) - Writable bit, if set to ‘1’ enables waiting and checking for (unexpected)
responses to all broadcasts.

15:11 Asynchronous list address low bits (ASADL) - Bit 8-4 of currently executing (if ASST=01) or next asynchro-
nous command descriptor address

Asynchronous list state (ASST) - 00=Stopped, 01=Executing command, 10=Waiting for time slot

7:3 Schedule address low bits (SCADL) - Bit 8-4 of currently executing (if SCST=001) or next schedule descrip-
tor address
2:0 Schedule state (SCST) - 000=Stopped, 001=Executing command, 010=Waiting for time slot, 011=Sus-

pended, 100=Waiting for external trigger

Table 326 GR1553B BC Action Register

31 16 15 10 9 8 7 5 4 3 2 1 0
BCKEY RESERVED |ASSTP|ASSRT| RESERVED | CLRT | SETT [SCSTP|SCSUS|SCSRT|
31:16 Safety code (BCKEY) - Must be 0x1552 when writing, otherwise register write is ignored
9 Asynchronous list stop (ASSTP) - Write ‘1’ to stop asynchronous list (after current transfer, if executing)

8 Asynchronous list start (ASSRT) - Write ‘1’ to start asynchronous list

4 Clear external trigger (CLRT) - Write ‘1’ to clear trigger memory

3 Set external trigger (SETT) - Write ‘1’ to force the trigger memory to set

2 Schedule stop (SCSTP) - Write ‘1’ to stop schedule (after current transfer, if executing)

1 Schedule suspend (SCSUS) - Write ‘1’ to suspend schedule (after current transfer, if executing)
0 Schedule start (SCSRT) - Write ‘1’ to start schedule

AEROFLEX GAISLER 318 GRIP

Table 327GR1553B BC Transfer list next pointer register
31 0

SCHEDULE TRANSFER LIST POINTER

31:0 Read: Currently executing (if SCST=001) or next transfer to be executed in regular schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.

Table 328 GR1553B BC Asynchronous list next pointer register
31 0

ASYNCHRONOUS LIST POINTER

31:0 Read: Currently executing (if ASST=01) or next transfer to be executed in asynchronous schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.

Table 329GR1553B BC Timer register
31 24 23 0

RESERVED SCHEDULE TIME (SCTM)

23:0 Elapsed “transfer list” time in microseconds (read-only)
Set to zero when schedule is stopped or on external sync.

Note: This register is an optional feature, see BC Status and Config Register, bit 30

Table 330GR1553B BC Timer Wake-up register

31 30 24 23 0
| WKEN | RESERVED | WAKE-UP TIME (WKTM)
31 Wake-up timer enable (WKEN) - If set, an interrupt will be triggered when WKTM=SCTM
23:0 Wake-up time (WKTM).

Note: This register is an optional feature, see BC Status and Config Register, bit 29

Table 331GR1553B BC Transfer-triggered IRQ ring position register
31 0
BC IRQ SOURCE POINTER RING POSITION

31:0 The current write pointer into the transfer-tirggered IRQ descriptor pointer ring.
Bits 1:0 are constant zero (4-byte aligned)
The ring wraps at the 64-byte boundary, so bits 31:6 are only changed by user

Table 332GR1553B BC per-RT Bus swap register
31 0

BC PER-RT BUS SWAP

31:0 The bus selection value will be logically exclusive-or:ed with the bit in this mask corresponding to the
addressed RT (the receiving RT for RT-to-RT transfers). This register gets updated by the core if the STBUS
descriptor bit is used.

For more information on how to use this feature, see section 33.4.3.
Note: This register is an optional feature, see BC Status and Config Register, bit 28

Table 333GR1553B BC Transfer list current slot pointer
31 0

BC TRANSFER SLOT POINTER

31:0 Points to the transfer descriptor corresponding to the current time slot (read-only, only valid while transfer list
is running).

Bits 3:0 are constant zero (128-bit/16-byte aligned)

AEROFLEX GAISLER 319 GRIP

Table 334GR1553B BC Asynchronous list current slot pointer
31 0

BC TRANSFER SLOT POINTER

31:0 Points to the transfer descriptor corresponding to the current asynchronous schedule time slot (read-only,
only valid while asynchronous list is running).

Bits 3:0 are constant zero (128-bit/16-byte aligned)

Table 335GR1553B RT Status register (read-only)

31 30 4 3 2 1 0
| RTSUPl RESERVED | ACT | SHDA | SHDB | RUN |

31 RT Supported (RTSUP) - Reads ‘1’ if core supports RT mode

3 RT Active (ACT) - ‘1" if RT is currently processing a transfer

2 Bus A shutdown (SHDA) - Reads ‘1’ if bus A has been shut down by the BC (using the transmitter shutdown
mode command on bus B)

1 Bus B shutdown (SHDB) - Reads ‘1’ if bus B has been shut down by the BC (using the transmitter shutdown
mode command on bus A)

0 RT Running (RUN) - ‘1’ if the RT is listening to commands.

Table 336 GR1553B RT Config register

31 16 15 14 13 12 7 6 5 1 0
RTKEY | SYs | SYDS | BRS | RESERVED | RTEIS | RTADDR | RTEN |
31:16 Safety code (RTKEY) - Must be written as 0x1553 when changing the RT address, otherwise the address

field is unaffected by the write. When reading the register, this field reads 0x0000.

If extra safety keys are enabled (see Hardware Config Register), the lower half of the key is used to also pro-
tect the other fields in this register.

15 Sync signal enable (SYS) - Set to ‘1’ to pulse the rtsync output when a synchronize mode code (without
data) has been received

14 Sync with data signal enable (SYDS) - Set to ‘1’ to pulse the rtsync output when a synchronize with data
word mode code has been received

13 Bus reset signal enable (BRS) - Set to ‘1’ to pulse the busreset output when a reset remote terminal mode
code has been received.

6 Reads ‘1’ if current address was set through external inputs.
After setting the address from software this field is set to ‘0’

5:1 RT Address (RTADDR) - This RT:s address (0-30)

0 RT Enable (RTEN) - Set to ‘1’ to enable listening for requests

Table 337GR1553B RT Bus status register

31 9 8 7 5 4 3 2 1 0
RESERVED | TFDE | RESERVED | SREQ | BUSY | SSF | DBCA | TFLG |
8 Set Terminal flag automatically on DMA and descriptor table errors (TFDE)
4:0 These bits will be sent in the RT:s status responses over the 1553 bus.
4 Service request (SREQ)
3 Busy bit (BUSY)

Note: If the busy bit is set, the RT will respond with only the status word and the transfer “fails”

2 Subsystem Flag (SSF)
1 Dynamic Bus Control Acceptance (DBCA)
Note: This bit is only sent in response to the Dynamic Bus Control mode code
0 Terminal Flag (TFLG)
The BC can mask this flag using the “inhibit terminal flag” mode command, if legal
Table 338GR1553B RT Status words register
31 16 15 0
BIT WORD (BITW) | VECTOR WORD (VECW)
31:16 BIT Word - Transmitted in response to the “Transmit BIT Word” mode command, if legal

15:0 Vector word - Transmitted in response to the “Transmit vector word” mode command, if legal.

AEROFLEX GAISLER 320 GRIP

Table 339GR1553B RT Sync register

31 16 15 0
SYNC TIME (SYTM) | SYNC DATA (SYD)
31:16 The value of the RT timer at the last sync or sync with data word mode command, if legal.
15:0 The data received with the last synchronize with data word mode command, if legal

Table 340GR1553B RT Subaddress table base address register

31 9 8 0
SUBADDRESS TABLE BASE (SATB) | 0
31:9 Base address, bits 31-9 for subaddress table
8:0 Always read ‘0’, writing has no effect

Table 341GR1553B RT Mode code control register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

| RESERVED | RRTB | RRT | ITFB | ITF | ISTB | IST | DBC |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| TBW | TVW | TSB | TS | SDB |) | SB | s |

For each mode code: “00” - lllegal, “01” - Legal, “10” - Legal, log enabled, “11” - Legal, log and interrupt

29:28 Reset remote terminal broadcast (RRTB)

27:26 Reset remote terminal (RRT)

25:24 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

23:22 Inhibit & override inhibit terminal flag (ITF)

21:20 Initiate self test broadcast (ISTB)

19:18 Initiate self test (IST)

17 :16 Dynamic bus control (DBC)

15:14 Transmit BIT word (TBW)

13:12 Transmit vector word (TVW)

11:10 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

Transmitter shutdown & override transmitter shutdown (TS)
Synchronize with data word broadcast (SDB)

Synchronize with data word (SD)

Synchronize broadcast (SB)

P W g N ©
o N M O ©

Synchronize (S)

Table 342GR1553B RT Time tag control register

31 16 15 0
TIME RESOLUTION (TRES) | TIME TAG VALUE (TVAL)
31:16 Time tag resolution (TRES) - Time unit of RT:s time tag counter in microseconds, minus 1
15:0 Time tag value (TVAL) - Current value of running time tag counter

Table 343GR1553B RT Event Log mask register
31 21 20 2 1 0
1 | EVENT LOG SIZE MASK 0

31:0 Mask determining size and alignment of the RT event log ring buffer. All bits “above” the size should be set to
‘1, all bits below should be set to ‘0’

Table 344GR1553B RT Event Log position register
31 0
EVENT LOG WRITE POINTER

31:0 Address to first unused/oldest entry of event log buffer, 32-bit aligned

AEROFLEX GAISLER

31

321

Table 345GR1553B RT Event Log interrupt position register

EVENT LOG IRQ POINTER

31

31:0

30 29

Address to event log entry corresponding to interrupt, 32-bit aligned

The register is set for the first interrupt and not set again until the interrupt has been acknowledged.

Table 346 GR1553B BM Status register

|BMSUP| KEYEN |

RESERVED

31 BM Supported (BMSUP) - Reads ‘1’ if BM support is in the core.
30 Key Enabled (KEYEN) - Reads ‘1’ if the BM validates the BMKEY field when the control register is written.
Table 347GR1553B BM Control register
31 16 15 6 5 4 3 2 1
BMKEY | RESERVED |WRSTP| EXST | IMCL | UDWL | MANL | BMEN |
31:16 Safety key - If extra safety keys are enabled (see KEYEN), this field must be 0x1543 for a write to be
accepted. Is 0x0000 when read.
5 Wrap stop (WRSTP) - If set to ‘1, BMEN will be set to ‘0’ and stop the BM when the BM log position wraps
around from buffer end to buffer start
4 External sync start (EXST) - If set to ‘1’,BMEN will be set to ‘1’ and the BM is started when an external BC
sync pulse is received
3 Invalid mode code log (IMCL) - Set to ‘1’ to log invalid or reserved mode codes.
2 Unexpected data word logging (UDWL) - Set to ‘1’ to log data words not seeming to be part of any command
1 Manchester/parity error logging (MANL) - Set to ‘1’ to log bit decoding errors
0 BM Enable (BMEN) - Must be set to ‘1’ to enable any BM logging
Table 348GR1553B BM RT Address filter register
31
ADDRESS FILTER MASK
31 Enables logging of broadcast transfers
30:0 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT address
Table 349GR1553B BM RT Subaddress filter register
31
SUBADDRESS FILTER MASK
31 Enables logging of mode commands on subaddress 31
30:1 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT subaddress
0 Enables logging of mode commands on subaddress 0

GRIP

AEROFLEX GAISLER 322 GRIP

Table 350GR1553B BM RT Mode code filter register

31 19 18 17 16

| RESERVED |STSB| STS | TLC |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| TSW | RRTBl RRT | ITFB | ITF | ISTB | IST | DBC | TBW | VW | TSB | TS | SDB |) | SB | s |

Each bit set to ‘1’ enables logging of a mode code:

18 Selected transmitter shutdown broadcast & override selected transmitter shutdown broadcast (STSB)
17 Selected transmitter shutdown & override selected transmitter shutdown (STS)
16 Transmit last command (TLC)

15 Transmit status word (TSW)

14 Reset remote terminal broadcast (RRTB)

13 Reset remote terminal (RRT)

12 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

11 Inhibit & override inhibit terminal flag (ITF)

10 Initiate self test broadcast (ISTB)

9 Initiate self test (IST)

8 Dynamic bus control (DBC)

7 Transmit BIT word (TBW)

6 Transmit vector word (TVW)

5 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

4 Transmitter shutdown & override transmitter shutdown (TS)

3 Synchronize with data word broadcast (SDB)

2 Synchronize with data word (SD)

1 Synchronize broadcast (SB)

0 Synchronize (S)

Table 351GR1553B BM Log buffer start
31 0
BM LOG BUFFER START

31:0 Pointer to the lowest address of the BM log buffer (8-byte aligned)
Due to alignment, bits 2:0 are always 0.

Table 352GR1553B BM Log buffer end
31 22 21 0

BM LOG BUFFER END

31:0 Pointer to the highest address of the BM log buffer

Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 1

Table 353GR1553B BM Log buffer position
31 22 21 0

BM LOG BUFFER POSITION

31:0 Pointer to the next position that will be written to in the BM log buffer

Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 0

Table 354GR1553B BM Time tag control register
31 24 23 0

TIME TAG RESOLUTION | TIME TAG VALUE

31:24 Time tag resolution (TRES) - Time unit of BM:s time tag counter in microseconds, minus 1
23:0 Time tag value (TVAL) - Current value of running time tag counter

AEROFLEX GAISLER

323

33.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x04D. For a description

of vendor and device identifiers see GRLIB IP Library User's Manual.

33.10 Configuration options

Table 355 shows the configuration options of the core (VHDL generics).

Table 355Configuration options

GRIP

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
bc_enable Selects whether BC support is built into the core 0-1 1
rt_enable Selects whether RT support is built into the core 0-1
bm_enable Selects whether BM support is built into the core 0-1 1
bc_timer Selects whether the BC timer and wake-up interrupt| fe2 1

tures are built into the core.

0=None, 1=Timer, 2=Timer and wake-up
bc_rtbusmask Selects whether the BC per-RT bus swap register ig| it 1

into the core.
extra_regkeys Enables extra safety keys for the BM control register &adl 0

for all fields in the RT control registers
syncrst Selects reset configuration: 0-2 1

0: Asynchronous reset, all registers in core are reset

1: Synchronous, minimal set of registers are reset

2: Synchronous, most registers reset (increases area

slightly to simplify netlist simulation)
ahbendian Selects AHB bus endianness (for use in non-GRLIB €ys41 0

tems), 0=Big endian, 1=Little endian
bm_filters Enable BM filtering capability 0-1 1
codecfreq Codec clock domain frequency in MHz 20 or 24 20
sameclk AMBA clock and reset is same as codec (removes infef-1 0

nal synchronization)

AEROFLEX GAISLER

the ordinary PIRQ line, but with a separate lin
for each interrupt:

324 GRIP
33.11 Signal descriptions
Tables356-357 shows the interface signals of the core (VHDL ports).
Table 356Signal descriptions on AMBA side
Signal name Field Type Function Active
CLK N/A Input Clock, AMBA clock domain -
RST N/A Input Reset for registers in CLK clock domain Low
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
APBSI * Input APB slave input signals -
APBSO * Output APB slave output signals -
AUXIN EXTSYNC Input External sync input for Bus Controller Pos. edge
Re-synchronized to AMBA clk internally.
Edge-detection checks for the sampled pattein
“01", i.e. pulses should be at least one
CLK cycle to always get detected.
RTADDR Input Reset value for RT address, if parity matches. -
RTPAR Input RT address odd parity -
AUXOUT RTSYNC Output Pulsed for one CLK cycle after receiving a syrHigh
chronize mode command in RT mode
BUSRESET Output Pulsed for one CLK cycle after receiving a reséigh
remote terminal mode command in RT mode
VALIDCMDA Output Pulsed for one CLK cycle after receiving a validHigh
VALIDCMDB Output command word on bus A/B in RT mode High
TIMEDOUTA Output Asserted when the terminal fail-safe timer hasHigh
TIMEDOUTB Output | triggered on bus A/B. High
BADREG Output Pulsed for one CLK cycle when an invalid regidigh
ter access is performed, either:
- an access to an undefined register,
- read/write from a write-only/read-only registeyr,
- a read/write to a non-implemented part of the
core
- an incorrect BCKEY/BMKEY
IRQVEC Output Auxiliary IRQ vector. Pulsed at the same time &sigh

[¢)

7: BM Timer overflow, 6: BM DMA Error,

2: BC Wake-up, 1: BC DMA Error, 0: BC Eve

5: RT Table error, 4: RT DMA Error, 3: RT Eve:Ft

t

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER 325 GRIP

Table 357Signal descriptions on 1553 side

Signal name Field Type Function Active
CODEC_CLK N/A Input Codec clock -
CODEC_RST N/A Input Reset for registers in CODEC_CLK domain Low
TXOUT BUSA_TXP Output Bus A transmitter, positive output High **
BUSA_TXN Output Bus A transmitter, negative output High **
BUSA_TXEN Output Bus A transmitter enable High
BUSA_RXEN Output Bus A receiver enable High
BUSB_TXP Output Bus B transmitter, positive output High **
BUSB_TXN Output Bus B transmitter, negative output High **
BUSB_TXEN Output Bus B transmitter enable High
BUSB_RXEN Output Bus B receiver enable High
BUSA_TXIN Output Inverted version of BUSA_TXEN High
(for VHDL coding convenience)
BUSB_TXIN Output Inverted version of BUSB_TXEN High
TXOUT_FB See TXOUT Input Feedback input to the terminal fail-safe timersee TXOUT
Should be tied directly to TXOUT, but are
exposed to allow testing the fail-safe timer func-
tion.
This input is re synchronized to CODEC_CLK
so it can be asynchronous.
RXIN BUSA_ RXP Input Bus A receiver, positive input High **
BUSA_RXN Input Bus A receiver, negative input High **
BUSB_RXP Input Bus B receiver, positive input High **
BUSB_RXN Input Bus B receiver, negative input High **

** The core will put both P/N outputs low when not transmitting. For input, it accepts either both-low or both-high idle.

33.12 Library dependencies

Table 358 shows libraries used when instantiating the core (VHDL libraries).

Table 358.ibrary dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB/APB signal definitions
GAISLER GR1553B_PKG Signals, component signal and component declaration

33.13 Instantiation

This example shows how the core can be instantiated in a GRLIB design.

library ieee;
use ieee.std_logic_1164.all;

library grlib, gaisler;

use grlib.amba.all;

use gaisler.gr1553b_pkg.all;
use gaisler.misc.rstgen;

entity gr1553b_ex is
generic (
padtech :integer
)i
port (

AEROFLEX GAISLER 326 GRIP

rstn :in std_ulogic;
clk 1 in std_ulogic;
codec_clk :in std_ulogic;

-- MIL-STD-1553 signals

txAen : out std_ulogic;
tXAP : out std_ulogic;
tXAN : out std_ulogic;
rxAen : out std_ulogic;
rxAP :in std_ulogic;
rxAN :in std_ulogic;
txAen : out std_ulogic;
tXAP : out std_ulogic;
tXAN : out std_ulogic;
rxAen : out std_ulogic;
rxAP :in std_ulogic;
rxAN :in std_ulogic
)i

end;

architecture rtl of gr1553b_ex is

-- System-wide synchronous reset

signal rst : std_logic;

-- AMBA signals

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector ;= (others => apb_none);
signal ahbi : ahb_mst_in_type;

signal ahbo : ahb_mst_out_vector := (others => apb_none);

-- GR1553B signals

signal codec_rst : std_ulogic;

signal txout : gr1553b_txout_type;
signal rxin - : gr1553b_rxin_type;
signal auxin : grl1553b_auxin_type;
signal auxout : gr1553b_auxout_type;

begin
rg0: rstgen port map (rstn, clk, '1’, rst, open);

-- AMBA Components are instantiated here

-- Reset generation for 1553 codec
rgc: rstgen port map (rstn, codec_clk, '1’, codec_rst, open);

-- GR1553B

gr1553b0: gr1553b
generic map (hindex => 4, pindex => 7, paddr => 7, pirq => 13, syncrst => 1,
bc_enable => 1, rt_enable => 1, bm_enable => 1)
port map (clk, rst, ahbi, ahbo(4), apbi, apbo(7), auxin, auxout,
codec_clk, codec_rst, txout, txout, rxin);

p: gr1553b_pads

generic map (padtech => padtech, outen_pol => 0)

port map (txout,rxin,
rxAen,rxAP,rxAN,txAen,txAP,txAN,
rxBen,rxBP,rxBN,txBen,txBP,txBN);

auxin <= gr1553b_auxin_zero;

end;

AEROFLEX GAISLER 327 GRIP

34

34.1

GPTIMER - General Purpose Timer Unit

Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). The num-
ber of timers is configurable through tiimersVHDL generic in the range 1 to 7. The prescaler
width is configured through thebits VHDL generic. Timer width is configured through thbits

VHDL generic. The timer unit acts a slave on AMBA APB bus. The unit is capable of asserting inter-
rupts on timer underflow. The interrupt to use is configurable to be common for the whole unit or sep-
arate for each timer.

timer 1 reload

timer 2 reload

prescaler reload timer n reload

timer 1 value [—— pirq

prescaler value

timer 2 value [——» pirq+1l

tick

timer nvalue [——» pirgn+(n-1)

Figure 128. General Purpose Timer Unit block diagram

34.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated.

The operation of each timers is controlled through its control register. A timer is enabled by setting
the enable bit in the control register. The timer value is then decremented on each prescaler tick.
When a timer underflows, it will automatically be reloaded with the value of the corresponding timer
reload register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the
enable bit.

The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. The timer unit
will signal an interrupt on appropriate line when a timer underflows (if the interrupt enable bit for the
current timer is set), when configured to signal interrupt for each timer. The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘1’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor imtimerst1 (reload register =ntimerg where ntimersis the number of
implemented timers. By setting the chain bit in the control register timzan be chained with pre-
ceding timem-1. Timern will be decremented each time when timer underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer acts as a watchdog, driving a watchdog output signal
when expired, when thedogVHDL generic is set to a time-out value larger than 0.

At reset, all timer are disabled except the watchdog timer (if enabled by the generics). The prescaler
value and reload registers are set to all ones, while the watchdog timer is setwaldge/HDL
generic. All other registers are uninitialized

AEROFLEX GAISLER 328 GRIP

34.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on the number of implemented timers.

Table 359General Purpose Timer Unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Unused

0x10 Timer 1 counter value register
0x14 Timer 1 reload value register
0x18 Timer 1 control register

0x1C Unused

0xn0 Timer n counter value register
oxn4 Timern reload value register
0xn8 Timer n control register

Table 360Scaler value
31 16 16-1 0
“000..0”" \ SCALER VALUE

16-1: O Scaler value
Any unused most significant bits are reserved. Always reads as ‘000...0".

Table 361Scaler reload value
31 16 16-1 0
“000..0" \ SCALER RELOAD VALUE

16-1: O Scaler reload value
Any unused most significant bits are reserved. Always read as ‘000...0".

Table 362 Configuration Register

31 0 9 8 7 3 2 0
“000..0” ‘DF‘ Sl ‘ IRQ ‘ TIMERS
31:10 Reserved. Always reads as ‘000...0'.
9 Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT
freezes the timer unit.
8 Separate interrupts (Sl). Reads ‘1’ if the timer unit generates separate interrupts for each timer, oth-
erwise ‘0’. Read-only.
7. 3 APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ,
otherwise timenwill drive APB Interrupt IRQ+ (has to be less the MAXIRQ). Read-only.
2.0 Number of implemented timers. Read-only.

Table 363 Timer counter value register

TIMER COUNTER VALUE

AEROFLEX GAISLER 329 GRIP
Table 363 Timer counter value register
32-1: 0 Timer Counter value. Decremented by 1 for each prescaler tick.

Any unused most significant bits are reserved. Always reads as ‘000...0".

Table 364 Timer reload value register

TIMER RELOAD VALUE

32-1: 0O Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to
load bit in the timers control register or when the RS bit is set in the control register and the timer
underflows.

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 365Timer control register

31 7 6 5 4 3 2 1 0
“000..0” ‘DH‘CH‘ P ‘ IE ‘LD‘RS‘EN‘
31:7 Reserved. Always reads as ‘000...0".
6 Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a sys-
tem is in debug mode). Read-only.
5 Chain (CH): Chain with preceding timer. If set for timetimern will be decremented each time
when timer §-1) underflows.
4 Interrupt Pending (IP): The core sets this bit to ‘1’ when an interrupt is signalled. This bit remains ‘1’
until cleared by writing ‘1’ to this bit, writes of ‘0’ have no effect.
3 Interrupt Enable (IE): If set the timer signals interrupt when it underflows.

Load (LD): Load value from the timer reload register to the timer counter value register.

Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register
when the timer underflows

0 Enable (EN): Enable the timer.
34.4 \Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x011. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER

330

34.5 Configuration options

Table 366 shows the configuration options of the core (VHDL generics).

Table 366Configuration options

GRIP

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used @to NAPBSLV-1 0
access the timer unit
paddr The 12-bit MSB APB address 0 to 4095 0
pmask The APB address mask 0 to 4095 4095
nbits Defines the number of bits in the timers 1to 32 32
ntimers Defines the number of timers in the unit lto7
pirq Defines which APB interrupt the timers will generate 0 to NAHBIRQ-1 0
sepirg If set to 1, each timer will drive an individual interrupt 0 to 1 0
line, starting with interruppirg. If set to 0, all timers will i ;
drive the sagme interru tplli)n qi() (notezntimers firq
ptineiq). must be less than or
equal to NAHBIRQ if
sepirqis set to 1)
shits Defines the number of bits in the scaler 1to 32 16
wdog Watchdog reset value. When set to a non-zero valug, ghtg bits _ 1 0
last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG |out-
put is driven active.
ewdogen External watchdog enable. When set to a non-zero value;1 0
the enable bit of the watchdog timer will be set during
core reset via the signal gpti.wdogen.Otherwise the
enable bit will be set to ‘1’ during core reset.
34.6 Signal descriptions
Table 367 shows the interface signals of the core (VHDL ports).
Table 367Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPTI DHALT Input Freeze timers High
EXTCLK Input Use as alternative clock -
WDOGEN Input Sets enable bit of the watchdog timer if VHDL-
generics wdog and ewdogen are set to non-zero
values.
GPTO TICK][0:7] Output Timer ticks. TICK][O] is high for one clock eagtHigh
time the scaler underflows. TICK[1-n] are high
for one clock each time the corresponding timer
underflows.
WDOG Output Watchdog output. Equivalent to interrupt pendHigh
ing bit of last timer.
WDOGN Output Watchdog output Equivalent to interrupt pend|rigow
bit of last timer.

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER

34.7 Library dependencies

34.8

331

Table 368 shows libraries used when instantiating the core (VHDL libraries).

Table 368.ibrary dependencies

GRIP

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals, component Component declaration

Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.misc.all;

entity gptimer_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;

... -- other signals
)i

end;

architecture rtl of gptimer_ex is

-- AMBA signals

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- GP Timer Unit input signals
signal gpti : gptimer_in_type;

begin

-- AMBA Components are instantiated here

-- General Purpose Timer Unit

timerO : gptimer

generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)

port map (rstn, clk, apbi, apbo(3), gpti, open);

gpti.dhalt <="0"; gpti.extclk <='0’; -- unused inputs

end;

AEROFLEX GAISLER 332 GRIP

35

35.1

GRTIMER - General Purpose Timer Unit

Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). Number of
timers is configurable through th@imersVHDL generic in the range 1 to 7. Prescaler width is con-
figured through the sbits VHDL generic. Timer width is configured througtthiite VHDL generic.

The timer unit acts a slave on AMBA APB bus. The unit implements one 16 bit prescaler and 3 decre-
menting 32 bit timer(s). The unit is capable of asserting interrupt on timer(s) underflow. Interrupt is
configurable to be common for the whole unit or separate for each timer.

timer 1 reload

timer 2 reload

prescaler reload timer n reload

timer 1 value [—— pirq

prescaler value

timer 2 value [——» pirq+1l

tick

timer nvalue ———» pirq+2

Figure 129. General Purpose Timer Unit block diagram

35.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated. Timers
share the decrementer to save area.

The operation of each timers is controlled through its control register. A timer is enabled by setting
the enable bit in the control register. The timer value is then decremented on each prescaler tick.
When a timer underflows, it will automatically be reloaded with the value of the corresponding timer
reload register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the
enable bit.

The timer unit can be configured to generate common interrupt through a VHDL generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. If configured
to signal interrupt for each timer the timer unit will signal an interrupt on appropriate line when a
timer underflows (if the interrupt enable bit for the current timer is set). The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘1".

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor isitimerst1l (reload register =ntimerg where ntimersis the number of
implemented timers.

By setting the chain bit in the control register tintecan be chained with preceding timetl.. Timer
n will be decremented each time when timelr underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register.

Each timers can to latch its value to dedicated registers on an event detected on the AMBA APB side-
band interrupt bus signal. A dedicated mask register is provided to filter the interrupts. (In revision 1
of the core there was a possibility that the timers were in the middle of a decrement when the latching

AEROFLEX GAISLER 333 GRIP

interrupt arrived, resulting in inconsistent timer values when used in chained configuration. This has
been improved in revision 2.)

All timers can be forced to reload an event detected on the AMBA APB sideband interrupt bus signal.
The above mask register is provided to filter the interrupts.

35.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on number of implemented timers.

Table 369GRTIMER unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Timer latch configuration register
0x10 Timer 1 counter value register
0x14 Timer 1 reload value register
0x18 Timer 1 control register

0x1C Timer 1 latch register

0xn0 Timer n counter value register
oxn4 Timern reload value register
0xn8 Timer n control register

oxnC Timern latch register

Figures 130 to 135 shows the layout of the timer unit registers.

31 shits sbits-1 0
‘ “000...0" ‘ SCALER Value

Figure 130. Scaler value

31 shits shits-1 0
“000...0" SCALER Reload Value

Figure 131. Scaler reload value

31 ‘ 12 11 10 9 8 7 3 2 0
“000...0" | Es| eL| ee|DF| st | IrRQ | TIMERS |

Figure 132. GRTIMER Configuration register

[31:13] - Reserved.

[12] Enable set (ES). If set, on the next matching interrupt, the timers will be loaded with the corresponding timer reload
values. The bit is then automatically cleared, not to reload the timer values until set again. (Added to revision 2).
[11] Enable latching (EL). If set, on the next matching interrupt, the latches will be loaded with the corresponding timer

values. The bit is then automatically cleared, not to load a timer value until set again.

AEROFLEX GAISLER 334 GRIP

[10] Enable external clock source (EE). If set the prescaler is clocked from the external clock source.

[9] Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT freezes the timer
unit.

[8] Separate interrupts (Sl). Reads ‘1’ if the timer unit generates separate interrupts for each timer, otherwise ‘0. Read-
only.

[7:3] APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ, otherwise timer
nwill drive APB Interrupt IRQ+ (has to be less the MAXIRQ). Read-only.
[2:0] Number of implemented timers. Read-only.

31 nbits nbits-1 0
‘ “000...0" TIMER COUNTER VALUE

Figure 133. Timer counter value registers

[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Timer Counter value. Decremented by 1 for each prescaler tick.

31 nbits nbits-1 0
‘ “000...0” TIMER RELOAD VALUE

Figure 134. Timer reload value registers

[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to load bit in the
timers control register.

31 7 6 5 4 3 2 1 0
‘ “000...0" ‘DH‘CHMP‘IE ‘LD‘RS‘EN

Figure 135. Timer control registers

[31:7] Reserved. Always reads as ‘000...0’

[6] Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a system is in debug
mode). Read-only.
[5] Chain (CH): Chain with preceding timer. If set for timertimern will be decremented each time when time+l()
underflows.
[4] Interrupt Pending (IP): The core sets this bit to ‘1’ when an interrupt is signalled. This bit remains ‘1’ until cleared
by writing ‘1’ to this bit, writes of ‘0’ have no effect.
[3] Interrupt Enable (IE): If set the timer signals interrupt when it underflows.
[2] Load (LD): Load value from the timer reload register to the timer counter value register.
[1] Restart (RS): If set the value from the timer reload register is loaded to the timer counter value register and
decrementing the timer is restarted.
[0] Enable (EN): Enable the timer.
31 0
‘ SELECT

Figure 136. Timer latch configuration register

[31:0] Specifies what bits of the AMBA APB interrupt bus shall cause the Timer Latch Register to latch the timer values.

AEROFLEX GAISLER 335 GRIP

31 nbits nbits-1 0
“000...0" LTCV

Figure 137. Timer latch register

[31:nbits] Reserved. Always reads as ‘000...0’
[nbits-1:0] Latched Timer Counter Value (LTCV). Value latch from corresponding timer.

35.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x038. For description
of vendor and device identifiers see GRLIB IP Library User's Manual.

35.5 Configuration options

Table 370 shows the configuration options of the core (VHDL generics).

Table 370Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used €oto NAPBMAX-1 0
access the timer unit

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1to 32 32

ntimers Defines the number of timers in the unit 1to7

pirq Defines which APB interrupt the timers will generate 0 to NAHBIRQ-1 0

sepirq If set to 1, each timer will drive an individual interrupt O to NAHBIRQ-1 0

line, starting with interrupitq. If set to 0, all timers will

. . L (Note:ntimers+ irqg must
drive the same interrupt liné@d).

be less than or equal to

NAHBIRQ)
shits Defines the number of bits in the scaler 1to 32 16
wdog Watchdog reset value. When set to a non-zero valug, g its _ 1 0

last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG |out-
put is driven active.

glatch Enable external timer latch (via interrupt) Otol 0

gextclk Enable external timer clock input Oto1l 0

gset Enable external timer reload (via interrupt) Otol 0

AEROFLEX GAISLER 336 GRIP

35.6 Signal descriptions
Table 371 shows the interface signals of the core (VHDL ports).

Table 371Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPTI DHALT Input Freeze timers High
EXTCLK Input Use as alternative clock -
GPTO TICK[1:7] Output Timer ticks High
WDOG Output Watchdog output. Equivalent to interrupt pendHigh
ing bit of last timer.
WDOGN Output Watchdog output Equivalent to interrupt pend|rigow
bit of last timer.

* see GRLIB IP Library User’s Manual

35.7 Signal definitions and reset values
The signals and their reset values are described in table 372.
Table 372Signal definitions and reset values
Signal name Type Function Active Reset value
wdogn Tri-state output Watchdog output. Equivalent to interrupt Low Tri-state
pending bit of last timer.
extclk Input External clock - -
tick]] Output Output tick High Logical 0
35.8 Timing

The timing waveforms and timing parameters are shown in figure 138 and are defined in table 373.

AEROFLEX GAISLER

clk

wdogn

tick]]

extclk

337

S VAW

GRIP

VAW,

{GRTIMERO {GRTIMERL
tGRTIMER? tGRTIMER2
{GRTIMERS

{GRTIMER4

Figure 138. Timing waveforms

Table 373Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTIMERO clock to output delay risinglk edge TBD ns
tGRTIMERL clock to output tri-state risinglk edge TBD ns
tGRTIMER2 clock to tick output delay risinglk edge TBD ns
tGRTIMER3 tick output period - 8 8 clk periods
tGRTIMERA external clock period - 2 clk periods

35.9

Library dependencies

Table 374 shows the libraries used when instantiating the core (VHDL libraries)

Table 374Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals, Component Signal and component definitions

35.10 Instantiation

This example shows how the core can be instantiated.

TBD

AEROFLEX GAISLER 338 GRIP

36

36.1

36.2

GRACECTRL - AMBA System ACE Interface Controller

Overview

The core provides an AMBA AHB interface to the microprocessor interface of a Xilinx System ACE
Compact Flash Solution. Accesses to the core’'s memory space are directly translated to accesses on
the System ACE microprocessor interface (MPU).

A < »Z3 MPD[15 / 7:0]
M »3 MPA[6:0]
System ACE » MPCEN

E) AHB control ¢ i >23 MPWEN

h »7 MPOEN
A
H <) MPIRQ
B

Figure 139. Block diagram
Operation

36.2.1 Operational model

The core has one AHB 1/O area, accesses to this area are directly translated to accesses on the Xilinx
System ACE’s Microprocessor Interface (MPU). When an access is made to the I/O area, the core first
checks if there already is an ongoing access on the MPU. If an access is currently active, the core will
respond with an AMBA SPLIT response. If the MPU bus is available, the core will start an access on
the MPU bus and issue a SPLIT response to the AMBA master. If the core has been configured for a
system that does not support SPLIT responses, it will insert wait states instead.

36.2.2 Bus widths

The AMBA access is directly translated to an MPU access where bits 6:0 of the AMBA address bus
are connected to the MPU address bus. The core can be configured to connect to a 16-bit MPU inter-
face or a 8-bit MPU interface. When the core is connected to a 8-bit MPU interface it can emulate 16-
bit mode by translating 16-bit (half-word) AMBA accesses into two 8-bit MPU accesses. The mode to
use is decided at implementation time via the VHDL gemadde

The core does not perform any checks on the size of the AMBA access and software should only
make half-word (16-bit), or byte (8-bit) depending on the setting of VHDL genmadde accesses to

the core’s memory area. Any other access size will be accepted by the core but the operation may not
have the desired result. On AMBA writes the core uses address bit 1 (or address bits 1:0 for 8-bit
mode) to select if it should propagate the high or the low part of the AMBA data bus to the MPU data
bus. On read operations the core will propagate the read MPU data to all parts of the AMBA data bus.

It is recommended to set thmodeVHDL generic to 2 for 8-bit MPU interfaces, and to O for 16-bit
MPU interfaces. This way software can always assume that it communicates via a 16-bit MPU inter-
face (accesses to the System ACE BUSMODEREG register are overriden by the core with suitable
values whemodeis set to 2).

36.2.3 Clocking and synchronization

The core has two clock inputs; the AMBA clock and the System ACE clock. The AMBA clock drives
the AHB slave interface and the System ACE clock drives the System ACE interface state machine.

AEROFLEX GAISLER 339 GRIP

36.3

36.4

36.5

36.6

All signals crossing between the two clock domains are synchronized to prevent meta-stability. The
system clock should have a higher frequency than the System ACE clock.

Registers

The core does implement any registers accessible via AMBA.

Vendor and device identifier

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x067. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

Implementation

36.5.1 Technology mapping

The core does not instantiate any technology specific primitives.

36.5.2 RAM usage

The core does not use any RAM components.

Configuration options

Table 375 shows the configuration options of the core (VHDL generics).

Table 375Configuration options

Generic name Function Allowed range Default
hindex AHB slave index 0 - (NAHBSLV-1) 0

hirgq Interrupt line 0 - (NAHBIRQ-1) 0

haddr ADDR field of the AHB BARO 0 - 16#FFF# 16#000#
hmask MASK field of the AHB BARO 0 - 16#FFF# 16#FFF#
split If this generic is set to 1 the core will issue AMBA | 0-1 0

SPLIT responses when it is busy performing an access to
the System ACE. Otherwise the core will insert wait
states until the operation completes.

Note that SPLIT support on the AHBCTRL core MUST
be enabled if this generic is set to 1.

swap If this generic is set to 0 the core will connect the Systein 1 0
ACE data(15:0) to AMBA data(15:0). If this generic is
set to 1, the core will swap the System ACE data line and
connect:

System ACE data(15:8) <-> AMBA data(7:0)
System ACE data(7 :0) <-> AMBA data(15:8).
This generic only has effect fatode= 0.

oepol Polarity of pad output enable signal 0-1 0
mode Bus width mode 0-2 0

0: Core is connected to 16-bit MPU. Only half-word
AMBA accesses should be made to the core.

1: Core is connected to 8-bit MPU. Only byte AMBA
accesses should be made to the core.

2: Core is connected to 8-bit MPU but will emulate a 16-
bit MPU interface. Only half-word AMBA accesses
should be made to the core (recommended setting fTr 8-

bit MPU interfaces).

AEROFLEX GAISLER

36.7 Signal descriptions

36.8

36.9

340

Table 376 shows the interface signals of the core (VHDL ports).

Table 376Signal descriptions

GRIP

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
CLKACE N/A Input System ACE clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
ACEI DI(15:0) Input Data line -

IRQ Input System ACE interrupt request High
ACEO ADDR(6:0) Output System ACE address -

DO(15:0) Output Data line -

CEN Output System ACE chip enable Low

WEN Output System ACE write enable Low

OEN Output System ACE output enable Low

DOEN Output Data line output enable -

* see GRLIB IP Library User’s Manual

Library dependencies

Table 377 shows the libraries used when instantiating the core (VHDL libraries).

Table 377.ibrary dependencies

Library Package Imported unit(s) Description

GAISLER MISC Component, signals Component and signal definitions
GRLIB AMBA Signals AMBA signal definitions
Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity gracectrl_ex is

port (

clk 1in std_ulogic;
clkace 1in std_ulogic;

rstn :in std_ulogic;
sace_a :out std_logic_vector(6 downto 0);
sace_mpce : out std_ulogic;
sace_d :inout std_logic_vector(15 downto 0);
sace_oen :out std_ulogic;
sace_wen :out std_ulogic;

sace_mpirq : in std_ulogic;
)i

end;

AEROFLEX GAISLER 341

architecture rtl of gracectrl_ex is
-- AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

-- GRACECTRL signals
signal acei : gracectrl_in_type;
signal aceo : gracectrl_out_type;

begin

-- AMBA Components are instantiated here

-- GRACECTRL core is instantiated below

grace0 : gracectrl generic map (hindex => 4, hirq => 4, haddr => 16#002#,

hmask => 16#fff#, split => 1)
port map (rstn, clk, ahbsi, ahbso(4), acei, acoo);
sace_a_pads : outpadv generic map (width => 7, tech => padtech)
port map (sace_a, aceo.addr);
sace_mpce_pad : outpad generic map(tech => padtech)
port map (sace_mpce, aceo.cen);
sace_d_pads : iopadv generic map (tech => padtech, width => 16)
port map (sace_d, aceo.do, aceo.doen, aceo.di);
sace_oen_pad : outpad generic map (tech => padtech)
port map (sace_oen, aceo.oen);
sace_wen_pad : outpad generic map (tech => padtech)
port map (sace_wen, aceo.wen);
sace_mpirq_pad : inpad generic map (tech => padtech)
port map (sace_mpirg, acei.irq);

end;

GRIP

AEROFLEX GAISLER 342 GRIP

37

37.1

37.2

37.3

GRAES - Advanced Encryption Standard

Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
application (like audio or video streams). The GRAES core implements the AES-128 algorithm, sup-
porting the Electronic Codebook (ECB) method. The AES-128 algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST).

The core provides the following internal AMBA AHB slave interface, with sideband signals as per
[GRLIB] including:

e interrupt bus
e configuration information
» diagnostic information

The core can be partition in the following hierarchical elements:
e Advanced Encryption Standard (AES) core

* AMBA AHB slave

e GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES-128 algorithm is a sequence of 128
bits (can also be 192 or 256 bits for other algorithms).

To transfer a 128 bit key or data block four write operations are necessary since the bus interface is 32
bit wide. After supplying a “key will be input” command to the control register, the key is input via
four registers. After supplying a “data will be input” command to the control register, the input data is
written via four registers. After the last input data register is written, the encryption or decryption is
started. The progress can be observed via the debug register. When the operation is completed, an
interrupt is generated. The output data is then read out via four registers. Note that the above sequence
must be respected. It is not required to write a new key between each data input. There is no command
needed for reading out the result.

The implementation requires around 89 clock cycles for a 128 bit data block in encryption direction
and around 90 clock cycles for decryption direction. For decryption an initial key calculation is
required. This takes around 10 additional clock cycles per every new key. Typically large amounts of
data are decrypted (and also encrypted) with the same key. The key initialization for the decryption
round does not influence the throughput.

Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.

AEROFLEX GAISLER 343 GRIP

The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric

block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and

256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

37.4 AES-128 parameters

The GRAES core implements AES-128. An AES algorithm is defined by the following parameters
according to FIPS-197:

e Nk number of 32-bit words comprising the cipher key
* Nr number of rounds

The AES-128 algorithm is specified ldk=4 andNr=10.

The GRAES core has been verified against the complete set of Known Answer Test vectors included
in the AES Algorithm Validation Suite (AESAVS) from National Institute of Standards and Technol-
ogy (NIST), Information Technology Laboratory, Computer Security Division.

37.5 Throughput

The data throughput for the GRAES core is around 128/90 bits per clock cycle, i.e. approximately 1.4
Mbits per MHz.

The underlaying AES core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 42 Mbit/s, the
power consumption was 9,6 mW, and the size was 14,5 kgates.

ST BTV e e

AT

-
g

:
i
.

.

Figure 140. Dual Crypto Chip

37.6 Characteristics

The GRAES core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

« LUTs: 5040 (7%)
.« 256x1 ROMs (ROM256X1): 128

AEROFLEX GAISLER 344 GRIP

* Frequency:125 MHz

37.7 Registers

The core is programmed through registers mapped into AHB 1/O address space.

Table 378GRAESregisters
AHB 1/O address offset Register
16#000# Control Register
16#010# Data Input O Register
16#014# Data Input 1 Register
16#018# Data Input 2 Register
16#01C# Data Input 3 Register
16#020# Data Output O Register
16#024# Data Output 1 Register
16#028# Data Output 2 Register
16#02C# Data Output 3 Register
16#03C# Debug Register

37.7.1 Control Register (W)

Table 379%Control Register

31 2 1 0
- DE | KE
C Y
31-2: - Unused
1 DEC 0 = “encrypt”, 1 = “decrypt” (only relevant when KEY=1)
0: KEY 0 = “data will be input”, 1 = “key will be input”

Note that the Data Input Registers cannot be written before a command is given to the Control Regis-
ter. Note that the Data Input Registers must then be written in sequence, and all four registers must be
written else the core ends up in an undefined state.

The KEY bit determines whether a key will be input (KEY=1), or data will be input (KEY=0). When
a “key will be input” command is written, the DEC bit determines whether decryption (DEC=1) or
encryption (DEC=0) should be applied to the subsequent data input.

Note that the register cannot be written after a command has been given, until the specific operation
completes. A write access will be terminated with an AMBA AHB error response till the Data Input
Register 3 has been written, and the with an AMBA AHB retry response till the operation completes.
Any read access to this register results in an AMBA AHB error response.

37.7.2 Debug Register (R)

Table 380Debug Register

31 0
FSM

31-0: FSM Finite State Machine
Any write access to this register results in an AMBA AHB error response.

AEROFLEX GAISLER 345 GRIP

37.7.3 Data Input Registers (W)

Table 381Data Input O Register

31 0
| Data/Key(127 downto 96)

Table 382Data Input 1 Register

31 0
| Data/Key(95 downto 64)

Table 383Data Input 2 Register

31 0
| Data/Key(63 downto 32)

Table 384Data Input 3 Register

31 0
| Data/Key(31 downto 0)

Note that these registers can only be written with a key after a “key will be input” command has been
written to the control register. Note that the registers must then be written in sequence, and all four
registers must be written else the core ends up in an undefined state.

Note that these registers can only be written with data after a “data will be input” command has been
written to the control register, else an AMBA AHB error response is given. Note that the registers
must then be written in sequence and all four registers must be written else the core ends up in an
undefined state. The encryption or decryption operation is started when the Data Input 3 Register is
written to with data.

37.7.4 Data Output Registers (R)

Table 383Data Output 0 Register

31 0
| Data(127 downto 96)

Table 386Data Output 1 Register

31 0
| Data(95 downto 64)

Table 387Data Output 2 Register

31 0
| Data(63 downto 32)

Table 388Data Output 3 Register

31 0
| Data(31 downto 0) |

Note that these registers can only be read after encryption or decryption has been completed. An
AMBA AHB retry response is given to read accesses that occur while the encryption or decryption is
in progress. If a read access is attempted before an encryption or decryption has even been initiated,

AEROFLEX GAISLER

37.8

37.9

37.10

then an AMBA AHB erro response is given. Write accesses to these registers result in an AMBA

AHB error response.

Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x073. For description of

346

vendor and device identifiers see GRLIB IP Library User’s Manual.

Configuration options

Table 389 shows the configuration options of the core (VHDL generics).

Table 389Configuration options

GRIP

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
ioaddr Addr field of the AHB 1/O BAR 0 - 16#FFF# 0
iomask Mask field of the AHB 1/0O BAR 0 - 16#FFF# 16#FFC#
hirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0
Signal descriptions

Table 390 shows the interface signals of the core (VHDL ports).

Table 390Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -

AHBI * Input AHB slave input signals -
AHBO * Output AHB slave output signals -
DEBUGJ0:4] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Note that the AES core can also be used without the GRLIB plug&play information. The AMBA

AHB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

37.11 Library dependencies

37.12

Table 391 shows libraries used when instantiatingore(VHDL libraries).

Table 391Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRAES component declarations
Instantiation

This example shows how the core can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

AEROFLEX GAISLER 347 GRIP

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.crypto.all;

signal debug: std_logic_vector(0 to 4);

GRAESQO: graes
generic map (

hindex => hindex,
ioaddr => joaddr,
iomask => jomask,
hirg => hirq)
port map (
rstn => rstn,
clk =>clk,
ahbi => ahbsi,
ahbo => ahbso(hindex),

debug => debug);

AEROFLEX GAISLER 348 GRIP

38

38.1

38.2

GRAES_DMA - Advanced Encryption Standard with DMA

Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
applications (like audio or video streams). The GRAES_DMA core implements the AES algorithm
with 256-bit key length using CTR mode of operation. The AES algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST). DMA is used for efficiently transferring plaintext and ciphertext to the cryptographic core
with minimum CPU involvement.

The core provides an AMBA AHB master interface, with sideband signals as per [GRLIB] including:
e interrupt bus

e configuration information

» diagnostic information

The core can be partition in the following hierarchical elements:
e Advanced Encryption Standard (AES) core
* AMBA AHB master

Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES algorithm supported in this core is

a sequence of 256 bits.

To encrypt a message a descriptor must be setup. It contains pointers to memory locations where the
key, initialization vector and plaintext are located. The memory addresses for the key and initializa-
tion vector must be word aligned while the plaintext can start at any address. If the previous key and/
or init vector are to be reused there are control bits in the descriptor which can be used to make the
core skip the fetching of the respective pointers and also subsequently skip the fetching of the actual
key and initvector. Currently the initvector and key always have to be loaded for the core to operate
correctly.

When one or more descriptors have been enabled the core can be enabled and it will automatically
start fetching the necessary values from memory, split the data into the required blocks, encrypt/
decrypt and finally write back the result to memory. When each descriptor is finished the core will set
the enable bit to 0. An interrupt can also optionally be generated. The result of the encryption or
decryption can be either written back to the same memory address from where the plain or ciphertext
was read or to a different location specified in an additional pointer. The layout of the descriptor is
shown in the tables below.

Table 392GRAES_DMA descriptor word 0 (address offset 0x0)

31 21 20 9 8 7 6 5 4 3 2 1 0
LEN RESERVED SP KE IV DO ED MD IE EN
31:21 Length (LEN) - Length in bytes of message to process
20: 9 RESERVED
8 Stop (SP) - When asserted descriptor processing is stopped when the current descriptor is fin-

ished i.e. the descriptor processing is stopped even if the next descriptor is enabled.

AEROFLEX GAISLER

31

349 GRIP

Table 392GRAES_DMA descriptor word O (address offset 0x0)
Key (KE) - When set a new key will be fetched and used from the memory address set in the key
address descriptor word. If not set the currently stored key is used and the key adddress word should
not be included in the descriptor.

Initialization vector (V) - When set a new initialization vectir will be fetched and used from the
memory address set in the initialization vector address descriptor word. If not set the currently stored
initialization vector is used and the initialization vector adddress word should not be included in the
descriptor.

Dataout (DO) - When set the encrypted/decrypted output will be written to the memory address
specified in the dataout descriptor word. Otherwise data is written to the same memory address from

where the original plaintext/ciphertext was fetched and the dataout address word should not be

included in the descriptor.
Encrypt-decrypt (ED) - If set to one encryption will be performed otherwise decryption

Mode (MD) - If set to 1 CTR mode is selected otherwise the core will use CBC. Currently this bit is
unused and the core always uses CTR mode.

RESERVED

Interrupt enable (IE) - When set an interrupt will be generated when the orocessing of the current
descriptor is finished and the interrupt enable bit in the control register is set.

Enable (EN) -

Table 393GRAES_DMA descriptor word 1 (address offset 0x4)
0

Data input address ‘

31

31:0

Data input address - Memory address pointer where plaintext/ciphertext for encryption/descryption
is located.

Table 394GRAES_DMA descriptor word 2 (address offset 0x10)

Dataout address ‘ ‘ ‘

31

31:2

Dataout address - Memory address where encrypted/decrypted data shall be stored. If the data should
be stored at the same location as the input data (DO bit in word 0 is 0) then this word shall not be
included in the descriptor.

Reserved

Table 395GRAES_DMA descriptor word 3(address offset 0xC)

IV address ‘ ‘ ‘

31

31:2

Initialization vector address - Memory address where initialization vector is located. If a new
initvector is not ueeded (IV bit in word 0 is 0) then this word shall not be included in the descriptor.

Reserved

Table 396 GRAES_DMA descriptor word 4 (address offset 0x8)

Key address ‘ ‘ ‘

AEROFLEX GAISLER 350 GRIP

38.3

38.4

38.5

Table 396 GRAES_DMA descriptor word 4 (address offset 0x8)

31:2 Key address - Memory address where key is located. If a new key is not ueeded (KE bit in word O is
0) then this word shall not be included in the descriptor.
1: 0 Reserved

Table 397 GRAES_DMA descriptor word 5 (address offset 0x14)
31 2 1 0
Next descriptor ‘ ‘ ‘

31:2 Next descriptor address - Memory address to the next descriptor.
1: 0 Reserved

The words in the descriptor should always be written in the order listed above. If one or more words
are not included the offsets of the following words should be adjusted accordingly.

Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.

The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric

block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and

256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

Characteristics

The GRAES_DMA core has been synthesized for a Actel AX2000-std device with the following
results:

e« Combinational Cells: 9364 of 21504 (44%)
e Sequential Cells: 2374 of 10752 (22%)

» Total Cells: 11738 of 32256 (37%)

e Block Rams : 0 of 64 (0%)

* Frequency:60 MHz

Registers
The core is programmed through registers mapped into APB address space.

Table 398GRSPW registers

APB address offset Register
0x0 Control
0x4 Status

0x8 Descriptor address

AEROFLEX GAISLER 351 GRIP

Table 399 GRAES_DMA control register

31 2 10
RESERVED | IE [EN]
31:2 RESERVED
1 Interrupt Enable (IE) - If set, an interrupt is generated each time a message has been decrypted .

Reset value: ‘0'.

0 Enable (EN) - Write a one to this bit each time new descriptors are activated in the list. Writing a one
will cause the core to read a new descriptor and perform the requested operation. This bit is automat-
ically cleared when the core encounters a descriptor which is disabled. Reset value: ‘0’

Table 400GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

31:0 RESERVED

Table 401 GRSPW Descriptor address
31 2 1 0
Descriptor address ‘ ‘ ‘

31:2 Current descriptor address - Points to current descriptor. Can be initialized with a new pointer when
the core is disabled. Is updated by the core while it is progressing through the list of descriptors.
1: 0 RESERVED

38.6 Vendor and device identifiers

The core has vendor identifier 0Ox01 (Aeroflex Gaisler) and device identifier 0Ox07B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

38.7 Configuration options
Table 402 shows the configuration options of the core (VHDL generics).

Table 402Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB BAR 0 - 16#FFF# 0

pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0

AEROFLEX GAISLER

38.8 Signal descriptions

352

Table 403 shows the interface signals of the core (VHDL ports).

Table 403Signal descriptions

GRIP

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

* see GRLIB IP Library User's Manual

38.9 Library dependencies

38.10

Table 404 shows libraries used when instantiatingore(VHDL libraries).

Table 404Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRAES component declarations
Instantiation

This example shows how the core can be instantiated.

entity graes_dma_tb is

generic(
hindex: in Integer :=0;
pindex: in Integer :=0;
paddr: in Integer :=0;
pmask: in Integer := 16#fff#;
pirg: in Integer :=1);

end entity graes_dma_tb;

signal rstn: std_ulogic :='0’;
signal clk: std_ulogic :='0";
signal apbi: apb_slv_in_type;
signal apbo:

signal ahbmi:
signal ahbmo:

ahb_mst_in_type;

graesO: graes_dma
generic map(

hindex => hindex,
pindex => pindex,
paddr => paddr,
pmask => pmask,
pirq => pirq)

port map(
rstn => rstn,
clk => clk,
ahbi => ahbmi,
ahbo => ahbmo(hindex),
apbi => apbi,

apbo => apbo(pindex));

apb_slv_out_vector := (others => apb_none);

ahb_mst_out_vector := (others => ahbm_none);

AEROFLEX GAISLER 353 GRIP

39

39.1

GRCAN - CAN 2.0 Controller with DMA

Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external
to the chip.

The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.

After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the CAN core. When a
programmable number of messages have been transmitted, the DMA controller issues an interrupt.

After the reception has been set up via the AMBA APB interface, messages are received by the CAN
core. To store messages to memory, the DMA controller initiates a burst of write accesses on the
AMBA AHB bus, which are performed by the AHB master. When a programmable number of mes-
sages have been received, the DMA controller issues an interrupt.

The CAN controller can detect a SYNC message and generate an interrupt, which is also available as
an output signal from the core. The SYNC message identifier is programmable via the AMBA APB
interface. Separate synchronisation message interrupts are provided.

The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface.

Note that it is not possible to receive a CAN message while transmitting one.

@ AMBA Layer Coding Layer Physical Layer g
< — z
s M <
2 o
« >
< - - CAN 2.0 3 £
AMBA Codec g E
AHB DMA FIFO e 2,9
Master [Controller [=3 IB
>
4 s =z
& > <
o
€
1]
e
m >
a AMBA 3
p APB P 1
%) Slave
s
<
A GRCAN

Figure 141. Block diagram

39.1.1 Function

The core implements the following functions:
e CAN protocol

* Message transmission

* Message filtering and reception

AEROFLEX GAISLER 354 GRIP

39.2

39.3

¢ SYNC message reception
e Status and monitoring

e Interrupt generation

« Redundancy selection

39.1.2 Interfaces

The core provides the following external and internal interfaces:
* CAN interface
« AMBA AHB master interface, with sideband signals as per [GRLIB] including:

. cacheability information
. interrupt bus

. configuration information
. diagnostic information

« AMBA APB slave interface, with sideband signals as per [GRLIB] including:

. interrupt bus
. configuration information
. diagnostic information

39.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:
e CAN 2.0 Core

e Redundancy Multiplexer / De-multiplexer

« Direct Memory Access controller

* AMBA APB slave

* AMBA AHB master

Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).

The active pair (i.e. 0 or 1) is selectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.

For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can
be enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface
drivers differs, thus the meaning of the enable output is undefined.

Redundancy is implemented by means of Selective Bus Access. Note that the active pair selection
above provides means to meet this requirement.

Protocol

The CAN protocol is based on a CAN 2.0 controller VHDL core. The CAN controller complies with
CAN Specification Version 2.0 Part B, except for the overload frame generation.

Note that there are three different CAN types generally defined:
e 2.0A, which considers 29 bit ID messages as an error

AEROFLEX GAISLER 355 GRIP

39.4

39.5

e 2.0B Passive, which ignores 29 bit ID messages
e 2.0B Active, which handles 11 and 29 bit ID messages
Only 2.0B Active is implemented.

Status and monitoring

The CAN interface incorporates status and monitoring functionalities. This includes:

e Transmitter active indicator

e Bus-Off condition indicator

e Error-Passive condition indicator

e Over-run indicator

e 8-bit Transmission error counter

* 8-bit Reception error counter

The status is available via a register and is also stored in a circular buffer for each received message.

Transmission

The transmit channel is defined by the following parameters:
* base address

* buffer size

* write pointer

e read pointer

The transmit channel can be enabled or disabled.

39.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

39.5.2 Write and read pointers

The write pointer (CanTxXWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

AEROFLEX GAISLER 356 GRIP

The difference between the write and the read pointers is the number of CAN messages available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

e« There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,
CanTxXWR.WRITE=2 and CanTxRD.READ=0.

» There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxXWR.WRITE
=0 and CanTxRD.READ =6.

e There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxXWR.WRITE
=1 and CanTxRD.READ =7.

e There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxXWR.WRITE
=5 and CanTxRD.READ =3.

When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer CanTXWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

39.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

39.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.

A message transmission will begin with a fetch of the complete CAN message from the circular
buffer to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission
request will be forwarded to the CAN core. If there is at least an additional CAN message available in
the circular buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer
in the CAN controller will be performed. The CAN controller can thus hold two CAN messages for
transmission: one in the fetch buffer, which is fed to the CAN core, and one in the prefetch buffer.

After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message
for which the arbitration is lost, or failed for some other reason, will lead to the disabling of the chan-
nel (CanTxCTRL.ENABLE=0), and the message will not be put up for re-arbitration.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TXEmpty and TxIrq which are issued on the successful transmission

of a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Reg-

AEROFLEX GAISLER 357 GRIP

ister.MASK registers is successfully transmitted. Additional interrupts are provided to signal error
conditions on the CAN bus and AMBA bus.

39.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.

While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary
value pointing to the first message to be transmitted, and the write pointer (CanTXWR.WRITE) can be
changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

39.5.6 AMBA AHB error

Definition:

e amessage fetch occurs when no other messages is being transmitted

« amessage prefetch occurs when a previously fetched message is being transmitted
« the local fetch buffer holds the message being fetched

« the local prefetch buffer holds the message being prefetched

« the local fetch buffer holds the message being transmitted by the CAN core

» a successfully prefetched message is copied from the local prefetch buffer to the local fetch
buffer when that buffer is freed after a successful transmission.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched
will result in a TXAHBETrr interrupt.

If the CanCONF.ABORT bit is set to Ob, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanTx-
CTRL.ENABLE is cleared automatically to O b). The read pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to read a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBETT bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBE .

An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched

will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for

the case above. If no AHB error occurs, prefetch will be allowed again.

39.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.

The progress of the any ongoing access can be observed via the CanTXCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be 0Ob before the channel can be re-configured safely (i.e. changing

AEROFLEX GAISLER 358 GRIP

39.6

address, size or read/write pointers). It is also possible to wait for the Tx and TxLoss interrupts
described hereatfter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-
configured and a higher priority message can be transmitted. Note that the single shot mode does not
require the channel to be disabled, but the progress should still be observed as above.

No message transmission is started while the channel is not enabled.

39.5.8 Interrupts

During transmission several interrupts can be generated:

e TxLoss: Message arbitration lost for transmit (could be caused by
communications error, as indicated by other interrupts as well)

e TxErrCntr: Error counter incremented for transmit

e TxSync: Synchronization message transmitted

e Tx: Successful transmission of one message

e« TxEmpty: Successful transmission of all messages in buffer

e Txlrg: Successful transmission of a predefined number of messages
e« TxAHBErr: AHB access error during transmission

o Off: Bus-off condition

e Pass: Error-passive condition

The Tx, TXEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.

Reception

The receive channel is defined by the following parameters:
e base address

e buffer size

e write pointer

e read pointer

The receive channel can be enabled or disabled.

39.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the AMBA
AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.

AEROFLEX GAISLER 359 GRIP

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

39.6.2 Write and read pointers

The write pointer (CanRxXWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the
CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

e There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE=2 and CanRxRD.READ=0.

e There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RXWR.WRITE =0 and CanRxRD.READ=6.

e There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxXWR.WRITE =1 and CanRxRD.READ=7.

* There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RXWR.WRITE =5 and CanRxRD.READ=3.

When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxXWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

39.6.3 Location

The location of the circular buffer is defined by a base address (CanRXADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

39.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message
in the circular buffer (as defined by the write and read pointer), as soon as a message is received by the
CAN core, an AMBA AHB store access will be started. The received message will be temporarily
stored in a local store-buffer in the CAN controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the message reception to start prematurely

After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxXWR.WRITE) is automatically incremented, taking wrap around effects of
the circular buffer into account.

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrqg which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of mes-
sages have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter.

AEROFLEX GAISLER 360 GRIP

The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register. MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

39.6.5 Straight buffer
It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRXADDR.ADDR) field.

While the channel is disabled, the write pointer (CanRxXWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

39.6.6 AMBA AHB error
An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RXxAHBE'T interrupt.

If the CanCONF.ABORT bit is set to Ob, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanRx-
CTRL.ENABLE is cleared automatically to Ob). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBETT bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBETr.

39.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note
that only complete messages can be received from the CAN core. If the message is stored success-
fully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated.

The progress of the any ongoing access can be observed via the CanRXCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be 0Ob before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Rx and RxMiss interrupts

described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No message reception is performed while the channel is not enabled

39.6.8 Interrupts

During reception several interrupts can be generated:

e RxMiss: Message filtered away for receive

* RxErrCntr: Error counter incremented for receive

e RxSync: Synchronization message received

e Rx Successful reception of one message

e RxFull: Successful reception of all messages possible to store in buffer

AEROFLEX GAISLER 361 GRIP

39.7

39.8

e RXxIrg: Successful reception of a predefined number of messages
« RxAHBErr: AHB access error during reception

« OR: Over-run during reception
« OFF: Bus-off condition
e PASS: Error-passive condition

The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message recep-
tion, after the CanRXWR.WRITE pointer has been incremented.

The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
Note that the last message stored which fills the circular buffer will not generate an OR interrupt. The
overrun is also reported with the CanSTAT.OR bit, which is cleared when reading the register.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.

When the CanCTRL.ENABLE bit is cleared to Ob, the CAN core is reset and the configuration bits
CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may be
modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by
only sending recessive bits. Note that the CAN core requires that 10 recessive bits are received before
any reception or transmission can be initiated. This can be caused either by no unit sending on the
CAN bus, or by random bits in message transfers.

Interrupt

Three interrupts are implemented by the CAN interface:

Index: Name: Description:

0 IRQ Common output from interrupt handler

1 TXSYNC Synchronization message transmitted (optional)
2 RxSYNC Synchronization message received (optional)

The interrupts are configured by means ofpting VHDL generic and thsingleirgVHDL generic.

AEROFLEX GAISLER 362 GRIP

39.9 Registers
The core is programmed through registers mapped into APB address space.

Table 405GRCAN registers

APB address offset Register

16#000# Configuration Register

16#004# Status Register

16#008# Control Register

16#018# SYNC Mask Filter Register
16#01C# SYNC Code Filter Register
16#100# Pending Interrupt Masked Status Register
16#104# Pending Interrupt Masked Register
16#108# Pending Interrupt Status Register
16#10C# Pending Interrupt Register
16#110# Interrupt Mask Register

16#114# Pending Interrupt Clear Register
16#200# Transmit Channel Control Register
16#204# Transmit Channel Address Register
16#208# Transmit Channel Size Register
16#20C# Transmit Channel Write Register
16#210# Transmit Channel Read Register
16#214# Transmit Channel Interrupt Register
16#300# Receive Channel Control Register
16#304# Receive Channel Address Register
16#308# Receive Channel Size Register
16#30C# Receive Channel Write Register
16#310# Receive Channel Read Register
16#314# Receive Channel Interrupt Register
16#318# Receive Channel Mask Register
16#31C# Receive Channel Code Register

39.9.1 Configuration Register [CanCONF] R/W
Table 406Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCALER PS1 PS2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSJ BPR SAM | Sile | Sele | Ena | Ena | Abo

nt ct blel | bleO | rt

31-24: SCALER Prescaler setting, 8-bit: system clock / (SCALER +1)

23-20: PS1 Phase Segment 1, 4-bit: (valid range 1 to 15)
19-16: PS2 Phase Segment 2, 4-bit: (valid range 2 to 8)

14-12: RSJ ReSynchronization Jumps, 3-bit: (valid range 1 to 4)
9:8: BPR Baud rate, 2-bit:

00b = system clock / (SCALER +1) /1
01b = system clock / (SCALER +1) /2
10b = system clock / (SCALER +1) / 4
11b = system clock / (SCALER +1) /8

AEROFLEX GAISLER 363 GRIP

a

SAM Single sample when Ob. Triple sample when 1b.
SILENT Listen only to the CAN bus, send recessive bits.
3: SELECT Selection receiver input and transmitter output:
Select receive input 0 as active when 0Ob,

Select receive input 1 as active when 1b

Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

&

2: ENABLEL1 Set value of output 1 enable
1: ENABLEO Set value of output O enable
0: ABORT Abort transfer on AHB ERROR

All bits are cleared to O at reset.

Note that constraints on PS1, PS2 and RSJ are defined as:

e PS1+1>=PS2

e PS1>PS2

e PS2 >=RSJ

Note that CAN standard TSEGL1 is defined by PS1+1.

Note that CAN standard TSEGZ2 is defined by PS2.

Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:
system clock / ((SCALER+1) * BPR)

where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8.

For a quantum equal to one system clock period, an additional quantum is added to the node delay.
Note that for minimizing the node delay, then set either SCALER > 0 or BRP > 0.

Note that the resulting bit rate is:
system clock / ((SCALER+1) * BPR * (1+ PS1+1 + PS2))
where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.

Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.

For SAM = 0b (single), the bus is sampled once; recommended for high speed buses (SAE class C).

For SAM = 1b (triple), the bus is sampled three times; recommended for low/medium speed buses
(SAE class A and B) where filtering spikes on the bus line is beneficial.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.

39.9.2 Status Register [CanSTAT] R

Table 407Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxChannels RxChannels TXErrCntr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RXErrCntr Acti |AH |OR | Off | Pass
ve B
Err

31-28: TxChannelsNumber of TxChannels -1, 4-bit
27-24: RxChannelsNumber of RxChannels -1, 4-bit

AEROFLEX GAISLER 364 GRIP

23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RXxErrCntr Reception error counter, 8-bit

4: ACTIVE Transmission ongoing

3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception

1: OFF Bus-off condition

0: PASS Error-passive condition

All bits are cleared to 0 at reset.

The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full.

The OR and AHBETr status bits are cleared when the register has been read.
Note that TXErrCntr and RxErrCntr are defined according to CAN protocol.

Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the Can-
CONF.ABORT bit is set to 1b.

39.9.3 Control Register [CanCTRL] R/W

Table 408Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 RESET Reset complete core when 1
0: ENABLE Enable CAN controller, when 1. Reset CAN controller, when 0

All bits are cleared to O at reset.
Note that RESET is read back as 0Ob.

Note that ENABLE should be cleared to Ob to while other settings are modified, ensuring that the
CAN core is properly synchronized.

Note that when ENABLE is cleared to Ob, the CAN interface is in sleep mode, only outputting reces-
sive bits.

Note that the CAN core requires that 10 recessive bits be received before receive and transmit opera-
tions can begin.

39.9.4 SYNC Code Filter Register [CanCODE] R/W

Table 409SYNC Code Filter Register

31 30 29 28 0
| | | |SYNC

28-0: SYNC Message ldentifier

All bits are cleared to 0 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to O.

AEROFLEX GAISLER 365 GRIP

39.9.5 SYNC Mask Filter Register [CanMASK] R/W

Table 410SYNC Mask Filter Register

31 30 29 28 0
| | | |MASK

28-0: MASK Message ldentifier

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to O.
A RXSYNC message ID is matched when:
((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0
A TxSYNC message ID is matched when:
((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) =0

39.9.6 Transmit Channel Control Register [CanTXCTRL] R/W

Table 411Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gle |oing | ble
2: SINGLE Single shot mode
1 ONGOING Transmission ongoing
0: ENABLE Enable channel

All bits are cleared to O at reset.

Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to 0b) if the
arbitration on the CAN bus is lost.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing message transmission is not aborted, unless
the CAN arbitration is lost or communication has failed.

Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that config-
uration of the channel is not safe.

39.9.7 Transmit Channel Address Register [CanTXADDR] R/W

Table 412Transmit Channel Address Register

31 10 9 0
ADDR

31-10: ADDR Base address for circular buffer

All bits are cleared to O at reset.

AEROFLEX GAISLER 366 GRIP

39.9.8 Transmit Channel Size Register [CanTxSIZE] R/W

Table 413Transmit Channel Size Register

31 21 20 6 5 0
SIZE

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to O at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

39.9.9 Transmit Channel Write Register [CanTXWR] R/W

Table 414Transmit Channel Write Register

31 20 19 4 3 0
WRITE

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.10 Transmit Channel Read Register [CanTxRD] R/W

Table 415Transmit Channel Read Register

31 20 19 4 3 0
READ

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.

Note that the READ field can be use to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.

AEROFLEX GAISLER 367 GRIP

When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TXEmpty). Note that this indicates that all messages in the buffer have been
transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.11 Transmit Channel Interrupt Register [CanTxIRQ] R/W

Table 416Transmit Channel Interrupt Register

31 20 19 4 3 0
IRQ |
19-4: IRQ Interrupt is generated when CanTXRD.READ=IRQ, as a consequence of a message transmission

All bits are cleared to O at reset.
Note that this indicates that a programmed number of messages have been transmitted.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.12 Receive Channel Control Register [CanRxCTRL] R/W

Table 417Receive Channel Control Register

31 2 1 0
OnG | Ena
oing | ble

1 ONGOINGReception ongoing (read-only)

0: ENABLE Enable channel

All bits are cleared to O at reset.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.

At the time the ENABLE is cleared to Ob, any ongoing message reception is not aborted

Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

39.9.13 Receive Channel Address Register [CanRXADDR] R/W

Table 418Receive Channel Address Register

31 10 9 0
ADDR

31-10: ADDR Base address for circular buffer

All bits are cleared to O at reset.

39.9.14 Receive Channel Size Register [CanRXSIZE] R/W

Table 419Receive Channel Size Register

31 21 20 6 5 0
SIZE

20-6: SIZE The size of the circular buffer is SIZE*4 messages

AEROFLEX GAISLER 368 GRIP

All bits are cleared to O at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

39.9.15 Receive Channel Write Register [CanRxXWR] R/W

Table 420Receive Channel Write Register

31 20 19 4 3 0
WRITE

19-4: WRITE Pointer to last written message +1

All bits are cleared to O at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.

Note that the WRITE field can be use to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

39.9.16 Receive Channel Read Register [CanRxRD] R/W

Table 421Receive Channel Read Register

31 20 19 4 3 0
READ

19-4: READ Pointer to last read message +1

All bits are cleared to O at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last message that has been read out.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

39.9.17 Receive Channel Interrupt Register [CanRxIRQ] R/W

Table 422Receive Channel Interrupt Register

31 20 19 4 3 0
IRQ |

19-4: IRQ Interrupt is generated when CanRXWR.WRITE=IRQ, as a consequence of a message reception

AEROFLEX GAISLER 369 GRIP

All bits are cleared to O at reset.
Note that this indicates that a programmed number of messages have been received.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

39.9.18 Receive Channel Mask Register [CanRXMASK] R/W

Table 423Receive Channel Mask Register

31 30 29 28 0
L[[[aw
28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between the received message

ID and the CanRxCODE.AC field

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to O.

39.9.19 Receive Channel Code Register [CanRXxCODE] R/W

Table 424Receive Channel Code Register

31 30 29 28 0
L L [
28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to Oat reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to O.
A message ID is matched when:
((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) =0

39.9.20 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

e Set up the software interrupt-handler to accept an interrupt from the module.
* Read the Pending Interrupt Register to clear any spurious interrupts.

* Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

« When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt.

« Handle the interrupt, taking into account all causes of the interrupt.
e Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is
zero. To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the
Interrupt Mask Register.

AEROFLEX GAISLER

370

GRIP

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the

Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt

Clear Register.

Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

« Pending Interrupt Masked Status Register [CanPIMSR] R
* Pending Interrupt Masked Register [CanPIMR] R
e Pending Interrupt Status Register [CanPISR] R
e Pending Interrupt Register [CanPIR] R/W
* Interrupt Mask Register [CanIMR] R/W
e Pending Interrupt Clear Register [CanPICR] W
Table 428nterrupt registers
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Tx
Loss
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rx | Tx Rx | Tx Rx | Tx Rx | Tx Rx | Tx Rx | Tx Rx |OR | Off | Pass
Miss | EfT | ErT Syn | Syn Emp| Full |IRQ |IRQ |AH |AH
Cntr | Cntr | c ty B B
Err | Err
16: TxLoss Message arbitration lost during transmission (could be caused by
communications error, as indicated by other interrupts as well)
15: RxMiss Message filtered away during reception
14: TXErrCntr Transmission error counter incremented
13: RXErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TXEmpty Successful transmission of all messages in buffer
7 RxFull Successful reception of all messages possible to store in buffer
6: TXIRQ Successful transmission of a predefined number of messages
5: RxIRQ Successful reception of a predefined number of messages
4: TXAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition

AEROFLEX GAISLER 371 GRIP

0: PASS Error-passive condition

All bits in all interrupt registers are reset to Ob after reset.

Note that the TXAHBETrr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

Note that the RxAHBEIT interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

39.10 Memory mapping

The CANmMessage is represented in memory as showablie 426.

Table 426CAN message representation in memory.

AHB addr
0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IDE | RT |- bID elD
R
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| eD |
0Ox4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|DLC - |- |- |- |[mEercor |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RXErrCntr - - - - Ahb | OR | Off | Pass
Err
0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| Byte O (first transmitted) | Byte 1 |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| Byte 2 | Byte 3 |
0oxC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| Byte 4 | Byte 5 |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| Byte 6 | Byte 7 (last transmitted) |
Values: Levels according to CAN standard: 1b is recessive,

0Ob is dominant
Legend: Naming and number in according to CAN standard

IDE Identifier Extension: 1b for Extended Format,
Ob for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

Ob for Data Frame
bID Base Identifier
elD Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes

0011b 3 bytes

AEROFLEX GAISLER 372 GRIP
0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes
1000b 8 bytes
OTHERS illegal

TXErrCntr Transmission Error Counter

RXErrCntr Reception Error Counter

AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b

OFF Bus Off mode when 1b

PASS Error Passive mode when 1b

Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

39.11 Vendor and device identifiers

The module has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x03D. For descrip-

39.12

39.13

tion of vendor and device identifiers see GRLIB IP Library User's Manual.

Configuration options

Table 427 shows the configuration options of the core (VHDL generics).

Table 427Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRCAN. 0 - NAHBIRQ-1 0
singleirq Implement only one common interrupt 0-1 0
txchannels Number of transmit channels 1-1 1
rxchannels Number of receive channels 1-1 1
ptrwidth Width of message pointers 16 - 16 16
Signal descriptions

Table 428 shows the interface signals of the core (VHDL ports).

Table 428Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
CANI Rx[1:0] Input Receive lines -
CANO Tx[1:0] Output Transmit lines -

En[1:0] Transmit enables -

* see GRLIB IP Library User's Manual

AEROFLEX GAISLER 373

39.14 Library dependencies

39.15

GRIP

Table 429 shows the libraries used when instantiating the core (VHDL libraries).

Table 429 ibrary dependencies
Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CAN Signals, component GRCAN component and signal declarat
Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.can.all;

entity exa
generic

mple is

(

padtech: in integer := 0);

port (

-- CAN interface

cantx: out std_logic_vector(1 downto 0);
canrx: in std_logic_vector(1 downto 0);
canen: out std_logic_vector(1 downto 0);

-- Signal declarations

signal
signal

signal
signal

signal
signal

signal
signal

rstn: std_ulogic;

clk: std_ulogic;

ahbmo: ahb_mst_out_vector := (others => ahbm_none);
ahbmi: ahb_mst_in_type;

apbi: apb_slv_in_type;

apbo: apb_slv_out_vector := (others => apb_none);
canio: can_in_type;

cano0: can_out_type;

-- Component instantiation

grcanO: grcan
generic map (

hindex =>1,
pindex =1,
paddr => 16#00C",
pmask => 16#FFC",
pirg =1,
txchannels =>1,

rxchannels =>1,
ptrwidth =>16)

port map (
rstn => rstn,
clk => clk,
apbi => apbi,
apbo => apbo(1),
ahbi => ahbmi,
ahbo =>ahbmo(1),
cani => canio,

cano => cano0);

ions.

AEROFLEX GAISLER 374 GRIP

cantx0_pad : outpad
generic map (tech => padtech) port map (cantx(0), cani0.tx(0));

canrx0_pad : inpad
generic map (tech => padtech) port map (canrx(0), cani0.rx(0));

canen0_pad : outpad
generic map (tech => padtech) port map (canen(0), caniO.en(0));

cantxl_pad : outpad
generic map (tech => padtech) port map (cantx(1), cani0.tx(1));

canrx1_pad : inpad
generic map (tech => padtech) port map (canrx(1), caniO.rx(1));

canenl_pad : outpad
generic map (tech => padtech) port map (canen(1), cani0.en(1));

AEROFLEX GAISLER 375 GRIP

40

40.1

40.2

GRCLKGATE - Clock gating unit

Overview

The clock gating unit provides a mean to save power by disabling the clock to unused functional
blocks. The core provides a mechanism to automatically disabling the clock to LEON processors in
power-down mode, and optionally also to disable the clock for shared floating-point units.

The core provides a register interface via its APB slave bus interface.

Operation

The operation of the clock gating unit is controlled through four registers: the unlock, clock enable,
core reset and CPU/FPU override registers. The clock enable register defines if a clock is enabled or
disabled. A ‘1’ in a bit location will enable the corresponding clock, while a ‘0’ will disable the clock.
The core reset register allows to generate a reset signal for each generated clock. A reset will be gen-
erated as long as the corresponding bit is set to ‘1’. The bits in clock enable and core reset registers
can only be written when the corresponding bit in the unlock register is 1. If a bit in the unlock regis-
ter is 0, the corresponding bits in the clock enable and core reset registers cannot be written.

To gate the clock for a core, the following procedure should be applied:
1. Disable the core through software to make sure it does not initialize any AHB accesses
2. Write a 1 to the corresponding bit in the unlock register

3. Write a 0 to the corresponding bit in the clock enable register

4. Write a 0 to the corresponding bit in the unlock register

To enable the clock for a core, the following procedure should be applied
1. Write a 1 to the corresponding bit in the unlock register

2. Write a 1 to the corresponding bit in the core reset register

3. Write a 1 to the corresponding bit in the clock enable register

4. Write a 1 to the corresponding bit in the core reset register

5. Write a 0 to the corresponding bit in the unlock register

The clock gating unit also provides gating for the processor core and, optionally, floating-point units.

A processor core will be automatically gated off when it enters power-down mode. Any shared FPU

will be gated off when all processor cores connected to the FPU have floating-point disabled or when
all connected processor cores are in power-down mode.

Processor/FPU clock gating can be disabled by writing ‘1’ to bit 0 of the CPU/FPU override register.

40.2.1 Shared FPU

For systems with shared FPU, a processor may be clock gated off while the connected FPU continues
to be clocked. The power-down instruction may overtake a previously issued floating-point instruc-
tion and cause the processor to be gated off before the floating-point operation has completed. This
can in turn lead to the processor not reacting to the completion of the floating-point operation and to a
subsequent processor freeze after the processor wakes up and continues to wait for the completion of
the floating-point operation.

In order to avoid this, software must make sure that all floating-point operations have completed
before the processor enters power-down. This is generally not a problem in real-world applications as
the power-down instruction is typically used in a idle loop and floating-point results have been stored
to memory before entering the idle loop. To make sure that there are no floating-point operations
pending, software should perform a store of the %fsr register before the power-down instruction.

AEROFLEX GAISLER 376 GRIP

40.2.2 Scan test support

When scan test support is configured into the core and the scanen signal is active, all clock gates are
set to pass-through. Also, all registers in the core are clocked on the rising edge of the clock. The
scan-enable signal is provided via the APB input record.

A separate ungate active-high input signal that also sets all clock gates to pass-through can be enabled
in the core.

40.3 Registers
The core’s registers are mapped into APB address space.

Table 430Clock gate unit registers

APB address offset Register

0x00 Unlock register

0x04 Clock enable register
0x08 Core reset register

0x0C CPU/FPU override register

40.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x02C. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER

377

40.5 Configuration options

Table 431 shows the configuration options of the core (VHDL generics).

Table 431Configuration options

GRIP

Generic Function Allowed range Default
tech Clock/fabrication technology 0to NTECH-1 0
pindex Selects which APB select signal (PSEL) will be used to
access the unit
paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask 0 to 16#FFF# 16#FFF#
ncpu Number of processors that will connect to the unit - 1
nclks Number of peripheral units (clock/reset pairs) in additjdh- 31 8
to any processors and floating-point units that will con-
nect to the unit.
emask Bit mask where bit n (0 is the least significant bit) | 0 - 16#FFFFFFFF# 0
decides if a unit should be enabled (1) or disabled (Q)
after system reset.
extemask If this generic is set to a hon-zero value then the afte®- 1 0
reset-enable-mask will be taken from the input signa
epwen.
scantest Enable scan test support 0-1 0
edges Extra clock edges provided by the clock gate unit after 0
reset completes. CPUs getgest 3 rising edges after
reset and other cores gadgest 1 rising edges after sys-
tem reset.
noinv Do not use inverted clock for clock gate enable registér- 1 0
This generic can be set to one for technologies that have
glitch free clock gates.
fpush Selects FPU configuration 0-2 0
0: System has processors without, or with dedicated
FPUs
1: System has one FPU shared between all processprs
3: System has one FPU for each parir of processors
(FPUO is connected to CPUO and CPU1, FPU1 is can-
nected to CPU2 and CPU3, ...)
ungateen Enable separate ungate input for asynchronous un-gating
of all clocks.

AEROFLEX GAISLER 378 GRIP
40.6 Signal descriptions
Table 432 shows the interface signals of the core (VHDL ports).
Table 432Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLKIN N/A Input Clock -
PWD N/A Input Power-down signal from processor cores High
FPEN N/A Input Floating-point enable signal from processor | High
cores, only used in configurations with shared
FPU.
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GCLK[nclks-1:0] N/A Output Clock(s) to peripheral unit -
RESET[nclks-1:0] N/A Output Reset(s) to peripheral units Low
CLKAHB N/A Output Clock to non-gated units -
CLKCPU[ncpu-1:0] | N/A Output Clock to processor cores -
ENABLE[nclks-1:0] | N/A Output Enable signal(s) for peripheral units High
CLKFPUI[nfpu**:0] | N/A Output Clock to shared floating-point units, only used|in
configurations with shared FPU.
EPWEN N/A Input External enable reset vector High
UNGATE N/A Input Ungate all clocks for test mode (only used if | High
enabled in configuration)

40.7

40.8

* see GRLIB IP Library User's Manual
** where nfpu = (fpush/2)*(ncpu/2-1)

Library dependencies

Table 433 shows libraries used when instantiating the core (VHDL libraries).

Table 433.ibrary dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
Instantiation

This example shows how the core can be instantiated.

clkgO: grclkgate
generic map (

tech =>fabtech,

pindex =>4,
paddr
pmask
ncpu
nclks
emask =>0,
extemask => 1,

=> 164040#,
=> 16#fff#,
=> CFG_|
=> NCLKS,

NCPU,

-- Don't care

-- Reset value defined by input vector (epwen below)

scantest => scantest,

edges =>CG_EDGES,
noinv. => CG_NOINV,
fpush => CFG_GRFPUSH)

AEROFLEX GAISLER 379 GRIP

port map(
rst =>rstn, -- from reset generator
clkin =>ahb_clk, --from clock generator

pwd =>pwd, --from processors, typically dsuo.pwd(CFG_NCPU-1 downto 0)
fpen =>fpen, -- from processors, if shared FPU is used

apbi => apbi,

apbo =>apbo(4),

gclk =>gclk, -- clock to (gated) peripheral cores

reset =>grst, -- reset to (gated) peripheral cores

clkahb => clkm, -- clock to AMBA system (not gated)

clkepu => cpuclk, -- clock to processor cores

enable => clkenable, -- enable(n) signals that peripheral n is enabled
clkfpu => fpuclk, -- clock to any shared FPU cores

epwen =>pwenmask, -- signal to set enable-after-reset
ungate =>gnd);

AEROFLEX GAISLER 380 GRIP

41

41.1

41.2

GRECC - Elliptic Curve Cryptography

Overview

Elliptic Curve Cryptography (ECC) is used as a public key mechanism. The computational burden
that is inhibited by ECC is less than the one of RSA. ECC provides the same level of security as RSA
but with a significantly shorter key length. ECC is well suited for application in mobile communica-
tion.

The GRECC core implements encryption and decryption for an elliptic curve based on 233-bit key
and point lengths. The implemented curve is denotesg@233rlor B-233.

Thesect233rlelliptic curve domain parameters are specified in the “Standards for Efficient Cryptog-
raphy (SEC) - SEC2: Recommended Elliptic Curve Domain Parameters” document. The document is
established by the Standards for Efficient Cryptography Group (SECG).

The B-233elliptic curve domain parameters are specified in the “Digital Signature Standard (DSS)”
document, Federal Information Processing Standards (FIPS) Publication 186-2. The document is
established by the National Institute of Standards and Technology (NIST).

The GRECC can be used with algorithms such as:

e Elliptic Curve Digital Signature Algorithm DSA (ECDSA), which appears in FIPS 186-2, IEEE
1363-2000 and ISO/IEC 15946-2

e Elliptic Curve El Gamal Method (key exchange protocol)
e Elliptic Curve Diffie-Hellman (ECDH) (key agreement protocol)

The core provides the following internal AMBA APB slave interface, with sideband signals as per
[GRLIB] including:

e interrupt bus
e configuration information
e diagnostic information

The core can be partition in the following hierarchical elements:
e Elliptic Curve Cryptography (ECC) core

e AMBA APB slave

* GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

Operation

Elliptic Curve Cryptography (ECC) is an asymmetric cryptographic approach (also known as public
key cryptography) that applies different keys for encryption and decryption. The most expensive
operation during both encryption and decryption is the elliptic curve point multiplication. Hereby, a
point on the elliptic curve is multiplied with a long integée*P multiplication). The bit sizes of the
coordinates of the poif=(x, y) and the factok have a length of hundreds of bits.

In this implementation the key and the point lengths are 233 bit, so that for every key there are 8 write
cycles necessary and for every point (consisting ahdy) there are 16 write cycles necessary. After
at least 16700 clock cycles the result can be read out.

AEROFLEX GAISLER 381 GRIP

41.3

41.4

41.5

The key is input via eight registers. The input pditii=(X, y) is written via eight registers fax and

eight registers foy. After the last y input register is written, the encryption or decryption is started.
The progress can be observed via the status register. When the operation is completed, an interrupt is
generated. The output poiRg,=(x, y) is then read out via eight registers foand eight registers for

V.

Advantages

The main operation in ECC is the k*P multiplication. One k*P multiplication requires about 1500
field multiplications in the base field, which is the most expensive base operation. The complexity of
a field multiplication can be reduced by applying the Karatsuba method. Normally the Karatsuba
approach is applied recursively. The GRECC core includes an iterative implementation of the Karat-
suba method which allows to realize area efficient hardware accelerators fofRhaultiplication.
Hardware accelerators which are realized applying an iterative approach need up to 60 per cent less
area and about 30 per cent less energy per multiplication than the recursive variants.

Background

The Standards for Efficient Cryptography Group (SECG) was initiated by Certicom Corporation to
address the difficulty vendors and users face when building and deploying interoperable security solu-
tions. The SECG is a broad international coalition comprised of leading technology companies and
key industry players in the information security industry. One of the goals is to enable the effective
incorporation of Elliptic Curve Cryptographic (ECC) technology into these various cryptographic
solutions.

The Standards for Efficient Cryptography Group (SECG) has develop two sets of documents. The
first set, under the name SEC, specifies interoperable cryptographic technologies and solutions. The
second set, Guidelines for Efficient Cryptography (GEC), provides background information on ellip-
tic curve cryptography and recommendations for ECC parameter and curve selection.

The Federal Information Processing Standards Publication Series of the National Institute of Stan-
dards and Technology (NIST) is the official series of publications relating to standards and guidelines
adopted under the provisions of the Information Technology Management Reform Act.

This Digital Signature Standard (DSS) specifies a suite of algorithms which can be used to generate a
digital signature. Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory. In addition, the recipient of sighed data can use a digital sig-
nature in proving to a third party that the signature was in fact generated by the signatory. This is
known as nonrepudiation since the signatory cannot, at a later time, repudiate the signature.

233-bit elliptic curve domain parameters

The core implements the 233-bit elliptic curve domain paramsest233rlpr the equivalenB-233

which are verifiably random parameters. The following specification is established in “Standards for
Efficient Cryptography (SEC) - SEC 2: Recommended Elliptic Curve Domain Parameters”. The veri-
fiably random elliptic curve domain parameters ovemfare specified by the septuple= (m; f (x);

a; b; G; n; h) wheren = 233 and the representation gk83is defined by:

f(x) = ¥233xT4+1
The curveE: y?>+xy = x>+ax’+b over Fm is defined by:

a = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

b = 0066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD
The base poin® in compressed form is:

G = 0300FA CO9DFCBAC 8313BB21 39F1BB75 5FEF65BC 391F8B36 FSFSEB73 71FD558B
and in uncompressed form is:

AEROFLEX GAISLER 382 GRIP

G =04 OOFACODF CBAC8313 BB2139F1 BB755FEF 65BC391F 8B36F8F8
EB7371FD 558B0100 6A08A419 03350678 E58528BE BFSBAOBEF F867A7CA
36716F7E 01F81052
Finally the orden of G and the cofactor are:
n = 0100 00000000 00000000 00000000 0013E974 E72F8A69 22031D26 03CFEOD7
h=02

41.6 Throughput

The data throughput for the GRECC core is around 233/16700 bits per clock cycle, i.e. approximately
13.9 kbits per MHz.

The underlaying EEC core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 850 kbit/s, the
power consumption was 56,8 mW, and the size was 48,5 kgates.

E -
i.'ﬂ_-lll-l#u ERIEIITEE e e
T r—— =

Lar

o

e i e AP L R E UL LR T L T

Figure 142. Dual Crypto Chip

41.7 Characteristics

The GRECC core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

e LUTs: 12850 (19%)
* Frequency:93 MHz

AEROFLEX GAISLER

41.8 Registers

The core is programmed through registers mapped into APB address space.

383

GRIP

Table 434GRECCregisters
APB address offset Register
16#020# Key 0 Register
16#024# Key 1 Register
16#028# Key 2 Register
16#02C# Key 3 Register
16#030# Key 4 Register
16#034# Key 5 Register
16#038# Key 6 Register
16#03C# Key 7 Register
16#040# Point X Input O Register
16#044# Point X Input 1 Register
16#048# Point X Input 2 Register
16#04C# Point X Input 3 Register
16#050# Point X Input 4 Register
16#054# Point X Input 5 Register
16#058# Point X Input 6 Register
16#05C# Point X Input 7 Register
16#060# Point Y Input O Register
16#064# Point Y Input 1 Register
16#068# Point Y Input 2 Register
16#06C# Point Y Input 3 Register
16#070# Point Y Input 4 Register
16#074# Point Y Input 5 Register
16#078# Point Y Input 6 Register
16#07C# Point Y Input 7 Register
16#0A0# Point X Output O Register
16#0A4# Point X Output 1 Register
16#0A8# Point X Output 2 Register
16#0ACH# Point X Output 3 Register
16#0B0# Point X Output 4 Register
16#0B4# Point X Output 5 Register
16#0B8# Point X Output 6 Register
16#0BC# Point X Output 7 Register
16#0CO# Point Y Output O Register
16#0C4# Point Y Output 1 Register
16#0C8# Point Y Output 2 Register
16#0CC# Point Y Output 3 Register
16#0D0# Point Y Output 4 Register
16#0D4# Point Y Output 5 Register
16#0D8# Point Y Output 6 Register
16#0DC# Point Y Output 7 Register
16#0FC# Status Register

AEROFLEX GAISLER 384 GRIP

41.8.1 Key 0 to 7 Registers (W)

Table 435Key 0 Register (least significant)

31 0
| KEY(31 downto 0)

Table 436Key 1 Register

31 0
| KEY(63 downto32)

Table 437Key 2 Register

31 0
| KEY(95 downto 64)

Table 438ey 3 Register

31 0
| KEY(127 downto 96)

Table 43%Key 4 Register

31 0
| KEY(159 downto 128)

Table 440Key 5 Register

31 0
| KEY(191 downto 160)

Table 441Key 6 Register

31 0
| KEY(223 downto 192)

Table 442Key 7 Register (most significant)

31 9 8 0
- | KEY(232 downto 224) |

41.8.2 Point X Input O to 7 Registers (W)

Table 443Point X Input 0 Register (least significant)

31 0
| X(31 downto 0)

Table 444Point X Input 1 Register

31 0
| X(63 downto32)

Table 44520int X Input 2 Register

31 0
| X(95 downto 64)

AEROFLEX GAISLER 385

Table 446Roint X Input 3 Register

31

| X(127 downto 96)

Table 447Roint X Input 4 Register

31

| X(159 downto 128)

Table 448Point X Input 5 Register

31

| X(191 downto 160)

Table 44%oint X Input 6 Register

31

| X(223 downto 192)

Table 450P0int X Input 7 Register (most significant)

31

8

| X(232 downto 224)

GRIP

AEROFLEX GAISLER 386 GRIP

41.8.3 Point Y Input 0 to 7 Registers (W)

Table 451RPoint Y Input O Register (least significant)

31 0
| Y (31 downto 0)

Table 452Point Y Input 1 Register

31 0
| Y(63 downto32)

Table 453Point Y Input 2 Register

31 0
| Y(95 downto 64)

Table 454RPoint Y Input 3 Register

31 0
| Y(127 downto 96)

Table 45520int Y Input 4 Register

31 0
| Y(159 downto 128)

Table 456R0int Y Input 5 Register

31 0
| Y(191 downto 160)

Table 457Point Y Input 6 Register

31 0
| Y(223 downto 192)

Table 458Point Y Input 7 Register (most significant)

31 9 8 0
- | Y(232 downto 224)

The encryption or decryption operation is started wheirdie Y Input 7 Register is written.

AEROFLEX GAISLER 387 GRIP

41.8.4 Point X Output O to 7 Registers (R)

Table 45%0int X Output O Register (least significant)

31 0
| X(31 downto 0)

Table 460Point X Output 1 Register

31 0
| X(63 downto32)

Table 461Point X Output 2 Register

31 0
| X(95 downto 64)

Table 462Point X Output 3 Register

31 0
| X(127 downto 96)

Table 463Point X Output 4 Register

31 0
| X(159 downto 128)

Table 464Point X Output 5 Register

31 0
| X(191 downto 160)

Table 465P0int X Output 6 Register

31 0
| X(223 downto 192)

Table 466Point X Output 7 Register (most significant)

31 9 8 0
- | X(232 downto 224)

AEROFLEX GAISLER 388 GRIP

41.8.5 Point Y Output O to 7 Registers (R)

Table 467Point Y Output O Register (least significant)

31 0
| Y (31 downto 0)

Table 468Point Y Output 1 Register

31 0
| Y(63 downto32)

Table 469oint Y Output 2 Register

31 0
| Y(95 downto 64)

Table 470Point Y Output 3 Register

31 0
| Y(127 downto 96)

Table 471Point Y Output 4 Register

31 0
| Y(159 downto 128)

Table 472Point Y Output 5 Register

31 0
| Y(191 downto 160)

Table 473Point Y Output 6 Register

31 0
| Y(223 downto 192)

Table 474Point Y Output 7 Register (most significant)

31 9 8 0
- | Y(232 downto 224)

41.8.6 Status Register (R)

Table 475Status Register

31 1 0
FS
M
31-1: - Unused
0: FSM 0 when ongoing, 1 when idle or ready

41.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x074. For description of
vendor and device identifiers see GRLIB IP Library User's Manual.

AEROFLEX GAISLER 389 GRIP

41.10 Configuration options

Table 476 shows the configuration options of the core (VHDL generics).

Table 476Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB BAR 0 - 16#FFF# 0
pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRECC 0 - NAHBIRQ-1 0
41.11 Signal descriptions

Table 477 shows the interface signals of the core (VHDL ports).

Table 477Signal descriptions
Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
DEBUGJ10:0] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Note that the ECC core can also be used without the GRLIB plug&play information. The AMBA
APB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

41.12 Library dependencies

Table 478 shows libraries used when instantiating the core (VHDL libraries).

Table 478.ibrary dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRECC component declarations

41.13 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.crypto.all;

signal debug: std_logic_vector(10 downto 0);

AEROFLEX GAISLER 390

greccO: grecc
generic map (

pindex => pindex,
paddr => paddr,
pmask => pmask,
pirq => pirq)
port map (
rstn => rstn,
clk => clk,
apbi => apbi,
apbo => apbo(pindex),

debug => debug);

GRIP

AEROFLEX GAISLER 391 GRIP

42 GRETH - Ethernet Media Access Controller (MAC) with EDCL support

42.1 Overview

Aeroflex Gaisler’'s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MIl and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the MIl Management interface which
is used to configure the PHY.

Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. This is an UDP/IP based protocol used for remote debugging.

APB
AHB
Ethernet MAC
» MDIO_OE
» MDIO_O
> Registers MDIO MDIO_|
- » MDC

» TX_EN

Transmitter) > TX ER

i FIFO [P » N(2-
<> DMAEngne Transmitter » TXD(3:0)

TX_CLK
RX_COL
4— |—»|| AHB Master Transmitter RX_COL
Interface
EDCL

RX_DV

44— RX_ER
hig Receiver X Receiver RXD(3:0)

'» DMA Engine [¢— FIFO (€ RX_CLK

Figure 143. Block diagram of the internal structure of the GRETH.

42.2 Operation

42.2.1 System overview

The GRETH consists of 3 functional units: The DMA channels, MDIO interface and the optional
Ethernet Debug Communication Link (EDCL).

The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and always runs in parallel with the DMA channels.

AEROFLEX GAISLER 392 GRIP

The Media Independent Interface (Mll) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the Mll interface. Corre-
spondingly, there is an Ethernet receiver which stores all data from the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMII
which uses a subset of the MII signals.

The EDCL and the DMA channels share the Ethernet receiver and transmitter.

42.2.2 Protocol support

The GRETH is implemented according to IEEE standard 802.3-2002 and IEEE standard 802.3Q-
2003. There is no support for the optional control sublayer. This means that packets with type 0x8808
(the only currently defined ctrl packets) are discarded. The support for 802.3Q is optional and need to
be enabled via generics.

42.2.3 Clocking

GRETH has three clock domains: The AHB clock, Ethernet receiver clock and the Ethernet transmit-
ter clock. The ethernet transmitter and receiver clocks are generated by the external ethernet PHY, and
are inputs to the core through the Mll interface. The three clock domains are unrelated to each other
and all signals crossing the clock regions are fully synchronized inside the core.

Both full-duplex and half-duplex operating modes are supported and both can be run in either 10 or
100 Mbit. The minimum AHB clock for 10 Mbit operation is 2.5 MHz, while 18 MHz is needed for
100 Mbit. Using a lower AHB clock than specified will lead to excessive packet loss.

42.2.4 RAM debug support

Support for debug accesses the core’s internal RAM blocks can be optionally enabled using the ram-
debug VHDL generic. Setting it to 1 enables accesses to the transmitter and receiver RAM buffers and
setting it to 2 enables accesses to the EDCL buffer in addition to the previous two buffers.

The transmitter RAM buffer is accessed starting from APB address offset 0x10000 which corresponds
to location 0 in the RAM. There are 512 32-bit wide locations in the RAM which results in the last
address being 0x107FC corresponding to RAM location 511 (byte addressing used on the APB bus).

Correspondingly the receiver RAM buffer is accessed starting from APB address offset 0x20000. The
addresses, width and depth is the same.

The EDCL buffers are accessed starting from address 0x30000. The number of locations depend on
the configuration and can be from 256 to 16384. Each location is 32-bits wide so the maximum
address is 0x3FC and OxFFFC correspondingly.

Before any debug accesses can be made the ramdebugen bit in the control register has to be set. Dur-
ing this time the debug interface controls the RAM blocks and normal operations is stopped. EDCL
packets are not received. The MAC transmitter and receiver could still operate if enabled but the RAM
buffers would be corrupt if debug accces are made simultaneously. Thus they MUST be disabled
before the RAM debug mode is enabled.

42.2.5 Multibus version

There is a version of the core which has an additional master interface that can be used for the EDCL.
Otherwise this version is identical to the basic version. The additional master interface is enabled with
the edclsepahb VHDL generic. Then the ethi.edclsepahb signal control whether EDCL accesses are
done on the standard master interface or the additional interface. Setting the signal to ‘0’ makes the
EDCL use the standard master interface while ‘1’ selects the additional master. This signal is only
sampled at reset and changes to this signal have no effect until the next reset.

AEROFLEX GAISLER 393 GRIP

42.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

42.3.1 Setting up a descriptor.

A single descriptor is shown in table 479 and 480. The number of bytes to be sent should be set in the
length field and the address field should point to the data. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this
requires that the transmitter interrupt bit in the control register is also set). The interrupt will be gener-
at